
ctor _e 3

e nti

ZJZ Z

o _r ogram _r
Shpe OfiiC ..

aI F!oYws AboUt

:r_r ns stag a
er

amAc n an c e
er_n 3

c u m entll iiiii

@

Uncl ds
HI/O? 0085733

(NASA-CR-325_) PAN AIR: A COMPUTER PRGG_A_

FOR PREOICTING SUBSONIC OR SUPERSONIC LINEAR

POTENTIAL FLOWS A_OUT A_BITRARY

CONFIGURATIONS U_ING A HIGHER ORDER PANEL

METHOD. VOLUME _:(Boeinq Military Airplane

v

NASA Contractor Report 3254

PAN AIR- A Computer Program for
Predicting Subsonic or Supersonic
Linear Potential Flows About

Arbitrary Configurations Using a
Higher Order Panel Method
Volume IV Maintenance Document

(Version 3.0)

David J. Purdon, Pranab K. Baruah, John E. Bussoletti, Michael A. Epton, William A. Massena,
Franklin D. Nelson, and Kiyoharu Tsurusaki
Boeing Military Airplane Company
Seattle, Washington

Prepared for
Ames Research Center, and
Langley Research Center
under Contract NAS2-12036

and for the
Air Force Aeronautical Systems Division
Air Force Wright Aeronautical Laboratories
Naval Coastal Systems Center

NASA
National Aeronautics and

Space Administration

Ames Research Center
Moffett Field, California 94035

_ m

=

V

v

_J

TABLE OF CONTENTS

TABLE OF CONTENTS
TABLE OF CONTENTS OF APPENDICES

LIST OF FIGURES
LIST OF FIGURES OF APPENDICES

LIST OF TABLES

LIST OF TABLES OF APPENDICIES
SUM_RY

l.O PAN AIR SOFTWARE SYSTEM

l.l INTRODUCTION

1.2 SYSTEM OVERVIEW

1.2.1 Program Modules and Data Bases

1.2.2 PAN AIR System Execution Flow

1.2.3 Data Base Manager

1.3 SYSTEM COMPONENTS

1.3.1 JCL Cards for Initiation of PAN AIR

1.3.2 Data Input
1.3.3 Data Bases

1.3.4 PAN AIR Modules

1.3.4.1 PAN AIR System External Interfaces

1.3.4.2 PAN AIR System Internal Interfaces

1.3.4.3 Sizing and Timing Estimates

1.3.4.4 Software Design Consideration

1.4 A GUIDE TO MODULE INTERPRETATION

1.4.1 Functional Decomposition ariaStructure
1.4.2 Preface of Modules and Subprograms

1.4.3 Data Flow
1.4.3.1 Formal Parameters

1.4.3.2 Labeled Common
1.4.3.3 Data Base Communication

1.5 MAINTENANCE OF PAN AIR SOFTWARE

1.5.1 Update Feature
1.5.2 Common Data Blocks
1.5.3 Master Definition Modification and Maintenance

1.5.4 Documentation Maintenance

2.0 MODULE EXECUTION CONTROL (MEC) MODULE

2.1 INTRODUCTION

2.2 MEC OVERVIEW

2.2.1 Purpose of FiEC

2.2.2 MEC Input/Output Data
2.2.3 Data Base Interface

2.3 MODULE DESCRIPTION

Page

i

xi
XV

xix
xxiii

xxiv
xxvii

l .l

l.l

l.l
l.l

l.l

1.2

1.4

1.4
1.5
1.5

1.5
1.6

1.6

1.6

1.6

1.7

1.7
1.8

1.8
1.9

1.9
1.9

l.ll
l.ll

l.12

l.12

l .13

2.1

2.1

2.1

2.1
2.1

2.1

2.2

iii

PRECEDING PAGE BLANK NOT FILMED II/__..L_INTENTIONAI_LY BI,AM

2.4

3.0 DATA

3.1

3.2

3.3

TABLE OF CONTENTS (Continued)

2.3.1
2.3.2

Overal I Structure

Overlay Descriptions

2.3.2.1 MEC Overlay (0,0)

2.3.2.2 READUD Overlay If,O)

2.3.2.3 PRDATA Overlay (l,l)
2.3.2.4 PREXEC Overlay (1,2)

2.3.2.5 GENDB Overlay (2,0)
2.3.2.6 GENCC Overlay (3,0)

2.3.3 MEC Data Base
2.3.4 MEC Interfaces

2.3.4.1 System Interfaces
2.3.4.2 External Interfaces

2.3.4.3 Internal Interfaces
2.3.5 Data Flow

LOWER LEVEL FUNCTIONS

2.4.1 Functional Decompositions

2.4.2 Subroutine Descriptions

INPUT PROCESSOR (DIP) MODULE

INTRODUCTION

DIP OVERVIEW

3.2.1 Purpose of DIP

3.2.2 DIP Input/Output Data
3.2.3 Data Base Interface

MODULE DESCRIPTION

3.3.1 Overall Structure

3.3.2 Overlay Descriptions

3.3.2.1 DIP Overlay (0,0)
3.3.2.2 INITIAL Overlay (I,0)

3.3.2.3 GLOBDP Overlay (2,0)

3.3.2.4 NETWDP Overlay (3,0)

3.3.2.5 GEOMDP Overlay (4,0)

3.3.2.6 FLOWDP Overlay (5,0)
3.3.2.7 SURFLO Overlay (5,1)

3.3.2.8 FFDATA Overlay (5,2)

3.3.2.9 FORMOM Overlay (5,3)

3.3.2.10 PPPDIR Overlay (6,0)
3.3.2.11 PPGEOM Overlay (6,1)

3.3.2.12 PPPOIN Overlay (6,2)
3.3.2.13 PPCONF Overlay (6,3)

3.3.2.14 FINIS Overlay (7,0)
3.3.3 DIP Data Base
3.3.4 DIP Interfaces

3.3.4.1 System Interfaces
3.3.4.2 External Interfaces
3.3.4.3 Internal Interfaces

3.3.5 Data Flow

Page

2.2

2.2
2.2

2.2
2.2

2.2
2.2

2.2
2.3

2.3
2.3

2.3
2.3

2.3

2.3

2.3
2.3

3.1

3.1

3.1
3.1

3.1
3.1

3.2
3.2

3.2
3.2

3.2
3.2

3.2
3.2

3.3
3.3

3.3
3.3

3.3
3.3

3.3
3.3

3.3
3.4

3.4
3.4

3.4
3.4
3.4

V

V

TABLE OF CONTENTS (Continued)

3.4 LOWER
3.4.1

3.4.2

LEVEL FUNCTIONS

Functional Decomposition
Subroutine Descriptions
3.4.2.1 Subroutines from GLOBDP

3.4.2.2 Subroutines from NETWDP
3.4.2.3 Subroutines from GEOMDP

3.4.2.4 Subroutines from FLOWDP

3.4.2.5 Subroutines from SURFLO

3.4.2.6 Subroutines from FFDATA
3.4.2.7 Subroutines from FORMOM

3.4.2.8 Subroutines from PPGEOM
3.4.2.9 Subroutines from PPPOIN

3.4.2.10 Subroutines from PPCONF
3.4.2.11 Subroutines from FINIS

4.0 DEFINING QUANTITIES GENERATOR (DQG) MODULE

4.1 INTRODUCTION

4.2 DQG OVERVIEW
4.2.1 Purpose of DQG

4.2.2 DQG Input/Output Data
4.2.3 Database Interface

4.3 MODULE
4.3.1

4.3.2

4.3.5

DESCRIPTION
Structure

Descriptions

OPENER Overlay (l,0)
NETDEF Overlay (2,0)

EDGDEF Overlay (3,0)
PRABUT Overlay (3,1)

ABTMNT Overlay (3,2)

GAPSIZE Overlay (3,3)
MATCH Overlay (3,4)

GAPPNL Overlay (3,5)

ADCPSG Overlay (3,6)

Overall

Overlay
4.3.2.1

4.3.2.2
4.3.2.3

4.3.2.4
4.3.2.5

4.3.2.6
4.3.2.7

4.3.2.8
4.3.2.9

4.3.2.10BNDYDF
4.3.2.11 TOPSPL

4.3.2.12 SAEDGS
4.3.2.13 SPLINR

4.3.2.]4 PANDEF
4.3.2.15 SUMMRY

Module DataBase
Data Interfaces

Overlay (4,0)

Overlay (5,0)
Overlay (5,1)

Overlay (5,2)

Overlay (6,0)
Overlay (7,0)

4.3.4.1 System Interfaces

4.3.4.2 Subprogram Interfaces
Data Flow in DQG

4.4 LOWER

4.4.1
4.4.2

LEVEL FUNCTIONS

Functional Decomposition

Subroutine Descriptions

Overlay
Overlay

Overlay
Overlay

Overlay

Overlay

Overl ay
Overlay

Overlay
Overlay

Overlay

(2,0)
(3,0)
(4,o)
(5,0)
(5,1)
(5,2)

(5,3)
(6,1)

(6,2)
(6,3)

(7,O)

Pa e

3.4

3.4
3.4

3.4
3.7

3.12
3.12

3.12
3.13

3.15
3.16

3.16
3.17

3.17

4.1

4.1

4.1

4.1
4.2

4.3

4.3

4.4
4.4

4.4
4.4

4.5
4.5

4.6
4.6

4.6
4.6

4.7
4.7

4.7
4.7

4.7
4.8

4.8
4.8

4.8
4.8

4.8
4.8

4.11
4.11

4.12

V

TABLE OF CONTENTS (Continued)

5.0 MAG MODULE

5.1

5.1

INTRODUCTION 5.4

5.1.1 Formulation l, Morino's Method 5.4
5.1.2 Formulation 2, Hess' Method 5.7

5.1.3 Definitions of Influence Coefficients 5.9

5.2 MAG OVERVIEW 5.13

5.2.1 Purpose of MAG 5.13

5.2.1.I The Principle Datasets, AIC-MATRIX and 5.13
IC-MATRICIES

5.2.1.2 The Principle Dataset MAG-PANEL-DATA 5.18
5.2.1.3 The Auxiliary Datasets DATA-BASE-HEADER 5.18

and SYMMETRY

5.2.1.4 The Auxiliary Datasets COLMAP, COLMAP- 5.18
INVERSE and COLW_P-BULK

5.2.1.5 The Auxiliary Datasets ROWMAP, ROWMAP- 5.19
INVERSE and ROWMAP-BULK

5.2.1.6 The Matching Condition Datasets 5.19
5.2.1.7 The PANEL-GROUP Dataset 5.20

5.2.2 MAG Input/Output Data 5.21
5.2.3 Data Base Interfaces 5.22

MODULE DESCRIPTIONS 5.23

5.3.1 Overall Structure 5.23

5.3.2 Overlay Descriptions 5.23
5.3.2.1 MAGIO, Overlay (l,O) 5.23

5.3.2.2 MAG20, Overlay (2,0) 5.25
5.3.3 MAG Databases 5.26

5.3.3.1 PANDTA Database: Random Access to 5.27
Minimal Panel Data

5.3.3.2 FPDQ Database: Sequential Access to 5.28
Minimal Panel Data

5.3.3.3 ICTP Database: Sequential File Storage 5.28
of the Influence Coefficients for a
Control Point Block

5.3.4 Data Flow 5.31

5.3

LOWER LEVEL FUNCTIONS

5.4.1 Functional Decomposition

5.4.2 Functional Decomposition
5.4.3 Subroutine Descriptions

for the PIVC Subassembly

5.4

6.0 REAL MATRIX SOLVER (RMS) MODULE

6.1 INTRODUCTION

RMS OVERVIEW

6.2.1 Purpose of RMS

6.2.2 RMS Output Data
6.2.3 Data Base Interfaces

6.2

5.32

5.32
5.36

5.37

6.1

6.1

6.2

6.2
6.2

6.2

vi

v

V

TABLE OF CONTENTS (Continued)

6.3 MODULE
6.3.1

6.3.2

6.3.3
6.3.4
6.3.5

DESCRIPTION

Overall Structure

Overlay Descriptions
6.3.2.1 RMS Overlay (0,0)
6.3.2.2 RMSINT Overlay (l,O)

6.3.2.3 BLOCKA Overlay (2,0)
6.3.2.4 DCOMPO Overlay (3,0)
RMS Data Base

RMS Interfaces
Data Flow

6.4 LOWER LEVEL FUNCTIONS

6.4.1 Functional Decompositions

6.4.2 Subroutine Descriptions

7.0 RIGHT HAND SIDE (RHS) MODULE

7.1 INTRODUCTION

7.2 RHS OVERVIEW

7.2.1 Purpose of RHS
7.2.2 RHS Input/Output Data
7.2.3 Data Base Interface
7.2.4 Role of RHS Within PAN AIR

7.2.5 Operating Environment
7.2.6 Data Base Interfaces

7.2.7 Output

7.3 MODULE DESCRIPTION

7.3.1 Overall Structure

7.3.2 Overlay Descriptions
7.3.2.1 OPENDB Overlay (l,O)
7.3.2.2 PBCAD Overlay (2,0)

7.3.2.3 RHSC Overlay (3,0)
7.3.2.4 KNOWN Overlay (3,1)
7.3.2.5 TRANSF Overlay (3,2)

7.3.2.6 KWNCTR Overlay (3,3)
7.3.2.7 PHSOLV Overlay (4,0)

7.3.2.8 RHSD Overlay (5,0)

7.3.3 RHS Data Bases
7.3.4 RHS Interfaces

7.3.4.1 Internal Interfaces
7.3.4.2 External Interfaces

7.3.5 Data Flow

7.4 LOWER LEVEL FUNCTIONS

7.4.1 Functional Decompositions

7.4.2 Subroutine Descriptions

8.0 MINIMAL DATA GENERATOR (MDG) MODULE

Page

6.2

6.2
6.2

6.2
6.3

6.3
6.3

6.4
6.4

6.4

6.4

6.4
6.4

7.1

7.1

7.1
7.1

7.1
7.1

7.1
7.1

7.1
7.1

7.2
7.2

7.3
7.3

7.3
7.3

7.3
7.3

7.3
7.4

7.4
7.4

7.4
7.4

7.4
7.4

7.5
7.5

7.5

8.1

vii

TABLE OF CONTENTS (Continued)

8.1 INTRODUCTION

8.2 MDG OVERVIEW

8.2.1 Purpose of MDG

8.2.2 MDG Input/Output Data

8.2.2.1 Input

8.2.2.2 Output
8.2.3 Data Base Interfaces

8.3 MODULE DESCRIPTION

Overall Structure

Overlay Descriptions
8.3.2.1 (1,0) Overlay (OPDBI)

8.3.2.2 (2,0) Overlay (PMPY)

8.3.2.3 (3,0) Overlay (SNGCP)
8.3.2.4 (4,0) Overlay (AQCP)

8.3.2.5 (5,0) Overlay (BPSV)
8.3.2.6 (6,0) Overlay (GPQTY)
8.3.2.7 (7,0) Overlay (EASY)

8.3.3 MDG Data Bases

8.3.4 MGD Interfaces

8.3.4.1 External Interfaces
8.3.4.2 Internal Interfaces

8.3.5 Data Flow

8.4 LOWER LEVEL FUNCTIONS

8.4.1 Functional Decomposition
8.4.2 Subroutine Definitions

9.0 POINT DATA PROCESSOR (PDP) MODULE

9.1 INTRODUCTION

9.2 PDP OVERVIEW

9.2.1 Purpose of PDP

9.2.2 PDP Input/Output Data

9.2.2.1 Input
9.2.2.2 Output

9.2.3 Data Base Interface

9.3 MODULE

9.3.1
9.3.2

DESCRIPTION

Overal I Structure

Overlay Descriptions
9.3.2.1 PDP Overlay (0,0)

9.3.2.2 OPDBI Overlay (l,O)
9.3.2.3 COMVEL Overlay (2,0)
9.3.2.4 FLPROP Overlay (3,0)
PDP Data Bases
PDP Interfaces

8.1

8.1

8.1

8.1
8.1

8.1
8.2

8.2

8.3

8.3
8.3

8.3
8.3

8.4
8.5

8.5
8.5

8.5
8.5

8.5
8.6

8.6

8.6

8.6
8.6

9.1

9.1

9.1
9.1

9.1
9.1

9.2
9.2

9.2
9.2

9.3
9.3

9.3
9.3

9.3
9.4

9.4

V

viii

TABLE OF CONTENTS (Continued)

9.3.5

9.3.4.1 System Interfaces
9.3.4.2 External Interfaces

9.3.4.3 Internal Interfaces
Data Flow

9.4 LOWER LEVEL FUNCTIONS

9.4.1 Functional Decomposition
9.4.2 Subroutine Descriptions

lO.O CDP MODULE

lO.l INTRODUCTION

I0.2 CDP OVERVIEW

lO.2.1 Purpose of CDP

I0.2.2 CDP Input/Output Data
I0.2.3 Data Base Interface

10.3 MODULE DESCRIPTION

lO.3.1 Overall Structure

I0.3.2 Overlay Descriptions
I0.3.2.1 CDP Overlay (0,0)

I0.3.2.20PDBI Overlay (l,O)
I0.3.2.3 COMPFM Overlay (2,0)

I0.3.2.4 LEDGF Overlay (3,0)

I0.3.2.5 GENOUT Overlay (4,0)
]0.3.2.6 AMCOEF Overlay (5,0)

I0.3.3 CDP Data Base
I0.3.4 CDP Interfaces

I0.3.4.1 System Interfaces
]0.3.4.2 External Interfaces

I0.3.4.3 Internal Interfaces
I0.3.5 Data Flow

I0.4 LOWER LEVEL FUNCTIONS

lO.4.1 Functional Decomposition
I0.4.2 Subroutine Descriptions

ll.O PPP MODULE

ll.l INTRODUCTION

ll.2 PPP OVERVIEW

ll.2.1 Purpose of PPP
II.2.2 PPP Input/Output Data

II.2.2.1 Input
II.2.2.2 Output

II.2.3 Data Base Interface

ll.3 MODULE DESCRIPTION

Page

9.4

9.4
9.5

9.5

9.5

9.5
9.5

lO.l

lO.l

lO.l
lO.l

lO.l
I0.2

I0.2
I0.2

I0.2
I0.2

I0.2
I0.3

I0.3
I0.3

I0.3
I0.3

I0.3
I0.3

I0.3
I0.4

I0.4

I0.4

10.4
10.4

II .l

II.l

II .l
II.2

II .2
II .2

ll.3
II .3

II .3

ix

TABLE OF CONTENTS (Continued)

II .3.3

ll .3.4
II .3.5

Overal I Structure

Overlay Descriptions
II.3.2.1 PPP Overlay (0,0)

II.3.2.2 PPPINT Overlay (l,O)

II.3.2.3 GEOMPR Overlay (2,0)
II.3.2.4 POINTP Overlay (3,0)

II.3.2.5 CONFIG Overlay (4,0)

PPP Data Base

PPP Interfaces
PPP Data Flow

II.4 LOWER LEVEL FUNCTIONS
ll.4.1 Functional Decompositions

11.4.2 Subprogram Descriptions

12.0 FIELD DATA PROCESSOR (FDP) MODULE

12.1 INTRODUCTION

12.2 FDP OVERVIEW

12.2.1 Purpose of FDP
12.2.2 FDP Input/Output Data

12.2.2.1 Input
12.2.2.2 Output

12.2.3 Internal Data Files

12.3 MODULE DESCRIPTION

12.3.1 Overall Structure
12.3.2 Detailed Descriptions

12.3.2.1 Preparation Processing
12.3.2.2 Offbody Processing (OFFBD)

12.3.2.3 Streamline Processing (STMLNE)
12.3.2.4 Potential and Velocity

Calculation (PVCAL)

12.3.3 Module Data Base

12.3.4 Data Interfaces

12.3.4.1 System Interfaces
12.3.4.2 Subprogram Interfaces

12.3.5 Data Flow in FDP

12.4 LOWER LEVEL FUNCTIONS
i2.4.1 Functional Decomposition

12.4.2 Subroutine Descriptions

13.0 PAN AIR LIBRARY (PALIB)

13.1 INTRODUCTION

13.2 PALIB OVERVIEW

13.2.1 Purpose of PALIB
13.2.2 PALIB Output Data

II .3

II .4
II .4

II .4
II .4

II.4
II.4

II.4
II .4

II .5

II .5

II .5
II .5

12.1

12.1

12.1
12.1

12.1
12.1

12.1
12.2

12.2
12.2

12.2
12.2

12.2
12.3

12.3

12.4
12.4

12.4
12.4

12.4

12.4

12.4

13.1

13.1

13.1
13.1

13.1

V

V

%.,,

14.0

TABLE OF CONTENTS (Continued)

13.2.3 Data Base Interfaces

13.3 'DESCRIPTION OF CLASSES OF SUBROUTINES
13.3.1
13.3,2

13.3.3
13.3.4

13.3.5
13.3.6

13.3.7
13.3.8

13.3.9
13.3.10

13.3.11

Page

13.1

IN PALIB 13.2

Matrix and Vector Manipulations 13.2
General Routines Related to Arbitrary Geometry 13.2

Special Routines Related tq PAN AIR Geometry 13.2
General Mathematical Routines 13.2

Constrained Quadratic Least Squares Fit 13.3

Blank Common Management 13.3
Special Purpose SDMS-Related Routines 13.3
Real Matrix Solver 13.3

Free Field Format Input Routines 13.3
MiscelIaneous 13.3

Data Input Processing Support Routines 13.4

SCIENTIFIC DATA MANAGEMENT SYSTEM (SDMS)

INTRODUCTION

I.I Data Dependence

1.2 Data Independence
1.3 Data Base Construction Process

1.4 SDMS Features

l.O

DATA
2.1
2.2

2.3
2.4

2.5

BASE DEFINITION

SDMS Data Base Fundamentals

Master Definition Structure

2.2.1 Master Definition Syntax

2.2.2 Dataset Syntax
2.2.3 Password Set Syntax

2.2.4 Key Set Syntax

2.2.5 Dataset Body Syntax

2.2.6 Element Set Syntax
Master Definition Example
Limitations

Definition Processing

2.0

DATA

3.0]
3.1

3.2
3.3

BASE ACCESS FACILITIES
Data Base Inftia1_zation Routine (ISDMS)
Data Base InitializationRoutine (DBOPEN)

3.1.1 Data Base Creation
3.1.2 Post Creation Access

Data Base Termination Routine (DBCLOS)

Dataset Mapping Routines
3.3.1
3.3.2

3.3.3
3.3.4

3.3.5
3.3.6

3.3.7
3.3.8

Static Mapping

Dynamic Mapping

Map Creation
Static Mapping Example

Dynamic Mapping Example
Restrictions

Permissible Usages
Map Usage Techniques

3.0

14.1

7
7

9
9

II
11

12
12

13
15

16
17

24
25

26
27

28
28

30
30

33
35

36
38

38
38

39

xi

TABLE OF CONTENTS (Concluded)

3.3.9 Map Construction in Overlay Programs
3.3.10 Preventing Mapping Error Aborts

3.4 Random Dataset Functions

3.4.1 Put Element Set (ESPUT)
3.4.2 Put DIRECT Element Set (OESPUT)
3.4.3 Get Element Set (ESGET)

3.4.4 Get DIRECT Element Set (DESGET)

3.4.5 Replace Element Set (ESREP)

3.4.6 Replace DIRECT Element Set (DESREP)

3.4.7 Creating and Accessing Random Datasets

3.4.8 DIRECT Dataset Usage
3.5 Sequential Dataset Functions

3.5.1 Open Element Set Sequences (ESSOPN)

3.5.2 Position Element Set Sequence (ESSPPOS)

3.5.3 Close Element Set Sequence (ESSCLS)
3.5.4 Put Into Next Element Set (ESSPUT)
3.5.5 Get From Next Element Set (ESSGET)

3.5.6 Using Sequential Datasets
3.6 Miscellaneous Date Base Functions

4.0 ERROR HANDLING

5.0 DIAGNOSTIC FEATURES

6.0 RECOVERY OPTIONS

7.0 ACCESS TO SDMS SUBROUTINES

15.0 SDMS CONVERSION

15.1 INTRODUCTION

15.2 MACHINES AND OPERATING SYSTEMS TO WHICH SDMS
HAS BEEN CONVERTED

15.3 SUMMARY OF CONVERSION PROBLEMS BY SUBPROGRAM

15.4 PURPOSE OF ASSEMBLY LANGUAGE ROUTINES

16.0 SOFTWARE GLOSSARY

17.0 REFERENCES

40

40
41

41
41

42
43

43
44

45
48

50
50

50
51

51
51

52
54

55

64

65

66

15.1

15.1

15.3

15.3

15.4

16.1

17.1

--k __

V

xii

SYSTEM

MEC

DIP

APPENDIX]-A

APPENDIX I-B

APPENDIX 2-A

APPENDIX 2-B

APPENDIX 2-C

APPENDIX 2-D

APPENDIX 3-A

APPENDIX 3-B

APPENDIX 3-C

APPENDIX 3-D

APPENDIX 4-A

APPENDIX 4-B

APPENDIX 4-C

APPENDIX 4-D

APPENDIX 4-E

APPENDIX 4-F

APPENDIX 4-G

APPENDIX 4-H

APPENDIX 4-I

APPENDIX 4-J

APPENDIX 4-K

APPENDIX 4-L

TABLE OF CONTENTS OF APPENDICES

SUMMARY OF PAN AIR MODULES

EXM4PLE OF HOW TO USE SDMS

TREE STRUCTURE DIAGRAM

MEC FUNCTIONAL DECOMPOSITION

DATA BASE COMMUNICATIONS CHART

MEC DATA BASE MASTER DEFINITION

TREE STRUCTURE

DIP FUNCTIONAL DECOMPOSITION

DATA BASE COMMUNICATIONS CHART

• MASTER DEFINITION

DQG TREE STRUCTURE

FUNCTIONAL DECOMPOSITION OF DQG

DATA BASE COMMUNICATION CHART

DQG DATA BASE MASTER DEFINITION

ERROR MESSAGES IN DQG

ADDITIONAL DIAGNOSTIC OUTPUT

SAMPLE OUTPUT FROM DQG

INDEXING SCHEMES IN DQG

AUTOMATIC ABUTMENT SEARCH

ABUTMENT INTERSECTION SEARCH

OUTER SPLINE CONSTRUCTION

GAP FILLING PANELS

1-A.I

1-B.I

2-A,l

2-B.l

2-C.l

2-D.l

3-A,l

3-B.l

3-C.l

3-b.l

4-A.l

4-B. l

4-C.l

4-D.l

4-E.]

4-F,l

4-G.l

4-H.]

4-I.l

4-J.l

4-K.l

4-L.l

xiii

MAG

RMS

RHS

MDG

TABLE OF CONTENTS OF APPENDICES (Continued)

APPENDIX 4-M SELECTION OF BOUNDARY CONDITIONS

APPENDIX 5-A

APPENDIX 5-B

APPENDIX 5-C

APPENDIX 5-D

APPENDIX 5-E

APPENDIX 5-F

APPENDIX 5-G

TREE STRUCTURE

MAG FUNCTIONAL DECOMPOSITION

DATA BASE COMMUNICATIONS CHART

MASTER DEFINITION

THE UPDATE CAPABILITY

BLANK COMMON MANAGEMENT

THE PARTIAL COLUMN METHOD

APPENDIX 6-A

APPENDIX 6-B

APPENDIX 6-C

APPENDIX 6-D

APPENDIX 6-E

Page

4-M.]

APPENDIX 7-A

APPENDIX 7-B

APPENDIX 7-C

APPENDIX 7-D

APPENDIX 7-E

APPENDIX 7-F

5-A.l

5-B.l

5-C.I

5-D.l

5-E.l

5-F.I

5-G.l

APPENDIX 8-A

APPENDIX 8-B

APPENDIX 8-C

TREE STRUCTURE DIAGRAM 6-A.I

RMS FUNCTIONAL DECOMPOSITION 6-B.!

DATA BASE COMMUNICATIONS CHART 6-C.I

RMS AND RMST DATA BASE MASTER DEFINITIONS 6-D.l

RMS ERROR MESSAGES 6-E.l

TREE STRUCTURE OF RHS

FUNCTIONALDECOMPOSITION

DATA BASE COMMUNICATIONS CHART

DATA BASE MASTER DEFINITIONS

THE DIP FULL CONSTRAINT TRANSCRIBER

THE UPDATE CAPABILITY

TREE STRUCTURE DIAGRAM

MDG FUNCTIONAL DECOMPOSITION

DATA BASE COMMUNICATIONS CHART

7-A.I

7-B.I

7-C.I

7-D.I

7-E.I

7-F.I

8-A. l

8-B.l

8-C.I

V

V

xiv

V

D

PDP

CDP

PPP

FDP

TABLE OF CONTENTS OF APPENDICES (Continued)

APPENDIX 8-D

APPENDIX 8-E

APPENDIX 8-F

APPENDIX 8-G

MASTER DEF!NITION

SYMMETRIZATION °

MDG LIBRARY FUNCTIONAL DECOMPOSITION

MDG LIBRARY USAGE

APPENDIX 9-A

APPENDIX 9-B

APPENDIX 9-C

APPENDIX 9-D

TREE STRUCTURE

PDP FUNCTIONAL DECOMPOSITION

DATA BASE COMMUNICATIONS CHART

MASTER DEFINITION OF PDP DATA BASES

APPENDIX lO-A

APPENDIX lO-B

APPENDIX lO-C

APPENDIX lO-D

TREE STRUCTURE

FUNCTIONAL DECOMPOSITION

DATA BASE COMMUNICATIONS CHART

MASTER DEFINITION

APPENDIX ll-A

APPENDIX ll-B

APPENDIX ll-C

APPENDIX ll-D

APPENDIX ll-E

APPENDIX ll-F

APPENDIX ll-G

TREE DIAGRAM

pPP FUNCTIONAL DECOMPOSITION

DATA BASE COMMUNICATION CHART

PPP ERROR MESSAGES

GEOMETRYPLOT FILE

POINT DATA PLOT FILE

CONFIGURATION FORCES AND MOMENTS

APPENDIX 12-A

APPENDIX 12-B

APPENDIX 12-C

TREE STRUCTURE

FUNCTIONAL DECOMPOSITION OF FDP

DATA BASE COMMUNICATIONS CHART

8-D.I

8-E.I

8-F.I

8-G.I

9-A.l

9-B.l

9-C.l

9-D.l

lO-A.l

lO-B.l

lO-C.l

lO-D.l

11-A.I

II-B.I

ll-C.l

II-D.I

II-E.I

II-F.I

II-G.I

12-A.l

12-B.l

12-C.l

X-V

PALIB

TABLE OF CONTENTS OF APPENDICES (Concluded)

APPENDIX 12-D FDP INTERNAL DATASETS

APPENDIX 13-A

APPENDIX 13-B

TREE PLOT FILE DIAGRAMS OF PALIB

CONSTRAINED QUADRATIC LEAST SQUARES
FIT SUBROUTINES

12-D.l

13-A.l

13-B.l

V

-i!-

V

xvi

V

v

I.I

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1 .II

1.12

1.13

1.14

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

LIST OF FIGURES

PAN AIR Software System

Program Modules and Data Bases °

PAN AIR Data Flow

Example of Master Definition Structure in SDMS

Deck Arrangement for PAN AIR Execution

Program/Subprogram Structure

Excerpt from DIP Master Definition

Excerpt from DQG Master Definition

DQG Data Base Communication Chart, First Form

for Overlay (l,O)

Portion of Glossary of Subroutine DIPDAT of the
DQG Module

Excerpt from Common Block /ABUT/ in Subroutine DIPDAT
of the DQG Module

DQG Data Base Communication Chart, Third Form "for

Overlay (l,O)

Maps of Dataset USER-ABUT from DIP and DQG Data Bases
to DQG Module

Summary of Example Data Flow Analysis

MEC Structure

Data Flow in MEC

DIP Structure

Structure and Data Flow of Overlay (l,O)

Structure and Data Flow of Overlay (2,0)

Structure and Data Flow of Overlay (3,0)

Structure and Data Flow of Overlay (4,0)

Structure and Data Flow of Overlay (5,0)

Structure and Data Flow of Overlay (6,0)

Page

l.21

l.22

l .23

l.24

l .25

l.26

l.27

l.28

l.29

l.30

l.31

1.32

l.33

l.34

2.5

2.6

3.19

3.22

3.23

3.26

3.29

3.30

3.36

xvll

Figure

3.8

3.9

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

5.1

5.2

5.3

5.4

5.5

6.1

6.2

xviii

LIST OF FIGURES (Continued)

Structure and Data Flow of Overlay (7,0)

DIP Data Execution Flow

Illustration of Network, Abutment and Panel

Top Level Structure of DQG

Top Level Structure of Overlay (3,0)

Top Level Structure of Overlay (5,0)

Structure and Data Flow of Overlay (l,O)

Structure and Data Flow for Overlay (2,0)

Structure and Data Flow for Overlay (3,1)

Structure and Data Flow for Overlay (3,2)

Structure and Data Flow for Overlay (3,4)

Structure and Data Flow for Overlay (3,5)

Structure and Data Flow for Overlay (3,6)

Structure and Data Flow for Overlay (4,0)

Structure and Dats Flow for Overlay (5,1)

Structure and Data Flow for Overlay (5,2)

Structure and Data Flow for Overlay (6,0)

Structure and Data Flow for Overlay (7,0)

Data Base Relationships

Overall Program Structure Diagram, Including PIVC
Subassembly

Sublibraries Used by MAG

Data Flow Diagram for MAG Giving Data Activity by Map
Name

List of All Map and File Names

Top Level Structure of RMS

Structure of Overlay (2,0) of RMS

Page

3.39

3.40

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

5.39

5.40

5.41

5.42

5.43

6.6

6.7

v

V'

_J

Figure

6.3

6.4

6.5

6.6

7.1

7.2

7.3

7.4

7.5

7.6

7.7

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

9.1

9.2

9.3

9.4

9.5

9.6

lO.l

LIST OF FIGURES (Continued)

Data Base Relationships

Structure and Data Flow of Overlay (l,O)

Structure and Data Flow of Overlay (2,0)

Structure and Data Flow of Overlay (3,0)

Data Base Relationships

Structure and Data Flow of RHS

Structure and Data Flow for Overlay (l,O)

Structure and Data Flow for Overlay (2,0)

Structure and Data Flow for Overlay (3,0)

Structure and Data Flow for Overlay (4,0)

Structure and Data Flow for Overlay (5,0)

Data Base Relationships

Execution and Data Flow of Overlay (l,O)

Execution and Data Flow of Overlay (2,0)

Execution and Data Flow of Overlay (3,0)

Execution and Data Flow of Overlay (4,0)

Execution and Data Flow of Overlay (5,0)

Execution and Data Flow of Overlay (6,0)

Execution and Data Flow of Overlay (7,0)

Data Base Relationships

PDP Structure and Data Interfaces

Structure and Data Flow of Overlay (0,0)

Structure and Data Flow of Overlay (I,0)

Structure and Data Flow of Overlay (2,0)

Structure and Data Flow of Overlay (3,0)

CDP Structure - Overlay (0,0)

Page

6.8

6.9

6.10

6.11

7.7

7.8

7.9

7.10

7.11

7.12

7.13

8.13

8.14

8.15

8.16

8.17

8.18

8.19

8.20

9.11

9.12

9.13

9.14

9.15

9.16

I0.9

xix

Figure

I0.2

I0.3

I0.4

10.5

10.6

10.7

10.8

II .I

II .2

II .3

II ,4

II .5

II .6

12.1

12.2

12.3

12.4

12.5

LIST OF FIGURES (Concluded)

CDP Structure - Overlay (I,0)

CDP Structure - Overlay (2,0)

CDP Structure - Overlay (3,0)

CDP Structure - Overlay (4,0)

CDP Structure - Overlay (5,0)

Data Execution Flow for Forces and Moments

Data Execution Flow for Added Mass Coefficients

Top Level Structure of PPP

Structure and Data Flow of PPPINT Overlay(l,O)

Structure and Data Flow of GEOMPR Overlay (2,0)

Structure and Data Flow of POINTP Overlay (3,0)

Structure and Data Flow of CONFIG Overlay (4,0)

External Data Interfaces

FDP External Interfaces

FDP Internal Interfaces

Offbody Internal Interfaces

Streamline Internal Interfaces

PVCAL Internal Interfaces

Page

lO.lO

lO.ll

lO.12

lO.13

lO.14

lO.15

lO.16

ll.13

II .14

ll.15

II .16

ll.17

II .18

12.8

12.9

12.10

12.11

12.12

V

V

XX

-V

I-B.I

1-B.2

1-B .3

4-H.l

4-H.2

4-H.3

4-H.4

4-H.5

4-H.6

4-H .7

4-H.8

4-H.9

4-H.lO

4-H.II

4-H.12

4-H.13

4-H.14

4-H.15

4-H.16

4-H.17

4-H.18

4-H. Ig

4-H .20

4-H.21

4-H.22

4-H.23

LIST OF FIGURES OF APPENDICES

Inefficient Use of SDMS

A More Efficient Approach to the Problem of

Key Set for Example in Figure l-B.2

The Panel

The Subpanels

Indexing of Subpanel Points

A Network

Coarse Grid Lattice Indices (M,N)

Fine Grid Lattice Indices (MFNF)

Indexing at Edge Points

Panel Lattice Indices (MpNp)

Control Point Indexing

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Figure l

Page

l-B.8

l-B.9

l-B.lO

4-H.18

4-H.19

4-H.20

4-H.21

4-H. 22

4-H.23

4-H.24

4-H.25

4-H.26

4-H.27

4-H.28

4-H.29

4-H.30

4-H.31

4-H.32

4-H.33

4-H.34

4-H.35

4-H.36

4-H.37

4-H.38

4-H.39

4-H.40

xxi

4-H.24

4-H.25

4-H .26

4-H. 27

4-H.28

4-1.I

4-I .2

4-1.3

4-J.l

4-J.2

4-J .3

4-J.4

4-J. 5

4-J.6

4-J. 7

4-J.8

4-J .9

4-J .I0

4-J .I 1

4-J.12

4-J.13

4-J.l 4

4-J.l 5

LIST OF FIGURES OF APPENDICES (Continued)

Indexing of Singularity Parameters

Indexing of Sihgularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Indexing of Singularity Parameters

Sample Configuration l!lustrating Abutments

Configuration for Example Discussed in Paragraph 4-1.4

A Special Case Treated Correctly by Subroutine CONABT

Example of an Abutment Between Two Network Edges

Example of an Abutment Intersection

An Abutment Intersectionwith 6 Abutments

Another Abutment Intersection with 4 Abutments

Line Segment and Point Deagrams Corresponding to
Three Abutment Intersections

An Example of a Graph

lllustration of Irreducible Subgraphs

Assignment of an Index to All Branches and
Nodes of a Graph

Abutment Intersections at Collapsed Edges of Networks

Data Flow and Program Operation for Intersection
Construction

Data Flow and Program Operation for Matching
Assignment

Configuration for Example of Abutment Intersection
Search

Abutments in Example Configuration

Abutment and Corner Point Indexing

Doublet Matching Assignments at the Conclusion of the
Abutment Intersection Analysis

4-H.41

4-H.42

4-H.43

4-H.44

4-H.45

4-I.15

4-I.16

4-1.17

4-J .22

4-j .23

4-J. 24

4-J. 24

4-J .25

4-J. 26

4-J.26

4-J .27

4-J. 28

4-J .29

4-J.30

4-J.31

4-J .32

4-J.33

4-J. 34

W

xxii

v

V

4-K. l

4-K.2

4-K.3

4-K.4

4-K.5

4-K.6

4-K.7

4-K.8

4-K.9

4-K.lO

4-K.II

4-K.l 2

4-K.l 3

4-K.14

4-K.l 5

4-K.16

4-K.17

4-K.18

4-K.19

LIST OF FIGURES OF APPENDICES (Continued)

Singularity Parameters Used for Smooth Abutment

Storage at Corner Point Coordinates and Singularity
Parameter Indices

Surrounding Singularities for Corner Point Spline

Computation on Smooth Edge

Surrounding Singularities for Edge Midpoint Spline

Computation on Smooth Edge

Alternate Spline Vector Selection

Point Selection for Alternate Spline Vectors

Location of Doublet Parameters on an Analysis Edge

Dependence of Spline Vectors for Analysis Edges

Unit Spline Point for Collapsed Network Edge

Sequence of Edge Midpoint Selection for Splining
Corner Points on Analysis Edges

Singularity Parameter Locations for Design Edges
of Networks.

Singularity Parameters for Intermediate Spline
Vector Construction

Surrounding Point Locations for Corner Splines for

Doublet Analysis Network

Surrounding Point Locations for Column Edge Midpoint

Splines of Doublet Analysis Network

Surrounding Point Locations for Row Edge Midpoint

Splines for Doublet Analysis Network

Surrounding Point Locations for Corner Point Splines

for Doublet Design Networks

Surrounding Point Locations for Row Edge Midpoint

Splines for Doublet Design Networks

Surrounding Point Locations for Column Edge Midpoint
Splines for Doublet Design Networks

Point Selection for Corner Point Near Edge, Analysis

Network Omit

Page

4-K.16

4-K.17

4-K.18

4-K.19

4-K.20

4-K.21

4-K. 22

4-K.22

4-K.23

4-K.24

4-K.25

4-K.25

4-K.26

4-K.27

4-K. 28

4-K.29

4-K.30

4-K. 31

4-K. 32

xxiii

4-K.20

4-K. 21

4-K.22

4-K.23

4-K.24

4-K.25

4-K.26

4-K.27

4-K. 28

4-K.29

4-L.I

4-L.2

4-L.3

5-D.I

5-D.2

5-F.l

5-F.2

13-B.l

13-B.2

LIST OF FIGURES OF APPENDICES (Concluded)

Point Selection for Row Edge Midpoint Near Edge,

Analysis Network

Point Selection for Column Edge Midpoint Near Edge

Point Selection for Center Point Near Edge

Point Selection for Row Edge Midpoint Near Edge

Point Selection for Column Edge Midpoint Near Edge

Illustration of Operation of Algorithm

Surrounding Point Locations for One Row Network

Surrounding Points for Source Analysis Spline

Computation

Source Spline Point Selected for One Column/Row
Networks

Surrounding Points for Source Design II Spline

Computation

Addition of Gap Filling Pan]es to an Abutment

Indexing of points in a gap filling panel

Excluded Special Case of Multiple Valued Doublet

Strength for Gap Filling Panel

Inclusion of Panel Influence Coefficients in the

Panel Group on Control Point Block IC Buffer

Tree Diagram for the PIVC_Subassembly

Index to Summary of Substantial I-O

Error Conditions Detected by MAG

Tree Structure of Constrained Least Squares Subroutines

Outline of Algorithm Implemented in LSQSFX

4-K.33

4-K. 34

4-K.35

4-K. 36

4-K.37

4-K .38

4-K.39

4-K.40

4-K .41

4-K.42

4-L. 5

4-L.6

4-L.7

5-D.6

5-D.7

5-F.6

5-F.7

13-B.9

13-B.lO

V

xxiv

_qbwJ J

V"

Table

I.I

1.2

1.3

1.4

1.5

1.6

1.7

1.8

9.1

II .l

II .2

II .3

13.1

13.2

13.3

13.4

13.5

13.6

13.7

13.8

13.9

13.10

13.11

15.1

15.2

LIST OF TABLES

PAN AIR Installation Considerations

Module and Data Base Interactions

Validation Case CPU Time Requirements

Validation Case I/O Volume Requirements

Validation Case I/O Frequency Requirements

Module Size and Compilation Time

Non-ANSl FORTRAN Code Usage

CAL Code Usage

List of Surface Flow Quantities

Maximum and Typical Counts on Problem Options

PDP Parameter Name List

CDP Parameter Name List

Matrix and Vector Manipulation Routines

General Geometry Routines

PAN AIR Geometry Routines

General Mathematical Routines

Constrained Quadratic Least Squares Fit Routines

Blank Common Management Routines

Special Purpose SDMS-Related Routines

Real Matrix Solver Routines

Free Field Format Input Routines

Miscellaneous Routines

Data Input Processing Support Routines

Conversion Tasks Grouped by Subprogram

DDP Conversion Tasks Grouped by Subprogram

Page

1.14

1.15

l.16

l.16

l.17

1.18

l.19

1.20

9.10

II.9

II.lO

II .ll

13.5

13.6

13.7

13.8

13.9

13.10

13.11

13.12

13.13

13.14

13.15

15.5

15.15

XX-V

Table

4-H.I

4-H.2

4-H.3

4-H.4

4-H.5

4-H.6

4-H.7

4-H.8

4-H.9

4-H.lO

4-H.ll

4-H.12

4-1.11

4-I.2

4-1.3

4-I .4

4-1.5

4-J.l

4-J.2

4-J.3

4-J .4

4-J .5

4-J .6

LIST OF TABLES OF APPENDICES

Source/Doublet Parameters

Source/Doublet Parameters "

Source/Doublet Parameters

Source/Doublet Parameters

Source/Doublet Parameters

Source/Doublet Parameters

Source/Doublet Parameters

Source/Doublet Parameters

Source/Doublet Parameters

Source/Doublet Parameters

Source/Doublet Parameters

Source/Doublet Parameters

IABUT Array

Generation of Expanded Abutments for
network 2 edge 4

The ILIST Array

IXPAND Arrays

Final Abutment Description

Connections in the graphs of Figure 4-J.8

Sorting table whose generation determines the
number of irreducible subgraphs in a graph

Edge Abutments for the example in Figure 4-J.12

Empty Space Abutments for the example in
Figure 4-J.13

IABUTS Array for the example of Figure
4-J.12 and 4-J.13

ICPMAP array for the example in Figure
4-J.12 and 4-J.13

Page

4-H.6

4-H.7

4-H.8

4-H.9

4-H.lO

4-H.ll

4-H.12

4-H.13

4-H.14

4-H.15

4-H.16

4-H.17

4-I.ll

4-I.12

4-I.12

4-I.13

4-I.14

4-J.12

4-J.13

4-J.14

4-J.l 5

4-J.l 6

4-J.17

V

xxvi

v Table

4-J.7

4-J.8

4-J.9

4-J.l 0

4-J.ll

4-J .12

4-K.l

4-M.l

4-M.2

12-D.l

LIST OF TABLES OF APPENDICES (Concluded)

The list of Connections for the example of

Figure 4-J.12

Transition of array CPLST during abutment
intersection search in subroutine NTRLST

Abutment Intersections in example of

Figure 4-J.12

PNOD Array for First Intersection

CPLIST Array for First Intersection

NODSEG Array for First Intersection

Values for arrays ISH, LIMXY and OVF

Boundary Condition Selection

Boundary Condition Selection

Basic Streamline Data

4-J.18

4-J.l 9

4-J.20

4-J. 21

4-J .21

4-J .21

4-K.l 5

4-M.6

4°M. 7

12-D.4

v

xxvii

V

V

V

FOREWORD

NASA CR 3254 is published in two parts. Part 1 contains sections 1 through 5.
Part 2 contains sections 6 through 17, and appendices 1 through 13. The table of contents,
including a listing of figures and tables, is repeated in each part.

xxtx

PRECEDING PAGE BLANK NOT F|LMED __[-_NTE_ TJONA_Ly BLA_I

V

v

SUMI4ARY

The PAN AIR system was written in the CFT (CRAY Fortran) language except
for a few CAL (CRAY Assembly Language) subprograms in the libraries.

Structured programming techniques were used to provide code documentation and
maintainability. The operating system is COS (CRAY Operating System).

The system is comprised of a data base management system, a program
library, an execution control module and eleven separate FORTRAN technical

modules. Each module calculates part of the posed PAN AIR problem. The data

base manager is used to communicate between modules and within modules. The

technical modules must be run in a prescribed fashion for each PAN AIR

problem. In order to ease the problem of supplying the many JCL statements

required to execute the modules, the JCL statements are created by
procedures.

In this volume, an overview of the PAN AIR software is given in section

l.O. Sections 2.0 through 12.0 describe the individual modules and contain

information describing program structure, functional decomposition, aata base

communication, subroutine contents, program tree structure, data base
structure and details of those major algorithms used in the module which are

not straightforward and not described elsewhere. Sections 13, 14 and 15
describe tilePAN AIR Library Software (PALIB), the use of the Scientific Data

Management System (SDMS), and the operating system dependant features of SDMS
respectively. Section 16 contains the Software Glossary followed by a list of

references. Each section is designed to lead the reader through the main
structural code. It is not intended to be a detailed description of a module

since the structureG code and comments provide this information.

Most of this document has not changed from the previous version. Unlike

previous versions, however, this document covers only version 3.0 of PAN AIR.

The major changes are summarized below by section.

Section l System overview descriptions and program statistics now apply

strictly to version 3.0.

Section 2 Major portions of the code in the MEC module, which generate Cyber
control cards, are not executed. The routines are referenced but

no longer described.

Section 3 An additional overlay (5,2) was added to the DIP module to
interpret streamline and offbody directives.

Section 4 Appendix 4-M more closely describes the way the code selects
boundary conditions.

Section 5 This is a complete rewrite of the description of the MAG mooule.

Section 8 In the sixth overlay, GPQTY, was rewritten to implement new edge

spl ines.

Section 12 This is a new section to aia in maintaining the FDP moaule.

v

PRECEDING PAGE BLANK NOT FILMED

xxxi

Section 13 This section completely describes only the PAN AIR Library
routines used by version 3.0.

Section 14 The reprint of the Boeing Cyber SDMS User's Manual is prefaced by

comments which make it applicable to the CRAY version.

Section 15 This is a new section that identifies the requirements for

converting SDMS to another machine.

Section 16 Some CRAY terms were added to this glossary.

Section 17 The CRAY Operating System Manual was added as a reference.

The tree structure diagrams and master definition listings have been

moved to the installation tape. They were previously printed in Appendix A
and D of each of the sections. There are cross references in the Nlaintenance

Document and the installation instructions.

The authors wish to thank Dr. Emilio J. Zeppa, Dr. John Wai and Dr.
Kenneth W. Sidwell of the Boeing Company and Dr. Alfred E. Magnus formerly of

the Boeing company for their efforts in reviewing and/or preparing portions of
this document. The authors also wish to extend their appreciation to Bonnie

J. Jones, Mary A. Kellie, Kathleen J. Christianson and Particia S. Bradley of

the Boeing Company for their assistance in typing.

v

v

xxxii

V

1.0 PAN AIR SOFTWARE SYSTEM

l.l INTRODUCTION

This section introduces the PAN AIR software system. The major

components are the II program modules, a database management system, a library

of subprograms and the operating system. The components of the system are
described in some detail and their relation to one another is explained. The

use of the various charts which appear in later sections (e.g., the

functional-decomposition charts, data-flow charts, etc.) is illustrated. The
CPU, memory and I/O resources required by PAN AIR are detailed. A summary of
the PAN AIR Modules is presented in Appendix l-A, and an overview of the

database management is presented in Appendix l-B. Finally,
software-maintenance procedures are outlined in Paragraph 1.5.

1.2 SYSTEM OVERVIEW

The PAN AIR software system consists of several parts. Figure l.l

illustrates these parts and their overall relationship to one another.
User-supplied JCL (Job Control Language) statements activate the operating

system by invoking special PAN AIR JCL procedures which execute the
appropriate PAN AIR modules in sequence. The MEC (Module Execution Control)

module is always executed to define certain properties of any databases
created by the modules. These databases are generated using the Scientific

Data Management System (SDMS). The DIP (Data Input Processor) module is
always executed, since it processes all input data for all other modules. In

addition, all modules call a subroutine library, PALIB, to perform certain

common tasks. During installation of the PAN AIR software system at a user's

computer site, the special program DDP (Data Definition Processor) is used to
define the structure of each database. This latter procedure is subsequently

performed only when a database structure must be modified. (See paragraphs
1.3.3 and 1.5.3)

1.2.1 Program Modules and Databases

The ten program modules, the MEC module and the databases generated by

the modules are illustrated in Figure 1.2. The purpose of each module is also

defined. The implied execution sequence is for a typical PAN AIR problem.

1.2.2 PAN AIR System Execution Flow

The normal sequence of operation for the PAN AIR software system is

displayed in Figure 1.3 and the deck arrangement for PAN AIR execution is
shown in Figure 1.5. User-supplied control statements invoke special PAN AIR
JCL procedures which-execute the modules in the proper sequence and usually

generate the user directives for MEC. The user input-data module DIP is then
executed. From then on, module after module is executed in sequence.
Databases are created and used for internal data-storage and for communication

between modules. Printed output is always generated by the MEC and DIP

modules. Other printed output is obtained from the DQG, PDP, FDP, CDP and PPP
modules if requested by the user through DIP input. The PPP module also

generates a plot file on disk if requested,

l.l

1.2.3 Database Manager

The Scientific Data Management System (SDMS) is a set of CFT (CRAY
FORTRAN) and CAL (CRAY Assembly Language) subroutines (the SDMS Library) which

are employed in the PAN AIR system to perform nearly all disk I/O (i.e., it
replaces FORTRAN I/O). Unlike FORTRAN I/O, SDMS forces the user to design the
database before the design of the various modules that access it. Thus,

structuring the data in a logical sense early in the design cycle will support
the design of a well-structured module. This section is an introduction to

the concepts and structures of SDMS.

The major collection of data in SDMS is the database. Each database is

described by an input file called a Master Definition file, which describes
the data within the database.

A database is a collection of more basic quantities called datasets.

Datasets are analogous to files, and are defined in the Master Definition by

names containing up to 20 characters.

Each dataset consists of one or more element sets. Element sets are

similar to records, and are distinguished from one another by the values of a
set of data-items called keys. A keyset is the collection of up to ten

data-items where values distinguish one element from another. An element set
consists of a collection of scalars, variable-length or fixed-length vectors

in any combination. Each is described in the Master Definition by a name

containing up to 20 characters.

Figure 1.4 illustrates an example of a_Master Definition file for a

database. Each module in the PAN AIR system creates one or more databases to

be used for temporary storage or for data communication between modules. The
Master Definition file is discussed in paragraph 1.4.3.3.

v

A database can be created after creating a Master Definition file using

DDP (Data Definition Processor). The database is Created by a sequence of

calls to routines in the SDMS Library. First, subroutine ISDMS (Initialize

SDMS) is called to define areas in CM (Central Memory) which will be used to

store buffer arrays required by SDMS. Then, subroutine DBOPEN (Database Open)
is called to create four unblocked physical disk-files, which hold all of the
database information. In PAN AIR, the routine PAOPEN (in PALIB) orchestrates

the call the DBOPEN.

Communication channels between the program and the database are defined

by SDMS maps. A map sets up a correspondence between the program variables
(FORTRAN name for a quantity) and the elements (SDMS names for the quantities)
of a dataset as defined in the Master Definition file for the database. There

are two kinds of maps: static maps and dynamic maps. In a static map,

rogram variables are put in an exact correspondence with data items
elements) in the database. In a dynamic map, the data items on the database

which are to be transferred are mentioned, but the program variables are left

unspecified until the I/O operation is executed' PAN AIR uses both dynamic

and static maps. A map may mention any subset of the data items and must

always mention all data items which are part of the keyset of the dataset.

Appendix l-B, which gives an example of how to use SDMS to access a PAN AiR

1.2

database and illustrates a static- and a dynamic-mapdefinition. A call to
subroutine DsMAP(Define Dataset Map) initiates the map-definition process.
This call contains as its argumentsthe nameassociated with the map, the name
of the dataset which the maprefers to, and the nameof the databasewhich
contains the dataset. Themap is established by calling SVMAP(Static
Variable Map) to define a static mapand/or DVMAP(DynamicVariable Map) to
define a dynamicmap. A maximumof lO calls to SVMAPmaybe made, but onl_
one call to DVMAPis permitted in a mapdefinition. The argumentsof SVMAP
are first the program (FORTRAN)variable-name which will contain the data, and
then (in a 20H (Hollerith) field) the SDMSelement nameof the corresponding
data item in the dataset. The argumentsof DVMAPare simply the namesof the
data items in the dataset (also in a 20H field). After all correspondencehas
been defined, the map is terminated by calling subroutine ENDMAP.A total of
32maps may be defined for each databasewhich is opened.

Having defined the correspondence betweenprogram variables and data
items in the database, the I/O operations are executed by calling one of
several other subroutines: e.g., ESGET,ESPUT,ESREP,and ESPOR.These
subroutines are described as follows.

ESGETwill "get" data from the database. Its calling sequencecontains
first the nameof the mapwhich is to be used during the transfer, and then
the list of programvariables which are to receive data from the dynamicpart
of the map (if any) are present. During its execution, data items on the disk
are read into a buffer established by the SDMSroutines, and those data items
which were mentioned in the mapare transferred to the locations of the
program variables. Fixed-length vectors are always fully transferred into the
samenumberof sequential memorylocations according to their lengths.
Variable-length vectors only fill the space corresponding to their length.
(Note: whenusing variable-length vectors in an SDMSdatabase, if the vector
is mentioned in a map, the data item containing its length must also be
mentioned in the samemap.)

ESPUT,ESREPand ESPORhave an argument structure which is the samefor
ESGET,but with ESPUT,data is transferred from the programvariables out to
the disk. ESPUTis used to write an element set of a dataset the first time.
If the data items are to bechanged, one must call ESREPto replace the
existing element set with a newone. If one is uncertain about whether a
given element sethas already beenwritten, but one still wishes the current
variables to replace what might be on the disk, a call to ESPOR("put or
replace") will perform the task. If ESPUTis called with reference to an
already existing element set, an error flag is set, and no data transfer
occurs. Similarly, if ESREPis called and the indicated element set does not
exist, an error flag is set, and no data transfers occur.

After all required I/O has been performed, the database must be closed
to guarantee the validity of all data which has beenwritten to the database.
This is accomplished by calling subroutine DBCLOSwith the database nameas
its argument. In PANAIR, the routine PACLOS(in PALIB) orchestrates the call
to DBCLOS.

For further information regarding SDMS,the reader is advised to consult
Section 14 (SDMSReferenceManual) of this document. An exampleof the use of

v"

1.3

SDMS routines in a FORTRAN program is shown in Appendix I-B. Some discussions

of SDMS I/O efficiency are also presented there. V

1.3 System Components

The PAN AIR software system consists of several components: the JCL

statements to execute a PAN AIR run, a set of input statements for the DIP

module, the Master Definition files of the databases used by the various
modules, the PAN AIR modules and the actual databases generated by the

modules. These components are defined in detail in other sections of this
document or in the PAN AIR User's Manual (Ref. 2).

1.3.1 JCL Cards for Initiation of PAN AIR

Version 3.0 of PAN AIR is meant to be executed on the CRAY series of

computers. The standard CRAY operating system (COS) JCL supports a very
powerful procedure capability. This capability has been exploited to enable

users to more easily run PAN AIR and manipulate PAN AIR databases. In fact,

the COS operating system can automatically generate the input for MEC. To

invoke this capability, the user must first access a library named PAPROCS
that contains the PAN AIR procedures. The following JCL will do this:

For an operating system (such as NASA Ames) in which users are
permitted to keep permanent files on the CRAY disks:

ACCESS(DN=TEMP,PDN=PAPROCS,ID=PANAIR)

COPYD(I=TEMP,O=$PROC)
RELEASE(DN=TEMP)

For an installation in which datasets must be stored on the front end

computer system, the FETCH command must be used. For the Boeing
EKS/VSP system it would take the form:

FETCH(DN=$PROC,GDN=PAPROCS,UN=PANAIR)

After PAPROCS has been accessed, the user may immediately begin to run PAN

AIR. This is done by invoking one of the procedures FINDPF (for "FIND

POTENTIAL FLOW"), FINDSU (for "FIND SOLUTION UPDTE"), FINDICU (for "FIND IC
UPDATE") and FINDPPU (for "FIND POST PROCESSING UPDATE"). These four

procedures can generate the input for MEC automatically.

For a description of PAPROCS, the PAN AIR procedures for the CRAY, see
Section 5.2.5 of the User's Manual.

While the documentation of PAPROCS in this User's Manual (especially

Section 5.2.5.1) should be sufficient for most users, others may wish for more

detailed information and/or may wish to modify a copy of PAPROCS for their own

urposes. The latter may be done by following the instructions in Section
.2.5.5.

NOTE: The Version 3.0 does not generate a MECCC file (MEC control card

file). The FINDPF, FIN_ICU, FINDPPU and FINDSU procedures perform
the function that MECCC in the previous Cyber versions performed.

1.4

"v

V

1.3.2 Data Input

The input data required by the PAN AIR software system consists of two

sections. The module MEC, which defines the names and IDs of the PAN AIR
databases and their Master Definitions, needs a set of input statements.

These are typically generated by the PAN AIR procedures. Some maintenance
activities may require the user to specify the input directives for MEC. For

example, PAN AIR can be directed to use a different Master Definition dataset
without modifying the standard. When the new Master Definition has been

tested, it can be given the standard name. The module DIP processes input
statements for the remaining modules. This data specifies the geometry, flow

properties and output options required for the problem. The data input stream
is depicted in Figure 1.5. Detailed discussion of the MEC and DIP input-data

specifications are given in the PAN AIR User's Manual, (Reference 2).

1.3.3 Databases

As mentioned previously, a database manager, SDMS, is used in the PAN AIR

software system. The modules communicate among themselves through the use of
the databases. SDMS databases are also used to facilitate internal
communication between submodules of a module. Two steps are required for

generating a database; one, the creation of a Master Definition of all data to
be contained in a database; and two, the creation of the databases by the

respective modules by calling the appropriate SDMS subroutine (DBOPEN). An

example of the usage of the database manager is given in Appendix l-B.

The creation of a Master Definition of a database occurs during system

installation or revision. The Master Definition is then used over and over

again. The creation process is separate from a PAN AIR run and is initiated
by use of a separate program called DDP. The resulting Master Definition is

then stored as part of the PAN AIR software. The reader is referred to

Appendix l-B and the Scientific Data Management System (SDMS) User's Reference
Manual, Section 14 of this document. Revision of a Master Definition is

possible and the procedure to do so is described.

Access (reading and writing) to the databases is accomplished within each

module using a library named SDMSLIB. Capabilities include creation of maps
or pointers from program variables to Master Definition variables, and

transmitting information to and from the database. The reader is referred to

Appendix l-B and the PAN AIR User's Manual (Reference 2) for more details.

The Master Definitions for each module are detailed in Appendix D of

Sections 2 through 12 in this document.

1.3.4 PAN AIR Modules

The functions of each of the PAN AIR modules is illustrated in Figure

1.2. In Appendix l-A a summary of each module is given. The reader Is
referred to the PAN AIR User's Manual (Reference 2), and Sections 2 through 12

of this document for more details on each module.

1.5

1.3.4.1 PAN AIR System External Interfaces

The only external data-interfaces for the PAN AIR system are

user-requested plot files produced by the FDP and PPP modules. Because of the

variety of plotting devices and their software, the plot files consists of
labels and data in one general format. Special user-supplied processing

programs are required for the user to interface with local plotting equipment.

1.3.4.2 PAN AIR System Internal Interfaces

The internal interfaces between PAN AIR modules occur only with the

databases created by the modules. Some modules use non SDMS datasets for
internal communication but all data transfer between modules uses an SDMS data

base. Table 1.2 summarizes the data interaction during a PAN AIR run in which

every module is used. The column on the left names the various modules in the

order of use. The top row gives the database names. As one reads from top to
bottom, each row gives the status of each database for each module. The PAN
AIR system automatically releases unneeded databases (status 4 in the table)
unless the user intervenes with a directive to MEC to save any or all of them

(see Section 6 of the PAN AIR User's Manual for details).

1.3.4.3 Sizing and Timing Estimates

The computer CPU time required varies greatly from problem to problem.

Even for a given problem, the time may vary depending on the output options

selected by the user. In general, the CPU time required varies as a quadratic
function of the number of panels in the configuration. Actual CPU times

required in the PAN AIR validation cases are given in Table 1.3. The cases
considered are described in the PAN AIR Case Manual (Reference 4). The

quadratic effect becomes more evident for cases larger than case 3.

V

The I/O resource requirements vary greatly from problem to problem and

from module to module. The MEC and DIP modules require relatively constant
amounts. The modules DQG, MAG, MDG, RMS vary as a quadratic function of the

number of panels. The module RHS varies linearly with the number of panels.
The modules PDP, FDP, CDP, and PPP vary in proportion to the number of output

options requested by the user. Table 1.4 summarizes the I/O volume

requirements for the PAN AIR validation cases detailed in Reference 6, the
Case Manual. Table l.S summarizes the I/O frequency requirements.

Version 3.0 can be run within one million words of memory on the CRAY.

The size of each module and the approximate requirements for compilation

are given in Table 1.6. Note that the module DQG requires significantly more
resources than the other modules.

1.3.4.4 Software Design Consideration

Structured FORTRAN coding principles were used throughout the PAN AIR

software system. This approach results in a documented modular set of code,
and it encourages analysts to provide comments to explain what the code is

accomplishing. Structured coding does not guarantee well documented programs,
but it does ensure modular and readable code.

1.6

The structured approach does aid program maintenance. Experience during
the PAN AIR system validation process showed that a person familiar with the
system could delve into a program, find and correct errors without the aid of
the programmer who wrote the original code.

The PAN AIR software was originally designed for the Control Data 7600,

6600, Cyber 175 computer systems and then converted to the CRAY. All programs
were compiled under CFT or CAL. The non-ANSI FORTRAN statements listed in

Table 1.7 were used as sparingly as possible. The DECODE and ENCODE functions

were used only in the MEC module. Masking operations were used in MEC, DIP,

FIAG and the PAN AIR Library. CAL code was restricted to the SDMS code and the

PAN AIR Library. The routines in the PAN AIR library using CAL are listed in
Table 1.8.

1.4 A Guide to Module Interpretation

The Maintenance document was designed to be used in conjunction with the
information contained in the preface and code of each program and/or

subprogram. The Maintenance document and the installation tape contain
functional decomposition charts, database-communication charts, tree diagrams,

subprogram definitions, and database Master Definitions. Each program or

subprogram contains a decomposition level, purpose and/or method, glossary,
communication-vehicle description, labeled common-blocks descriptions and

design code which correspond to program statements. The structure of a
program or subprogram is illustrated in Figure l.o. The use and
interpretation of these components is described as follows.

1.4.1 Functional Decomposition and Structure

The functional-_ecomposition chart gives a complete overview of what a

particular overlay of a module accomplishes. Consider the

functional-decomposition chart of the MEC module (Appendix 2-B, Section 2 of

this document). One can easily see, for example, that overlay (l,O), called

READUD at the B level, consists of three main portions. The B.C decomposition
portion, namely PREXEC is the most complicated, but the structure and the

tasks performed are clear. One should also note that if a subprogram is used,

the name of the routine appears, as does the decomposition level. For
example, the decomposition level B'C.B-L corresponds to subprogram

DBASE. One can compare the functional decomposition to the program listing

and find a direct correspondence to the code and structure of the code. In

the code, the decomposition level of a particular section would typically
appear at the right in column 55 and would also indicate the name of a

subprogram, if one is used at that level. For example, if one looks at level
B.C.C.A, the subprogram LODREC is used. The code decomposition would read
(A=PALIB=LODREC) with the upper level at MEC.B.C.C. This would indicate that

the routine LODREC is in the PAN AIR Library and is used in MEC module at

level B.C.C.A. If a routine is used at more than one level, then the symbol
.LIB is attached to the end Of the unique portion of the decomposition level

of that routine. Hence, B.C.C.A.LIB indicates that the routine with this

decomposition is used at different levels below the level B.C.C.A.

V

The tree diagrams in Appendix A of each section give another complete
overview of a module and its subprograms and are very useful for tracing the

1.7

path of a formal parameter of a subprogramback to its calling programs.
Also, if one modifies a subprogram,one can determine what other subprograms
maybe affected. Finally, if COMMONis used for data communication, the
calling programwill almost always include the commonblocks used in its
subprogram.

The alphabetical list of subprogramsand the associated abbreviated
functional description in Appendix B of each section can be used in
conjunction with the tree diagram (Appendix A of each section) to gain another
view of the structure and purpose of a module.

1.4.2 Preface of Modules and Subprograms

The preface of each program and subprogram (see Figure 1.6) contains the

upper decomposition-level, the purpose (if the title of the routine is not
self-explanatory), a method (algorithm) if appropriate, and

communication-vehicle descriptions which give an overview of the

input/output. Any labeled common-blocks of data used for input or output are

listed. Formal parameters of subprograms are also indicated.

1.4.3 Data Flow

Labeled common, database input/output and formal parameters of subprograms

are major vehicles used for data communication within modules and between

modules. Only the modules FDP and PPP write a disk file without the use of

the database manager. They can produce plot information file for
post-processing.

Internal communication refers to data fiow within a module. The various

modules use labeled common and formal subprogram parameters for internal

communication. Sometimes temporary databases are also used for intermediate

data storage if the volume of data exceeds central-memory limits.

External communication refers to data flow between modules. The database

manager is used for this purpose.

Methods to analyze data communications will now be described in some

detail. There are three kinds of data flow within the typical PAN AIR

module: (1) data flow from a database to the program, (2) data flow from one

part of the program to another and (3) data flow from the program to a
database.

The first and third kinds of data flow intimately involve the use of SDMS

maps (Paragraph 1.2.3 and Appendix l-B). To aid in the process of tracing
data flow, each module-maintenance section includes three related
database-communication-charts. The first form of the chart lists in

alphabetical order, for each overlay of the module, the databases and datasets
which are accessed in that overlay. Corresponding to each dataset there is

listed the name of the map which sets up the correspondence between data items

in the dataset and program variables. Also listed is the common block(s) in
which the mapped program variables lie, if applicable, and the name of the

subroutine in which the map is defined. The second form of the chart contains

the same information but it is arranged with the map names in alphabetical

1.8

v

order. The third form of the charts repeats the same information but has it

ordered alphabetically by common-block name. The use of these charts is

illustrated in Paragraph 1.4.3.3.

To allow speedy tracing of the second kind of data flow, several
documentation devices have been incorporated in the coding of the modules.

Chief among these is the glossary.

The glossary of each program or subprogram lists all those FORTRAN
variables which are used in the program for input, output or as auxilary

parameters. Each variable is flagged with an I for input or an 0 for output.
All formal parameters (arguments of a subprogram) are so indicated by an

"F.P." flag. If the variable appears in a labeled common block, the name of
the block is listed. Finally, a short definition of the variables is also

given when appropriate.

1.4.3.1 Formal Parameters

The analysis of formal parameters for internal communication is

straightforward. The glossary identifies and defines these parameters.
tree diagram can be used to relate the parameter to other programs and

subprograms.

The

1.4.3.2 Labeled Common

Labeled common is used for internal communication between subprograms

and calling program/subprograms. The glossary defines the input/output
variables and indicates in which labeled common-block the variables reside.

If a labeled common-block is mentioned, one can iook at the data-group section

of the code (See Figure 1.6) and find a definition of the variables contained

in the block.

The section of code in the Preface of each program called COMMUNICATION

VEHICLES can also be used to find common blocks which are used for

input/output.

1.4.3.3 Database Communication

The various modules use databases to pass data to other modules and,

sometimes, for temporary scratch storage. Usually, labeled common is used to
store data obtained from a database. Unlabeled common, usually called blank

common, is also used to hold data until it is transferred to a database. The
source code calls subroutines from the SDMS library to accomplish these data

transfers.

A means is available to analyze or trace data from labeled common to a

database, if such a correspondence exists. The data communication charts in

conjunction with the glossaries and the database map-definitions are the

available analysis tools. An example of the analysis is presented using part

of the DQG code.

Suppose that we wish to find out what happens to the user-defined abutment
data (PAN AIR User's Manual, Reference 2) as it is transferred from the DIP

__i 1.9

database, through the DQG module, and then to the DQG database. Figures 1.7
and 1.8 show relevant excerpts from the DIP module Master Definition (Section

3, Appendix 3-D) and the DQG module Master Definition (Section 4, Appendix

4-D). Both databases contain dataset USER-ABUT which contains information
about user-defined abutments. Examination of the first form of the database

communication-chart for module DQG (Fig. 1.9) shows that the DIP database is

used in the first overlay (l,O) of DQG. Further, within that overlay, dataset

USER-ABUT on the DIP database is connected with program variables in the

/ABUT/ common block of DQG by means of a map named USABIN. This map is
defined in the subroutine DIPDAT of the DQG module.

v

Examination of the map USABIN in subroutine DIPDAT (See the following

_aragraphs which discuss Figure 1.13a) shows that the keyset data-item
ABUT-INDEX" is mapped dynamically and the other data items are mapped

statically to program variables NBRNAB, POSABT, SMOOAB and the array USABUT.

In the glossary of the subroutine DIPDAT (Fig. l.lO) we find that these
variables are all located in common block /ABUT/. At the beginning of the
subroutine DIPDAT, we find the common-block contents described (Fig. l.ll).

Here NBRNAB is the number of networks in the abutment and that the array

USABUT contains information which identifies the network, the edge, and the

corner points marking the start and end of the abutments. Figure 4.5
(Structure and Data Flow of DQG Overlay (l,O)) in Section 4 of this document
shows that the dataset is read from the DIP database by the DQG module in
subroutine DIPDAT.

Thus far, we have traced the data from the DIP database into the DQG

program. We can now examine how the data gets to the DQG database. Figure
4.5 (Section 4) shows that the DQG module generated dataset USER-ABUT is

written to the DQG database within the same overlay. We already know that the

program variables which contains the data resides in the common block /ABUT/.
If we look at the third form of the database communication-chart (Fig. 1.12)

we find that there is a map called USABIN which maps data from common block

/ABUT/ to the dataset bSER-ABUT on the DQG database. As mentioned above, this
map is defined in subroutine DIPDAT of the DQG module. Examination of the

maps in subroutine DIPDAT (Fig. 1.13) shows that the program variables NBRNAB,
SFIOOAB and the array USABUT are mapped onto data items (elements) in the two
USER-ABUT datasets and we see that some items do not seem to appear on the DQG

database (i.e., "POS-FLAG '°)while some items are "longer" than they were (the

array USABUT (I,J) is filled only for J=l,4 by the map to the DIP database,
while the map to the DQG database connects to the full array USABUT (I,J), J =
1,6). Yet other items have one-to-one correspondence in both databases,

(e.g., NO-NET-ABUT in the DIP database and NMBR-NETWK-IN-ABUT in the DQG

database). This is not a surprising result if we examine the short
description of the subroutine DIPDAT in Paragraph 4.4.2 of Section 4.

Subroutine DIPDAT reads data from the DIP database and copies it to the

DQG database, sometimes changing its form to better suit DQG's requirements.

Clearly, the array USABUT has undergone some transformation and a detailed
examination of the code and comments in DIPDAT clarifies what has occurred.

Looking through the code in subroutine DIPDAT, we find a call to ESGET with
the map name "USABIN". This is where the data enters the DQG program. Now,
after the data is available, if the plane-of-symmetry flag is set, the number
of networks in the abutment is increased by one and the new network edge is

V

V

l.lO

labeled by defining the entry of USABUT(NBRNAB,I): -POSABT. This explains
why the plane of symmetryflag is not present in the DQGdataset. Further,
the USABUT(I,3)ana USABUT(I,4)entries are stored as ISTARTand IENDin the
program. The glossary of DIPDATdescribes these as the start and end
corner-points of an abutment in the counter-clockwise sequential-index system
(Appendix 4-F). Theseare passedto a subroutine EDGLAT.The call is
commentedby "COMPUTECOARSELATTICEINDICESFORSTARTANDENDPOINT"and the
preface of EDGLATindicates its function is to transform the counter-clockwise
indexing schemealong a network edge to the coarse grid lattice-indexing
scheme. Immediately after the call to EDGLAT,a call is madeto ESPUTwith
the USABUTmapname. This writes the abutment data to the DQGdatabase.

From this analysis we can see that the user-defined abutment is read from
the DIP database with the data stored in a particular fashion; the data is
then transcribed into a form which DQGfinds moreuseful and is written to the
DQGdatabase. Thus, we have traced the data and have observed its
transformations. Figure 1.14 summarizesthe analysis of the data flow.

If more detail is required concerning the transformations, then wemust
makeuse of the glossary of subroutine EDGLATof the DQGmodule to find the
correspondence between the local variables as they appear in the subroutine
EDGLATand the variables which appear in the call to EDGLATin subroutine
DIPDAT. The glossary of EDGLATidentifies which of the formal argumentsare
input and which are output. Examination of the code defines precisely the
form of the transformation.

The database Master Definitions also can be used to relate program
variables to database element names. Usually, the correspondence between
variable namesand element namesis placed after a $ appearing at the
right-hand side of the Master Definition. Therefore, once a variable nameis
attached to a database nameusing the glossary and the data communication
chart, the correspondence betweenprogram-variable namesand element namescan
usually be found using the Master Definition (sometimes, as in Figure 1.8, the
FORTRANvariable namesare not given). For example, in Figure 1.7 the
variable namesIABUTis mappedinto the element nameABUT-INDEXof the DIP
database dataset namedUSER-ABUT.

The Master Definitions can be obtained by executing the UPDATEtool with the
Master Definition Program-Library provided on the installation tape.

1.5 Maintenance of PAN AIR Software

The continued maintenance of both source code and documentation is

absolutely necessary to improve and insure the integrity of a large
software-system such as PAN AIR. Several tools are available to aid the

maintenance process.

1.5.1 UPDATE Feature

The PAN AIR software was developed using the UPDATE software-management

program. Using this tool, a program-library file is created; then
corrections, additions, deletions, etc. are easily made to the library A
running history of changes is an output of the UPDATE program. Details of

- j
v

l.ll

using this feature are to be found in the UPDATEReference Manual. Each
module in the PANAIR system is maintained as a separate ProgramLibrary
(PL). In addition there is a separate PL for the routines in the PANAIR
Library and the SDMSLibrary. The PL for SDMSincludes both the routines for
SDMSLIBand the programDDP.

The creation of an absolute program for each PANAIR module is
straightforward. The UPDATEprogramcan be used to generate a COMPILEfile,
which is then compiled. This generates a file of relocatable binaries. Then
the LDRfeature of the operating system can be used to link the relocatable
binaries with the PANAIR libraries to generate the absolute file.

It is strongly recommendedthat the UPDATEprogram {or one similar in
function) be used in the future to maintain the PANAIR software system.
Configuration control Of a large software systemmandatesthat changes to a
dataset be reproducible. An UPDATEmodification set can first be tested and
then later applied to the controlled version of the code. The effects of the
modification set maybe undoneat a later time. By saving modification sets,
there is a precise definition of the changes from version to version.

1.5.2 Common Data Blocks

The PAN AIR software system relies heavily on the use of labeled

common-blocks. This condition was the result of using the SDMS database

manager which is executed most effectively using labeled common.

Each labeled common-block is used many _mes _i/th the various=_suBp_ograms

and modules. If a modification was made t6_o-ne b]o_ 6f dne+subprogram

without making the same changes in the same block used elsewhere, the PAN AIR

software would no longer function correctly.

Fortunately, the UPDATE feature can also be used to maintain each common
block. Each block is=p_aced _n a COMDECK and-beco_s _part of _he+#rdgram'i

library (PL) of a module. If a change is made to a common block, the UPDATE
feature automatically makes the change in all subprograms and programs using
the modified labeled common block.

1.5.3 Master Definition Modification and Maintenance

Modification of a module may require a change to the Master Definition of

a database. For example, a new element or collections of elements, calleo

datasets, may be added or deleted. The modification process is quite

straightforward.

Each Master Definition is stored as an UPDATE deck on a Master Definition

Program Library (MDFPL). The deck is changed and the new version is written
to the COMPILE file. The old Master Definition is then purged and the program

DDP (stored with the PAN AIR software system) is run using the COMPILE file

produced by the UPDATE execution as input to the program. This process will
result in a new Master Definition containing the changes made previously.

v

l.12

1.5.4 Document Maintenance

Program modifications may require revisions to be made to the supporting
documents, of References I, 2 and 3. In particular, the
functional-decomposition charts, tree diagrams, data-communication charts,
Master Definitions and text of each section of this document may have to be
modified. At each major computer-installation, a utility program to produce
tree diagrams is usually available. This tool could be used to produce a new
tree-diagram if the subprogram linkage is modified. If the Master Definition
of a database is changed, a new listing is automatically produced by the DDP
utility program of the PAN AIR software.

The functional-decomposition chart of each section of this document must
be modified if a subprogram is changed. Most computer installations have a
software utility-program which extracts the structure of pseudocode of a
program. The extraction process is keYed upon finding a "C" in column 1 of a
program listing and/or other key words or symbols. The PAN AIR code was
developed using "C", "C.", "CP", "CPE", "GLOSSARY", "DATA GROUPS" as key words
to separate sections of comments and code. If such a software tool is
available, it could be used to an advantage to modify the
functional-decomposition charts of this document.

V

v"

1.13

Table I.I- PAN AIR Installation Considerations V

Location
Operating Computer
System Hardware

NASA AMES COS 1.14 CRAY X-MP

AEDC COS l,14 CRAY X-MP

NCSC COS 1.12 CRAY l

Front End

Computer

Cyber and Vax

Amdahl

Cyber

L

v

l.14

V

V

Table 1.2 - Module and Database Interactions

Using
Module Database Name

DIP DQG MAK

DIP l 0 0

DQG 2 l 0

MAG 2 2 l

RMS 0 0 2

RHS 2 2 2

MDG 2 3 4

PDP 2 0 0

FDP 2 0 0

CDP 2 O 0

PPP 4 4 O

Codes for Databases

0 - Not used or created

l - Created

2 - Used

RMS RHS MDG PDP CDP

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

l 0 0 0 0

4 l 0 0 0

0 4 l 0 0

0 0 2 l 0

0 0 2 0 0

0 0 4 0 l

0 0 0 4 4

3 - Not needed thereafter unless PPP was requested or a save directive has

been issued.

4 - Not needed thereafter unless requested for a save

l.15

Table 1 3 - Validation Case CPU Time Requirement ".

(NASA AMES CRAY X-MP)

l.16

Cumulative CPU Execution Requirements X-MP (Sec)

After

Module Case l Case 2 Case 3

MEC 0.2411 O.2472 O.3097

DIP 0.4760 O.5301 I.5773

DQG l.7998 3.3792 61.5878

MAG 2.4605 6.9902 176.3091

RMS 2.641 3 7.2486 202.3822

RHS 3.1715 I0.0269 212.1791

MDG 4.3i20 14.5731 239.4363

PDP 5.l179 16.3864 243.3971

CDP 5.7290 17.4047 251.9595

FDP 5.8903 17.5910 252.51 55

PPP 6.5467 18.2493 254.9603

Table 1.4 - Validation Case I/0 Volume Requirements

Cumulative Disk Sectors Moved

Case 6

0.2646

0.7674

13.4035

40.3996

42.3715

45.5931

58.3829

62.8354

67.0223

67.3297

68.3105

After

Module Case l Case 2 Case 3 Case 6

MEC 683 684 702 686

DIP 1274 1281 1540 1301

DQG 2663 2989 23573 5551

MAG 3497 4411 47519 I1833

RMS 3929 5023 62297 13956

RHS 471 2 611 6 69575 16500

MDG 6442 8672 8231 5 22407

PDP 7154 9608 84390 23637

CDP 7784 I0406 85993 24702

FDP 8330 ll030 87307 25580

PPP 9021 I1766 88409 26406

V

V

v

Table 1.5 - Validation Case I/0 Frequency Requirements

Cumulative I/O Requests
After
Module Case l Case 2 Case 3 Case 6

MEC ll2 ll3 ll4 ll4

DIP 245 247 345 250

DQG 648 801 18558 2905

MAG 847 I185 23407 4394

RMS 947 1293 24727 4593

RHS I162 1528 27625 5002

MDG 1560 2036 32674 6604

PDP 1727 2218 33445 6796

CDP 1874 2379 34156 7160

FDP 1966 2476 34315 7279

PPP 2110 2630 34527 7440

v

l .17

Module

MEC

DIP

DQG

MAG

RMS

RHS

MDG

PDP

FDP

CDP

PPP

Table

Lines

8,630

42,555

79,253

24,887

2,659

II ,161

28,635

23,006

20,820

19,540

17,492

1.6 Module Size

Statements

1,982

7,734

15,532

4,442

449

2,074

5,648

3,967

5,009

3,638

2,522

and Compilation Time

Compilation Time (Seconds)

.7293

3.1778

8.4553

2.8676

.2139

.9896

2.7902

2.1710

3.0672

2.0957

1.5384

v

1.18

V

v

Table 1.7 - Non-ANSI FORTRAN CODE USAGE

-v

OVERLAY

PROGRAM (INPUT,OUTPUT,...)

DATA arrays

variable : 3H XXX

J.AND.K,J.OR.K

(Hollerith constants)

(Masking)

(Left justified Hollerith)

Array referenced with fewer subscripts than in DIMENSION

FORMAT(3HXXXAIO) (No field separator)

7B (Octal constant)

DECODE function

ENCODE function

Mixed mode arithmetic and comparisons

nLf

Equivalencing of arrays

v

1.19

Table 1.8 - CAL CODE USAGE

Subroutine

BIT$LGN

BIT$LOC

BIT$MSK

CAB

GETT

MXMACA

PAC

PUTT

REDUCR

STRMOV

UNPAC

ZERO

w

1.20

ID,

V

DIRECTIVES/DATA

JCL

_D DIP L

IRECTIVES|

EXECUTIVE

O/S LOCAL

MEC

PAN AIR TECHNICAL MODULES

DIP DQG MAG RMS RHS MDG PDP CDP FDP PPP

r/ MEC]l DIRECTIVES '

PAN AIR

TECHNICAL

LIBRARY

(PALIB)
i

V

DATA MANAGER

SDMSLIB DDP

DATA
I

BASES

Figure 1.1- PAN AIR Software System

1.21

MODULES DATA BASES

IMECDIP

DQG

I RHS

MDG 1

PDP

CDP

FDP OUTPUT I
I

I PPPI

MODULES AND THEIR PURPOSE

V

MEC generates control cards for problem

DIP interprets user input

DQG generates panel defining quantities plus data

for control points, boundary conditions and

singularities

AIC MAG creates Aerodynamic Influence
Coefficients

Unknown Singularity Portion

AIC MAG creates Aerodynamic Influence
Coefficients

Known Singularity Portion

IC MAG computes Influence Coefficients

RMS Decomposes AIC unknown

RHS processes singularities and boundary condition
data

MDG finds average potential , velocity and normal

mass flux at control and grid points plus DQG V
geometry

PDP computes potential, velocity, mass flux,
and pressures for selected surfaces

CDP computes forces and moments accumulated over

portions of congifuration

FDP computes potential, velocity, mass flux and

and pressures at locations off configuration and

along streamlines

PPP selects data formatted for external display

processing

1.22

Figure 1.2- Program Modules and Data Bases v

V

PAN AIR

JCL

PROCEDURES

PPP

CDP

FDP

PDP

DIRECTIVES

MEC

SDMS DATA BASES

MDG RHS,

DIP

DQG

PRINTED

OUTPUT

!
l

I

/

/
I

/
I

/

MAG

RMS

USER

INPUT DATA

v

I PRINTED OUTPUT _-i

I FROMMODULESI h

Figure 1.3 - PAN AIR Dat_ Flow

V

1.23

MASTER DEFINITION MDFILE

DATASET FILE-NUMBER-I

KEY SET

REC-IND-I
REC-IND-2

END

ELEMENT SET

INTEGER-VAR-I I
SCALAR-VAR-I R

VECTOR-VAR-I 3 R
VAR-LENG-VECTOR-I INTEGER-I R

END

END DATASET

END MASTER DEFINITION

$
$
$
$
$
$
$
$
$
$

f
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

W

V

Figure 1.4 - Example of Master Definition Structure in SDMS

V

1.24

V

User Supplied JCL

(Limited set of control statements

to invoke special PAN AIR
procedures)

Dip Input Data

(CRAY end of file)

(User Input Data Defining Problem)

(CRAY end of dataset)

.L
V

i

Figure 1.5 - Deck arrangement for PAN AIR Execution

l.25

NAME:

DECOMP:

DESIGNER:

PROGRAMMER:

[PURPOSE:

[METHOD:

name - short title

program decomposition

name, date, company

name, date, company

test]

test]

INPUT DATA:

OUTPUT DATA:

[ARGUMENT LIST:]

[GLOSSARY]

PREFACE

DATA GROUPS i.e., common blks

TYPE DECLARATIONS

DATA STATEMENTS

INITIALIZATION

TASK 1 (A)

SUB-TASK l (AA)

SUB-TASK 2 (AB)

TASK 2 (B)

SUB-TASK l (BA)

SUb-TASK 2 (BB)

ERROR PROCESSING

SPECIFICATION STATEMENTS

BODY

v

5000 series - input

6000 series - output

8000 series - errors

FORMATS

Figure 1.6 - Program/Subprogram Structure v

1.26

V

$
DATASET USER-ABUT

KEY SET

ABUT-INDEX I

END

ELEMENT SET

NO-NET-ABUT I

NETWK-LIST NO-NET-ABUT I

EDGE-NMBR NO-NET-ABUT I

STRT-PT NO-NET-ABUT

END-PT NO-NET-ABUT I

POS-FLAG

EDGE-TREAT I

END

$USER DEFINED ABUTMENT
$
$
$ IABUT =
$ ABUTMENT INDEX NUMBER.
$ RANGE IS 1 TO NO-USER-ABUT
$ VALUE IN DATASET NAMED NETWORK-DATA
SON THIS (DIP) DATABASE.
$
$
$
$
$
$
$
$ NONEAB :
$ NUMBER OF NETWORKS IN ABUTMENT
$
$ NETIND =

$ LIST OF NETWORKS IN ABUTMENT.
$ ENTRIES REFLECT INPUT ORDER.

$
$ EDGNO =

$ EDGE OF NETWORK IN ABUTMENT
$
$ STRTPT =

I $ STARTING EDGE POINT NUMBER FOR

$ NETWORK EDGE.
$
$ ENDPT =

$ ENDING EDGE POINT NUMBER FOR

$ NETWORK EDGE.
$
$ ABUPOS =

I $ PLANE OF SYMMETRY FLAG.
$ ALLOWABLE OPTIONS ARE:
$ 0 = NO PLANES OF SYMMETRY

$ I = FIRST PLANE OF SYMMETRY

$ 2 = SECOND PLANE OF SYMMETRY

$ 3 = BOTH PLANES OF SYMMETRY
$
$ EDGTRE =

$ EDGE TREATMENT FLAG.
$ ALLOWABLE OPTIONS ARE:

$ 0 = STANDARD ABUTMENT

$ I = SMOOTH ABUTMENT
$
$

. $
END DATASET $

Figure 1.7 - Excerpt from DIP Master Definition

-V"

l.27

DATASET USER-ABUT

KEY SET

INDEX I

END

ELEMENT SET

NMBR-NETWK-IN-ABUT I

NETWK-ID

EDGE-NMBR

STRT-CRNR-PT-NMBR-I
STRT-CRNR-PT-J

END-CRNR-PT-NMBR-I
END-CRNR-PT-J

SMOOTH-ABUT-FLAG

END

END DATASET

$ USER DEFINED ABUTMENT
$
$
$
$ I
$
$
$
$
$
$ I

$
$ NUMBER OF NETWORKS WHOSE EDGES

$ MAKE UP THE ABUTMENT
$

NMBR-NETWK-IN-ABUT

NMBR-NETWK-IN-ABUT
NMBR-NETWK-IN-ABUT

NMBR-NETWK-IN-ABUT
NMBR-NETWK-IN-ABUT

NMBR-NETWK-IN-ABUT
$

I $

I $
I $

I $
I $

I $

$ THESE ARE THE NETWORK EDGES WHICH MAKE

$ UP THE ABUTMENT. $
$

$
$
$
$
$
$

v

l.28

Figure 1.8 - Excerpt from DQG Master Definition

V

DATABASE DATASET NAME MAP NAME COMMONBLOCK
PROGRAM/
SUBROUTINE

MEC

DIP
DIP

DIP
DIP

DIP
DIP

DIP
DIP

DIP

DQG

DQG
DQG

DQG

DQG

DQG
DQG

DATA-BASE-HEADER IDS /RUNIDS/ OPENER

CLOS-COND DIPCLOSDAT /GENBCD/ BNDYIN
COEF-GEN-BC CGBCMP /GENBCD/ BNDYIN
GLOBAL GLOBAL-EN /GLOBAL/ DIPDAT
GLOBAL-PRINTS PRINT-OPT Dynamic OIPDAT
NETWN-BDC NETBDC /NETBDC/ BNDYIN
NETWN-SPEC NETMAP /NETWN/ DIPDAT
PANEL-COORDS PAN-COR-PI /COORDS/ DIPDAT
TANG-VEC TVECTCOEFF /GENBCD/ BNDYIN
USER-ABUT USABIN /ABUT/ DIPDAT

CLASS-5-BC-DATA CLASS 5 /NBCDIN/
CLOSURE-DATA-IN CLOSDIN /CLOSUR/

GLOBAL GLOB-DYN /GLOBAL/

Dynamic
NETWK-BNDRY-CONDN- BCDATIN /NSCDIN/
IN

NETWK-SPEC NETMAP /MESWN/
PANEL-CORNER-COORDS COORDS-GEN Dynamic

USER-ABUT USABUT /ABUT/

BNDYIN
BNDYIN

DIPDAY

BNDYIN

DIPDAT
DIPDAT
DIPDAT

Figure 1.9 - DQG Database Communication Chart,

First Form for (l,O) OVERLAY "

1.29

NAME TYPE ORIGIN USAG___..EE

C.LCLASS I /NETWK/ I/O
C.LENGTH I

C.MACH R /GLOBAL/ I/O

C.MESH I /NETWK/ I/O

C.MVCOMP I /NETWK/ I/O
C.NABUT I /GLOBAL/ I/O
C.NBRCP I /GLOBAL/ I/O

C.NBRHS I I/O

C.NBRNAB I /ABUT/
C.NBRNET I /GLOBAL/ I/O

C.NBRPOS I /GLOBAL/ I/O
C.NBRSNG I /GLOBAL/ I/O

C.NCOL I

C.NETCTR R /NETWK/ I/O

C.NETID I /GLOBAL/ I
C.NETORD I /GLOBAL/ I

C.NGAPNL I /GLOBAL/ I

C.NIAB I
C.NLRCLS I I/O

C.NMBROW I /COORDS/ I/O
C.NNETOT I /GLOBAL/ I/O
C.NPT I

C.OMMINF R /GLOBAL/ I/O

C.POSABT I /ABUT/
C.POSFLG I /NETWK/ I/O

C.POSLOC R /GLOBAL/ I/O
C.POSNRM R /GLOBAL/ I/O

C.PRTOPT I /PRNTOP/ I

C.RCLASS I /NETWK/ I/O
C.RORG R I/O

C.RUNTYP I /GLOBAL/ I/O

C.RVEC R I/O
C.SECMET R /GLOBAL/ I/O

C.SLDF I /NETWK/ I/O

C.SMOOAB I /ABUT/
C.SNGTYP I /NETWK/ I/O

C.SOLID R I/O
C.SPFLG I /NETWK/ I/O

C.SUPSUB R /GLOBAL/ I
C.TRDMET R /GLOBAL/ I/O

C.TRNGTL R /NETWK/ I/O

C.UNIF R I/O
C.UPDATN I /NETWK/ I/O

C.USABUT I /ABUT/
C.WAKSOL I /NETWK

C.WEABUT I /ABUT

DESCRIPTION

LENGTH OF ARRAY OF COLUMN OF CORNER POINTS

NUMBER OF SOLUTIONS

I/O

UPPER LIMIT ON CORNER POINT COLUMNS

UPPER LIMIT OF USER SPECIFIED ABUTMENTS

NUMBER OF LEFT/RIGHT CLASS 4 BC

NUMBER OF POINTS IN NETWORK EDGE SEGMENT

I

ORIGIN FOR ROTATIONAL ONSET FLOW

AXIS FOR ROTATIONAL ONSET FLOW

I/O

SOLUTION IDENTIFIER

UNIFORM ONSET FLOW

I/O
I/O
0

V

v

l .30

Figure l.lO - Portion of Glossary of Subroutine DIPDAT of the DQG Module

V

Ci

C.
C.

C.

C.

C.
C.

C.
C.

C.

C.

C.
C.

C.
C.

C.

C.

C.
C.

C.
C.

C.
C.

WEABUT(J,I)

NBRNAB

POSABT

USABUT(I,J)

SMOOAB

GAPSET

CONSISTENT ABUTMENT DESCRIPTION
J FROM I TO 15 NETWORKS IN ABUTMENT

(J,l) - NETWORK INDEX

(J,2) - EDGE INDEX

{J,3) - START CORNER POINT INDEX-I

(J,4) - START CORNER POINT INDEX-J
(J,5) - END CORNER POINT INDEX-I

(J,6) - END CORNER POINT INDEX-J

NUMBER OF NETWORKS IN ABUTMENT

Plane of symmetry (POS) flag indicating
that the POS is part of an abutment
Value = 0 if no POS

= l if Ist POS

= 2 if 2nd POS

USER ABURMENT DESCRIPTION
SEE DESCRIPTION OF WEABUT ARRAY

SMOOTH ABUTMENT FLAG

FLAG INDICATING GAP-PANELS ADDED
TO ABUTMENT.

COMMON /ABUT/IABUT(20,8),WEABUT(5,6),NBRNAB

I,IESABT(6),NUMBER{5),ASSINF(5,3,3),QTRCRD(5,3,3),

2TWEABUT(IO,6),EDGPOS{4),USABUT(5,6),DSMTCH(3,2),
3SMOOAB,POSABT,GAPSET
INTEGER POSABT,GAPSET

INTEGER WEABUR,TWEBUT,EDGPOS,USABUT,SMOOAB,DSMTCH

Figure l.ll - Excerpt from Common Block /ABUT/in Subroutine
DIPDAT of the DQG Module

1.31

COIV_iON
BLOCK DATABASE

PROGRAM/
MAP NAME DATASET NAME SUBROUTINE

V

/RUINDS/ MEC

* /ABUT/ DIP
/COORDS/ DIP

Dynamic DIP
/GENBCD/ DIP

/GENBCD DIP
/GENBCD/ DIP

/GLOBAL/ DIP
/NETBDC/ DIP

/NETWK/ DIP

/ABUT/ DQG

/CLOSUR/ DQG

Dynamic DQG

/GLOBAL/ DQG
/NBCDIN/ DQG

/NBCDIN/ DQG
/NETWK/ DQG

IDS DATA-BASE-HEADER OPENER

USABIN USER-ABUT DIPDAT

PAN-COR-PT PANEL-COORDS DIPDAT
PRINT-OPT GLOBAL-PRINTS DIPDAT

DIPCLOSDAT CLOS-COND BNDYIN
CGBCMP COEF-GEN-BC BNDYIN

TVECTCOEFF TANG-VEC BNDYIN

GLOBAL-IN GLOBAL DIPDAT

NETBDC NETWK-BDC BNDYIN
NETMAP NETWK-SPEC DIPDAT

DIPDAT USABUT USER-ABUT

CLOSDIN CLOSURE-DATA-IN BNDYIN

COORDS-GEN PANEL-CORNER-COORDS DIPDAT
GLOB-DYN GLOBAL DIPDAT

CLASS5 CLASS-5-BC-DATA BNDYIN

BCDATIN NETWK-BNDRY-CONDN-IN BNDYIN

NETMAP NETWK-SPEC DIPDAT

V

Figure 1.12 - DQGDatabase Communication Chart, Third Form for
(l,O) Overlay

1.32

C

C
C

C

C

C
C

C

(a) MAPFROM DIP DATABASE TO DQG MODULE

BEGIN MAP USABIN

CALL DSMAP(I OHUSABIN

DEFINE STATIC MAP

CALL SVMAP(NBRNAB
1
2

-3
4

5
6

USABUT(I,I)

USABUT(],2)

USABUT(I,3)
USABUT(I,4)
POSABT "
SMOOAB

,20HUSER-ABUT

,20HNO-NET-ABUT
,20HNETWK-LIST

,20HEDGE-NMBR
,20HSTRT-PT

,20HEND-PT
,20HPOS-FLAG

,20HEDGE-TREAT

DEFINE DYNAMIC MAP

CALL DVMAP(2OHABUT-INDEX

END OF MAP
CALL ENDMAP

,DIPDBD)

(b) MAP FROM DQG DATA BASE TO DQG MODULE

- C

C

C

BEGIN MAP USABUT

CALL DSMAP (lOHUSABUT

DEFINE STATIC MAP

CALL DVMAP(2OHINDEX

CALL SVMAP(NBRNAB

USABUT(I ,l)

USABUT(I ,2)
USAB UT(l,3)

USABUT(I ,4)
USABUT (l,5)
USABUT(I ,6)
SMOOAB

END OF MAP

CALL ENDMAP

BEGIN MAP GLOB-DYN

,20HUSER-ABUT

,20HNMBR-NETWK-IN-ABUT
,20HNETWK-ID

,20HEDGE-NMBR
,20HSTRT-CRNR-PT-NMBR-I

,20HSTRT-CRNR-PT-J
,20HEND-CRNR-PT-NMBR-I
,20HEND-CRNR-PT-j

,20HSMOOTH-ABUT-FLAG

.DQGDBD)

Figure 1.13 - Maps of dataset USER-ABUT from DIP and

DQG Data Bases to DQG Module

l.33

DOCUMENTATIONPROCESS
TO FOLLOW DATA FLOW

V
DATA FLOW

WITHIN PROGRAM DqG

Fig 1.7 DIP

MASTER

DEFINITION

l
Fig 1.9 DQG DATA BASE

COMMUNICATION CHART

FIRST FORM

I
Fig 1.13(a) SDMS MAP FROM DIP

DATA BASE, SUBROUTINE

DIPDAT OF DQG MODULE

I

Fig 1.10 GLO_SSARY OF SUBROUTINE

DIPDAT OF DQG MODULE

Fig I.II COMMON BLOCK/ABUT/

DESCRIPTION

1
Fig 1.12 DQG DATA BASE

COMMUNICATION CHART

THIRD FORM

1
Fig 1.13(b) SDMS MAP FROM DQG

DATABASE TO SUBROUTINE

DIPDAT OF DQG MODULE

Fig 1.8 DQG

MASTER

DEFINITION

M

ESGET

SDMS MAP DIPDAT

"USABUT"

i

M _ ESPUT

OQG

DIP

DATA BASE

ESGET

OPERATION

PROCESS

ABUTMENT

INFORMATION

ESPUT _,

OPERATION

DQG

OPERATION

1 34

Figure 1.14 - Summary of Example Data Flow Analysis V

_W,.j #"

APPENDIX I-A SUMMARY OF PAN AIR MODULES

"--" I-A.I

V

v

I-A.I MEC - Module Execution Control

MEC creates a temporary database named, MEC for use by other PAN AIR
modules. It contains database information on databases used or created by the

other modules. Run identification is also processed and stored in the

database. Codes are set to indicate whether databases are used, in existence
or saved.

User directives for modifying the database information table are processed

by MEC and appropriate modifications to the MEC database are made.

l-A.2 DIP - Data Input Processor

l-A.2.1 Purpose

The DIP module reads user input data which describes the PAN AIR problem
and stores the data on the DIP database.

I-A.2.2 Tasks Performed

Following the execution of the MEC module, the DIP module accesses the MEC

database to read the type of PAN AIR problem to be run. From this dataset,
DIP can determine whether a new or updated database is to be created from the

inputs. The possible options, described in detail in Section 4.3.2 of
Reference 2, are as follows:

I. Creation run - no preexisting database.

. Post processing run - use existing database and update only
directives to it.

. Right-hand-side update-run - use existing database and update only
"solution data."

4. IC update run - use existing database and update geometric data.

The input data is read in free field format from card images. Each card

image is read, printed and processed. The data is organized and stored on the
DIP database. The initial input data for DIP should contain global data to

described the boundary value problem and global defaults, network data to
describe the surface definition and boundary conditions, and the geometric

edge matching data to describe network edge matching. The above data

(original or updated) is required for solving a potential flow solution.

The post processing input data for DIP may contain post-solution
calculation cases and database output directives. Both of these types of data

require a preexisting DIP database plus the results of a potential flow
solution on the database produced by the MDG module.

PRECED;NG PAGE BLANK NOT FILMED

E- _,_- INTENTIONALLY BLAN|

l-A.3

I-A.3 DQG - Defining Quantities Generator W

I-A.3.1 Purpose

The Defining Quantities Generator computes and defines a large number of

intermediate quantities required for solution of the potential flow problem.

These quantities fall into three classes: control data, geometrical data and

boundary condition data.

The control data consists of indices of all singularity parameters and

control points in the configuration as well as an indication of those
singularity parameters that are "known" and those singularity parameters and

control points that are "null" (not used to solve the problem).

The geometrical data includes descriptions of network abutments and

abutment intersections, the coefficients of the source and doublet splines

that define the singularity strengths over the surfaces of the networks and

those geometrical properties of panels which are required to compute the AIC
matrix in module MAG.

The boundary condition data processing includes assignment of user

specified boundary conditions as well as automatic imposition of doublet
matching conditions at network boundaries.

All of the data are stored on the DQG database. A small amount of printed

data is available to the user through selection of certain print options in

the input to DIP.

DQG also analyzes the configuration for many types of errors which may

lead to an erroneous or singular solution and produces diagnostic information

that the user might use to correct his input to DIP.

v

I-A.3.2 Tasks Performed

The basic tasks of DQG are performed in the six primary overlays of DQG.

(A seventh primary overlay performs some useful but perfunctory communication
to the user.) In the first overlay, data from the DIP database is read,

copied and (in some cases) transcribed onto the DQG database. In the second,
the data associated with individual networks are defined. Also included are

error checks on network size and indexing of singularity parameters and

control points. The third overlay of DQG deals with the inter-relationshi_ of
networks with each other: abutments and abutment intersections. User defined

abutments are imposed and a search is made for any additional abutments in the

configuration. A determination is made of network edges and corner points
where doublet matching boundary conditions will be imposed. If additional

paneling is required to fill in gaps between network edges, gap filling panels
are generated. Also network overlaps are found, if any, and diagnostics are

given as printed output. The fourth overlay assigns the approprlate number
and type of boundary conditions at each control point in the configuration.

The fifth overlay constructs source and doublet spline vectors for networks.
The sixth overlay computes panel geometrical data, assembles spline matrices

describing source and doublet strength over the surface of the panel and
computes the moments of source and doublet strength over the surface of the

v

l-A.4

panel. The seventh overlay produces printed output of control point data and

boundary condition data.

l-A.4 MAG - Matrix Generator

l-A.4.1 Purpose

The Matrix Generator module uses output from the DQG database to generate

influence coefficients, incorporate symmetry constraints, assemble the

influence coefficient (IC) matrix, and perform operations related to the
transformation of the boundary value problem into systems of simultaneous

linear equations.

I-A.4.2 Tasks Performed

The singularity and control point data from DQG are grouped into

categories of updatable and non-updatable. In addition, the singularity data
is further divided into known and unknown partitions. The new grouping of

data is put into two directories relating DQG data and MAG data. The
directories are stored in the MAK database. A number of matrices are formed

from the DQG data. First, the panel geometry specifications and the

reformatted control point data are obtained from the DQG and MAK databases

respectively. The panel influence coefficients (PIC) are then formed from
complex computations defined in Section 4.2.2 of the PAN A!R Theory Document
(Reference l). These PIC matrices are symmetrized to form the entries of the

IC matrices. These IC matrices are stored temporarily. Next, the ICmatrices

in required row form (up to 5000 words long) are produced. The aerodynamic
influence coefficients (AIC) are then constructed from the boundary conditions

specified by DQG and the IC matrices. The AIC matrices which correspond to
the known and unknown singularities are stored in the MAK database. Finally,
the influence coefficients (IC's) needed by the MDG module are transferred

from the temporarty database to the MAK database.

l-A.5 RMS - Real Matrix Solver

l-A.5.1 Purpose

The Real Matrix Solver (RMS) module decomposes the partition of the AIC
matrix associated with the unknown singularity parameters.

I-A.5.2 Tasks Performed

The RMS matrix solution subroutines operate on the matrices in "blocked

_artitioned format." The major tasks of RMS are to block and decompose the

IC matrices into upper and lower triangular matrices and pivot terms for use
in the solution process in the RHS module.

l-A.6 RHS Right-Hand-Side Generator
.y

l-A.6.1 Purpose
w

The RHS creates the right-hand-side equality constraints for the linear

system of equations defining the aerodynamic problem. The constraints are

1-A.5

formed from the boundry conditions and other knownquantities. The module
also obtains the solutions to the linear system for each control point by
forward and backwardsubstitution with the decomposedAIC matric obtained from
the RMSmodule.

I-A.6.2 Tasks Performed

The constraint data for the rlght-hand-side is obtained from the DIP
database and transformed into a usable form by RHS. The transformed

constraint data is then stored in a temporary database.

The RHS module also generates the symmetrized right-hand-side matrix

consisting of two partitions; those for the known AIC elements and those for

the unknown. Using matrix partition algebra and backward substitution on the
decomposed AIC matrix, all singularity parameters from all solutions are found.

l-A.7 MDG - Minimal Data Generator

1-A.7.1 Purpose

The Minimal Data Generator module is the primary interface of the upstream
PAN AIR modules, DIP, DQG, MAG and RHS, with the post processing PAN AIR
Modules, PDP and CDP. It reads geometry, influence coefficient, and

singlarity data to generate a minimal database of information at control point
and panel grid point locations. This data, used by PDP and CDP, consists of

geometric information and basic flow quantities: source and doublet

singularities, average potential, average mass flux, and in specific
instances, average velocity in three components. All basic flow quantities

are stored on the MDG database for all solutions and (if planes of symmetry
are present) for all distinct images. (See PAN AIR Theory Document, Sections
5.7.2 and K.l (Reference l)).

The minimal database generated by MDG enables PDP and CDP to process data
without accessing the DQG, MAK, and RHS databases and have that data available

in a convenient format at either control points or panel grid points for a
given image and solution.

A-7.1.2 Tasks Performed

MDG opens and checks the condition of the databases from DQG, MAG, and RHS

to assure that other upstream modules have executed without errors. It forms
the MDG permanent database for the global, network-spec, and solution data

sets, For each network, the control points are determined for each panel.
The control point and grid point geommtry is output to the MDG database.

The IC-matrices from MAK and the singularities from RHS are postmultiplied to

form control point values of average potential, mass flux and velocity in
three components if specified by the user. Singularities are reformatted
uniformly and unsymmetrized.

Using spline vectors created by DQG, singularity values are obtained at

nine defln_ng grid points and five defining grid points for doublet and source

l-A.6

V

V

singularities respectively on each panel. Subpanel splines are used to
calculate singularity values at control points.

At control point locations where IC values were not calculated, values are
calculated from the boundary conditions. If IC's were calculated, the mass
flux is calculated from the inner product of these velocities and the control

point conormal. The values of average potential, mass flux, velocity, if

specified, and singularities at control points are placed on the MDG database,

Potential splines, similar to DQG doublet analysis splines, are calculated

to produce values of flow quantities at grid points from values at control
points. The same quantities output at control points are output at grid
points on each network.

l-A.8 PDP - Point Data Processor

l-A.8.1 Purpose

The Point Data Processor module is designed to compute flow quantities on
configuration body and wake surfaces. These surface flow quantities consist
of perturbation andtotal potential, perturbation and total velocities,

perturbation, total and normal mass flux, pressure coefficients and local Mach

numbers for isentropic, linear, second-order, reduced second order and slender
body approximations.

Each of these computed data items is printed out and/or stored on a

permanent database for later retrieval as selected by the user. The PDP

database is generated only if database storage is requestedby the user.

The user options are available to PDP in the DIP database. These consists
of computation options for potential, velocity, velocity correction and
computation schemes, pressure coefficient and local Mach numbers.

The user has the option of requesting a printed output of the computed
quantities for each case.

I-A.8.2 Tasks Performed

The configuration geometry and a minimal set of velocity data

(perturbation velocities at points computed from the AIC matrices and the
local incremental onset flow velocities etc.) are available to PDP in the MDG

database. PDP computes the average and difference velocities at user selected

point types for each selected network, image and solutions and uses these data
to compute the perturbation and total velocities on each selected surface.

The velocities are corrected by PDP by the user selected correction schemes

and are then used to compute pressure coefficients and local Mach numbers for
the selected rules (isentropic, linear, second order, reduced second order and

slender body). Details of the computation of surface flow properties can be

found in Section N of the PAN AIR Theory Document (Reference l).

These flow quantites are written to the output file and/or to the PDP
database for later retrieval by the PPP module.

I-A.7

1-A.9

I-A.8.1 Purpose

FDP - Field Data Processor
V

The Field Data Processor module is designed to compute flow quantities at

designated points off the configuration body and along streamlines in the flow

field. These flow quantities consist of perturnation and total potential,

perturbation and total velocity, perturbation and total mass flux, and
pressure coefficients and local Mach numbers for isentropic, linear, second

order, reduced second order and slender body approximations. Arc length and
time of traversal are to additional flow quantities associated with
streamlines.

Each of these computed data items is printed out and/or written to a plot
file for later retrieval as selected by the user. The FDP plot file is

generated only if requested by the user.

The user options are available to FDP in the DIP database. These consists

of computation options for potential, velocity, velocity correction and
computation schemes, pressure coefficient and local Mach numbers.

The user has the option of requesting a printed output of the computed

quantities for each case.

I-A.9.2 Tasks Performed

The panel defining quantities and the singularity solutions are available

to FDP in the MDG data base. For a point off the configuration surface, FDP

uses that data to compute the perturbation and total velocity for selected
solutions. The velocity is corrected by FDP according to user selected

correction schemes and is then used to compute pressure coefficients and local

Mach numbers for the selected rules (isentropic, linear, second order, reduced

second order and slender body). To compute the points along a velocity or

mass flux streamline, FDP uses a predictor-corrector method of integration. A
more detailed explanation can be found in appendix P of the PAN AIR Theory
Document (Reference l).

V

These flow quantites are written to the output file and/or to the FDP plot
file.

l-A.lO CDP - Configuration Data Processor

l-A.lO.l Purpose

The Configuration Data Processor is designed to compute forces and moments

on configuration body and wake surfaces. The computed forces and moments are

printed out and/or stored in a permanent database for later retrieval as
selected by the user. The CDP permanent database is generated only is it is

requested by the user.

The user options for CDP are obtained from the DIP database and the

configuration geomtry and other minimal data are obtained from the MDG
database.

V

l-A.8

I-A.IO.2 Tasks Performed

The Configuration Data Processor obtains the processed user input from the
DIP database. These consists of lists of user selected networks, solutions,

axis systems and configuration options for forces and moments.

The user has the option of requesting printed output and/or storage in the

CDP database of the computed force and moment data for each case of options.

The configuration geometry and a minimal set of velocity data are

available from the MDG database. The CDP module computes the average and
difference velocities on the points of each panel, corrects these velocities

according to the user selected correction schemes, and computes the selected

_ressure coefficients from the velocity in a user-selected preferred
irection. These pressure coefficieints are used to compute forces and

moments on each panel. The edge forces and the corresponding moments are also
computed on user selected network edges.

The computed forces and moments are transformed to user selected axis

systems (a maximum of 4) and printed out and/or stored in the CDP database for
later retrieval by the user with the PPP module.

The CDP module allows the user to sum forces and moments for all panels in
a column, for all columns in a network_and for all networks in a

configuration. A configuration consists of all selected networks for a

particular case. In addition the user may request to sum or accumulate forces

and moments for selected configurations of a PAN AIR run.

l-A.ll PPP - Print/Plot Processor

l-A.ll.l Purpose

The Print Plot Processor module extracts user selected information from

selected PAN AIR databases and prepares the data in a format suitable for
processing by plot programs external to PAN AIR.

I-A.II.2 Tasks Performed

The PPP module extracts user selected data from the DQG, PDP and CDP

databases and reformats the information for use in preparing plot files. The

data are selected from a menu consisting of geometry data from DQG, point data

from PDP, and configuration data from CDP.

1-A.9

V

V

APPENDIX I-B Example of How to Use SDMS

v I-B.I

_ • _ • _ _ _ _ _ _r_ _ii_ _ _I_ _

v

V

I-B.I SDMS Example Program

The PAN AIR user, with specific needs not satisfied by the standard PAN

AIR output options, may obtain additional information from the permanent
databases created during a PAN AIR run. A simple FORTRAN program prepared by

the user performs this task. This example illustrates the correct procedure

to use to generate such a program.

In this example, the data identified by SDMS names (elements) is loaded

into Fortran variables as indicated below:

SDMS Name Fortran Map Dataset Name

NMBER-ACT-NETWK NBRNET GLOBAL-MAP GLOBAL
NETWK-ORDER NETORD GLOBAL-MAP GLOBAL

TOTAL-EDGE-LENGTH EDGLEN EDGE-LENG NETWK-SPEC

The FORTRAN program performs the I/O transfers from the database to

central memory by calling the same SDMSLIB subroutines which PAN AIR uses to

perform similar operations. The SDMS routines needed to read data from the
database are listed below. All of these may be loaded by following the

control procedures outlined below. A more detailed discussion of SDMS

routines may be found in Section 14 of this document.

Subroutine Table

Name Action

DBCLOS

DBOPEN
DSMAP

DVMAP
ENDMAP

ESGET

ISDMS
SVMAP

Closes the Database

Opens the Database
Initiates Map definition

Defines Dynamic Map

Terminates Map definition

Gets a specified element set at a specified dataset from the
database

Initiates SDMS tables

Defines static map

C
C

C
C

C
C
C

C

C
C

PROGRAM EXAMPL(INPUT,OUTPUT)

PURPOSE
THIS PROGRAM IS AN EXAMPLE OF THE USE OF SDMS ROUTINES

TO TRANSFER DATA FROM A DATABASE TO CENTRAL MEMORY

THIS PROGRAM READS THE DQG DATABASE.

DATA GROUP LOCAL DIMENSIONED DATA

DIMENSION NETORD(IOO),EDGLEN(4)
DIMENSION DBN(3)
DIMENSION IWSA(2000)

DATA INFIL/5LINPUT/,IUTFIL/6LOUTPUT/
DATA IWSA(1) / l /

l-B.3

PRECED;NG PAGE BLANK NOT FILI',;F-.D PAGE_/'__:_-JNIENT_0NAI:LY BLANII

C

C

C

C
C

C

C

C

C

C
C

C
C

C
C

C

INITIALIZE SDMS TABLES

CALL ISDMS(IWSA(1),IWSA(2000))

READ DATABASE DESCRIPTION FROM INPUT FILE

READ (INFIL,5OOO)CDBN(1),I=I,3)

READ (INFIL,5000) DBPW

IF BLANK NAMES, THEN SET DEFAULT VALUES

IF (DBN(2).EQ.IH) DBN(2)=O
IF (DBN(3).EQ.IH) DBN(3)=O

IF (DBPW.EQ. IH) DBPW=O

ENDIFC
OPEN DATABASE

CALL DBOPEN(DBN(1),gHPERMANENT,DBPQ,3HOLD)

DEFINE MAP TO GLOBAL DATASET OF DQG DATABASE
TO FIND NUMBER AND ORDER OF ACTIVE NETWORKS

CALL DSMAP(IOHGLOBAL-MAP,2OHGLOBAL

DEFINE STATIC MAP

CALL SVMAP(NBRNET,2OHNMBER-ACT-NEI'WK
1 NETORD(1),2OHNETWK-ORDER)

TERMINATE MAP

CALL ENDMAP

DEFINE MAP TO NETWK-SPEC DATASET oF DQGDAI'_CBASE

TO FIND EDGE LENGTHS OF NETWORKS

CALL DSMAP(IOHEDGE-LENG ,20HNETWK-SPEC

DEFINE STATIC MAP FOR EDGE LENGTH

CALL SVMAP(EDGLEN(1),2OHTOTAL-EDGE-LENGTH)

TERMINATE MAP

CALL ENDMAP

NOTE IN THE ABOVE MAP A STATIC MAP WAS USED FOR THE

DATA ITEMS WHILE A DYNAMIC MAP WAS USED FOR THE KEY

SET DATA. THIS IS NOT REQUIRED. EITHER METHOD OF
MAPPING MAY BE USED FOR EITHER-DATA OR KEY SET

INFORMATION. HOWEVER, WE RECO_END THE APPROACH
AS ABOVE. ::::

GET NUMBER OF NETWORKS AND ORDER

CALL ESGET(IOHNBRNET)

WRITE LABELS AT TOP OF PAGE

WRITE (IUTFIL,6000)

,DBN(I))

,DBN(I))

_bT

1-B .4

v
FOR EACH ACTIVE NETWORK DO

DO I00 IN:I,NBRNET

INET:NETORD(IN)

C
C GET EDGE LENGTH DATA

CALL ESGET(IOHEDGE-LENG ,INET)
C

C WRITE NETWORK INDEX AND EDGE LENGTHS

WRITE (IUTFIL,6001) IN,INET, EDGLEN(1), I=l,4)

C
C ENDDO ON NETWORKS

lO0 CONTINUE
C
C CLOSE DATABASE

CALL DBCLOS(DBD(1))

C
C EXIT

C

5000 FORMAT (8AlO)

C

6000 FORMAT(I HI ,7X,3HIN,6X,4HINET,2X ,l2HEDGE LENGTHS)

6001 FORMAT (SX,15,SX,15,4(2X,IPEIO.3))
C END

"

"'J l-B.5

I-B.2 Efficiency Considerations and SDMS

The Scientific Data Management System (SDMS) used in PAN AIR provides a

powerful mechanism for storage and classification of scientific data. Through
its use of English descriptions of data elements it allows data
classifications which are easily understood. The dataset construction allows

grouping of data items in ways which reflect actual use or application instead
of ways which force an artifical grouping (e.g., all scalars stored in one
fashion, vectors in another).

V

When SDMS is used to solve complex problems which involve many I/O

operations, as in the PAN AIR system, some special consideration needs to be

given to SDMS usage to avoid undue I/O cost. To understand these
considerations it is necessary to know a little more about the internal

operations of SDMS.

An SDMS database consists of four files. The first file is a copy of the

Master Definition file and is used to generate maps. The second file contains

indexing information (pointers) which describe where on the third and fourth

files a particular element set is to be found. The third file contains all of
the random access data. The fourth file contains all of the sequential access
data. = _ _ -_: -_ _ _

A two level pointer system is used in SDMS. The top level pointer array

indicates which of several second level pointer arrays contains the disk

address of the required data. Each SDMS buffer can store a pointer array.
One buffer will hold the top level pointer array, Second level pointer arrays

can reside in the remaining buffers. When an SDMS operation is performed

(e.g. an ESGET), if all of the pointer information is already in core, only
one disk access is made to obtain the data. If the second level pointer array
is not in core, SDMS reads the second file to obtain the second level pointer

required and then reads the third file to obtain the data. The second level

pointer array fills any buffer that is empty. If none are available and no
write operations have occurred, the second level pointer array overwrites the
oldest full buffer. If there have been some write operations, the oldest

pointer data in the buffer is written to the database before the new second

level pointer data is read in. A similar process occurs if the top level
pointer array required is not in core.

_w

Several disk accesses may be required for each SDMS operation. If a small
number of available SDMS buffers forces the top and second level pointer

arrays to be swapped in from the disk, then up to five accesses may be

required for a single SDMS operation. Increasing the number of SDMS buffers
can decrease the number of disk accesses per SDMS operation.

If four buffers are available to hold indexing data, there can be atmost

two SDMS operations to two different datasets within a loop unless multiple

disk accesses per SDMS operation can be tolerated.

Fig. l-B.l shows an example of inefficient use of SDMS(assuming four

available buffers). Within the inner loop there are SDMS requests to five .

different datasets. The first two "GET" operations fill the buffers. The

REPLACE of the Singularity-Map dataset occurs efficiently (one disk access for

V

l-B.6

"v

the operation) but the next REPLACE overwrites the indexing information for
the CONTROL-POINTS data, even though the next operation is the replacement of

that same dataset. Overall this loop structure yields four data accesses per

SDMS operation.

Fig. l-B.2 shows a more efficient approach. The CONTROL-POINT DATASET,
the BOUNDARY-CONDITION DATASET and the RIGHT-HAND SIDE dataset have been

combined into one dataset, the BOUNDARY CONDITION/CONTROL POINT dataset. The

replacement.of the SINGULARITY MAP dataset has been removed to a separate loop
of its own. There are only two different datasets which are accessed in the

inner loop. Thus on the average there will be between l and 2 disk accesses
per SDMS operation. This restructuring of the data and control logfc will

save a factor of 3 in (I/O) cost over the approach in Fig. l-B.l.

By far the most efficient I/O operations with random access files occur
when the random access data is transferred in a sequential fashion. SMDS has

a key set system which indexes elements sets within a dataset. If the element

sets are stored in an order in which the last key set index changes most

rapidly, this will minimize accesses to the pointer file. If the data are
read in a similar order this will also reduce I/O cost. In Fig. l-B.3 the key

set structure is shown for the BOUNDARY CONDITION/CONTROL POINT dataset.

Since the panel row index (number of panels in a column) is the inner loop in
Fig. l-B.2, this random access data is being read and written in a sequential
manner.

"_ I-B.7

FOREACHNETWORKDO

GET NETWORK DATASET

FOR EACH PANEL COLUMN DO

GET COLUMN OF COORDINATES DATASET

GET COLUMN OF COORDINATES DATASET

FOR EACH PANEL IN COLUMN DO

GET CONTROL-POINT DATASET

(COMPUTE CONTROL POINT DATA)

GET SINGULARITY-MAP DATASET

(MODIFY DATA)

REPLACE SINGULARITY-MAP DATASET

REPLACE SINGULARITY_SPEC DATASET

(ASSIGN BOUNDARY CONDITIONS)

REPLACE CONTROL-POINT DATASET

PUT BOUNDARY CONDITION DATASET
iii • •

PUT RIGHT-HAND-SIDE DATASET

ENDDO ON PANELS ON COLUMN

ENDDO ON COLUMNS OF PANELS

ENDDO ON NETWORKS

EXIT

Figure l-B.l - Inefficient use of SDMS.

Average of four disk accesses per SDMS operation.

l-B.8

IV I

FOR EACH NETWORK DO

GET NETWORK DATASET

FOR EACH COLUMN OF PANELS DO

GET A COLUMN OF COORDINATES DATASET

GET A COLUMN OE COORDINATES DATASET

FOR EACH PANEL IN THE COLUMN DO

GET BOUNDARY CONDITION/CONTROL POINT DATASET

(COMPUTE CONTROL POINT DATA)

GET SINGULARITY-MAP DATASETS

(MODIFY DATA)

REPLACE SINGULARITY-MAP DATASET

(ASSIGN BOUNDARY CONDITIONS)

REPLACE BOUNDARY-CONDITION/CONTROL POINT DATASET

ENDDO OF PANELS IN COLUMN

ENDDO ON COLUMNS OF PANELS

ENDDO ON NETWORKS

FOR EACH SINGULARITY PARAMETER DO

GET SINGULARITY-MAP DATASET

REPLACE SINGULARITY-SPEC DATASET

ENDDO ON SINGULAIRTY PARAMETERS

EXIT

Figure l-B.2 - A More Efficient Approach to the Problem of Figure l
A maximum of two disk accesses per SDMS operation

1-B.9

DATASETBOUND-COND/CONT-PT

KEYSET

NETWORK-INDEX

PANEL-COLUMN

PANEL-ROW

END

ELEMENTSET

END

v

I-B.IO

Fig. l-B.3 Key Set for Examplein Figure l-B.2

MODULE EXECUTION CONTROL(MEC) MODULE

INTRODUCTION

A temporary data base is created by the MEC module for use by the other
PAN AIR modules. The data base contains the names, accounts, disk set names,

passwords and status of all permanent and temporary data bases used by the
other PAN AIR modules. These data base parameters can be modified by means of

user supplied data base directives described in Paragraph 6.4 of Reference 2.

The MEC moaule consists of a top level program with main overlays. The

first overlay reads allthe user directives. The data base directives are

rocessed first and the data base information table is updated as directed.
he executive directives used for problem identification are then processed

and stored for future use by the third overlay. The second overlay displays

the data base information table and actually stores this data in the MEC data

base on disk. The third overlay, which previously generated control cards for

Cyber computers, is not invoked.

2.2 MEC OVERVIEW

2.2.1 Purpose of MEC

Originally MEC was intended to generate control cards for the Cyber
versions. This function is not used by version 3.0. It has been replaced by

CRAY JCL procedures. The remaining task for MEC is the accumulation of

information about PAN AIR data bases.

2.2.2 MEC Input/Output Data

The MEC input data includes the data base directives discussed in

Paragraph 2.1. The MEC directives are described in Paragraph 6.5 of Reference
2.

The printed output from MEC consists of the data base information
table. This table contains the same information which is stored in the data

base. An example of the MEC output can be found in Paragraph 8.5 of Reference
2.

2.2.3 Data Base Interface

v

The MEC module creates a temporary data base which is used by the other

PAN AIR modules. The data base contains run identification information, data
base information for the other PAN AIR modules and status of the other data

bases. The data base information consists of data base default names, actual

data base names, user numbers, set names, user id's, Master Definition names,
user names for the Master Definition, set names for the Master Definition,

user ID names for the Master Definition and passwords. The data base status

information includes items such as permanent or temporary, existing or not

existing and used or not used during a PAN AIR run.

The DIP module is the only other PAN AIR module which writes on the MEC

data base. It passes back to MEC the problem identification information and

the user identification information.

2.1

2.3 MODULE DESCRIPTION

The high level aspects of the MEC module design is described in this
section. The lower level functions are described in Paragraph 2.4. The

functional decomposition of MEC is illustrated in Appendix 2-B.

2.3.1 Overall Structure

The overall structure of MEC is depicted in Figure 2.1.

2.3.2 Overlay Descriptions

2.3.2.1 MEC Overlay (0,0)

The top level overlay initializes the data base and other parameters.

The module then calls upon the second level overlays READUD and GENDB.

Overlay READUD processes the user input directives. The data base information
table and the data base are created in the overlay GENDB.

2.3.2.2 READUD Overlay (l,O)

The second level overlay READUD reads all the user directives. The data

base directives are processed by the third level overlay (l,l) in PRDATA. The

executive directives for solving a PAN AIR problem are processed in the other

third level overlay (1,2) PREXEC.

2.3.2.3 PRDATA Overlay (l,l)

The third level overlay PRDATA processes the data base user directives.
The available user directives are defined in Paragraph 6.4 of the PAN AIR

User's Manual (Ref. l). Such things as names, user accounts, disk set names,

user identification and data base status may be changed. An in-core data base
information table is used to store the old and new information.

2.3.2.4 PREXEC Overlay (1,2)

The third level overlay PREXEC processes the executive user directives

defined in Paragraph 6.5 of Reference 2. The executive directives refer to
standard and non-standard PAN AIR Problem definitions. The commands are

stored in-core in a table.

2,3.2.5 GENDB Overlay (2,0)

The second level overlay GENDB displays the data base information in

printed form and also stores the table data in the MEC temporary data base for
use by the other modules.

2.3.2.6 GENCC Overlay (3,0)

The overlay generated control cards for Cyber versions of PAN AIR.

resides in MEC but it is not invoked.

It

2.2

V

2.3.3 MEC Data Base

A temporary data base named MEC is created by MEC module. The Master

Definition for this data base is described in Appendix 2-D.

2.3.4 MEC Interfaces

2.3.4.1 System Interfaces

The MEC module is accessed by JCL procedures.

2.3.4.2 External Interfaces

The MEC data base is used by all other PAN AIR modules. MEC and DIP are

the only modules which write on the MEC data base. The problem identification

(PID), and user identification (UID), are the only variables affected.

2.3.4.3 Internal Interfaces

The interfaces between the overlays and the subprograms is defined by a

tree structure diagram in Appendix 2-A.

2.3.5 Data Flow

The flow of execution is depicted in Figure 2.2. During execution data

flows between overlays, subprograms, data bases and disk files. Figure 2.2

depicts this activity in a general way. Detailed data flow information can be
found by consulting the glossaries of those programs/subprograms which are of
interest. Also, Appendix 2-C has been included to aid analysis of data flow

between MEC and its temporary data base. Section l, Paragraph 1.4 of this
document can be consulted for more detailed information of the use of the

tools available for analysis of data flow.

2.4. LOWER LEVEL FUNCTIONS

The following paragraphs present the functional decompositions

(hierarchial structure) of the overlays and their subprograms and gives the

purpose of each subroutine.

2.4.1 Functional Decomposition

See Appendix 2-B for a description of the MEC functional decomposition.

Section l, Paragraph 1.4.1 of this document can be consulted for more detailed
information of the use of the functional decompositions.

2.4.2 Subroutine Descriptions

The subroutines used in the MEC module are described below. Also refer

to the tree structure in Appendix 2-A. The subroutines called by GENCC are
included with PAN AIR but are not invoked by version 3.0. They are not

described below.

2.3

APPEND

Appends a three character or less suffix to the default name of
one or more data bases.

DBASE
Updates the in-core data base information table as prescribed by
the user directives for data base modification.

DISBIT

Displays the data base information table in printed form.

KEEP

Processes user directives indicating which data bases should be

kept for later PAN AIR problems.

KEYCHK

Selects a portion of an input character string to determine the

key portion of the string. The length of the extraction is either
three or four leading characters for the PAN AIR software.

PLIMIT

Processes PL directive for setting print limits for PAN AIR modules

PRCHEC _

Processes the user directive for a data check. The output is used

by CHECK to create control cards (CDC computers only).

STATDB

Alters data base type from PAN AIR default to user specified

PERM/TEMP status.

STRWRD

_Stores a designated entry into the data base information table.

WRITDB
Iransfers the entries from the in-core data base information table

to the MEC data base stored on disk.

2.4

V

User

Directive

Inputs

OVERLAY(1,O)

READUD

Read and

Process all

Directive Data

OVERLAY(I,I

PRDATA

Process

Data Base

Directives

DVERLAY(1,2

PREXEC

)rocess Use_

Executive I

Directives I

MEC

TOP LEVEL

OVERLAY(O,O)

Initialize

and Call

other Overlays

OVERLAY(2,0)

GENDB

Write

and Display

Data Base

i

-m, MEC

Data

Base

r

I Data Base I

/

NOT INVOKED

OVERLAY(3,0)

GENCC

Generate

Contr-ol Card

File

Control

Card

File

I Control 1

Figure 2:1 - MEC Structure
2.5

nformation

Iiata

ase
ir@cti ves

J

_xecutive

Directives

Initial

Control Cards

System Procedure

Called

MEt

Executes

READUD

Executes

PRDATA

Executes

PREXEC

Directives

I _Data Base \
-'i" Informati or-_

Table J!

_ Directive 1
..... Table

/

MEC

DATA

BASE

GENDB

Executes

v
2.6 Figure 2.2- Data Execution Flow

V

APPENDIX 2-A TREE STRUCTURE

The tree structure diagram of the MEC module has been deleted from this
document. It is, however, available on the installation tape.

2-A.l

V

APPENDIX 2-B MEC FUNCTIONAL DECOMPOSITION

V

v

2-B.l

r_W

A

MEC - Module Execution Control

MEC (0,0) Overlay Initialize MEC Execution
A PRGEG - Initialize Program Printout
B ISDMS Initialize SDMD Execution

READUD-OVERLAY (I,0) - Read User Directives and Store
A Initialize READUD
B LOADREC - Read a record from Input Card File

A - If End of File, Set Error Flag and Abort
B - STRMOV - Extract Keyword

C Process Input Record
A - Store Run Identification if Present
B - PRDATA OVERLAY (I,I) - Process Data Base Directives if

"DATA" is keyword
A LOADREC - Read Input Record Determine Input Errors

and Extract Keyword if Present
B KEEP - Record Data Bases to be Saved if "KEEP" is

Present Keyword
C STRWRD - Record Data Bases to be Dropped if

"RELEASE" is Present Keyword
D APPEND - Add Suffix to Data Base Name if "APPEND"

is Present Keyword
E STRWRD - Record Data Base User's Account if "UN" is

Present Keyword
F STRWRD - Record Data Base ID if "UID" is Present

Keyword
G STRWRD - Record Data Base Set Names of "SET" is

Present Keyword
H STRWRD - Record Master Definition User Account if

"MUN" is Present Keyword
I STRWRD - Record Master Definition ID if "MUID" is

Present Keyword
J STRWRD - Record Master Defintion Set Name if "MEET"

is Present Keyword
K STRWRD - Record Password for Data Bases if "PW" is

Current Keyword
L DBASE - Determine Name and Location of Single Data

Base for "DBASE" Keyword
M STATDB - Alter status of selected data bases to

permanent
N STATDB - Alter status of selected data bases to

temporary
0 - Indicate End of Data Base Directives if

"END" is Keyword
P - Diagnose Unrecognizable Directive and

Abort "RUN"
Q - Diagnose and take error exit, if number of

errors in input exceeds program limit
C PREXEC OVERLAY (1,2) - Process all EXEC Directives if

"EXEC" is Keyword
A LOADREC - Read Input Record
B KEYCHK - Determine Keyword

2-B.3

pRF.CEi.}_'wGPAGE I_..AIWKi'_O'l'FILN_=-"]) BAGE.,I.','J_'_-.INTENTIONAI_LYB_

C If Keywordis FIND, Determinewhich Type
A If "POTENTIAL"is Present, Store Executive

Type as POTENTIAL
B If IC "UPDATE"is Present, Store Executive

Type as IC
C If "SOLUTION"is Present, Store Executive

Type as SOLUTION
D If 'POST' is present, store execution type

as post processing
E Diagnose Unrecognizable Directive if Detected

D PRCHEC
A
B
C

E

D If "FIELD" or-"PLOT" are Present, Store in
Executive Parameters

E If Keywordis "RUN", Process and Store Module
Information

F IF Keywordis "DROP",Process and Store Purge
Data Base Information

G If Keywordis "MOUNT",Store Dismount Disk
CommandInformation

H If Keywordis "DISMOUNT",Store DismountDisk
CommandInformation

I If Keywordis "CC=", Store Control Card Image
Information

J If Keywordis "ERROR",Store EXIT Parameters if
Present

0 If Keywpordis "INPUT", Store File Name
K If Keywordis "END", Record Endof EXECDirectives
L DiagnoseUnrecongizable Directives if Present
M Diagnosetoo manyDirectives
N Diagnosetoo manyErrors on Input

- Process Data CheckDirective if Present
- Initialize Data CheckOptions
- If "DQG"is Requested, Record Via Switch
- If "PLOTS"are requested, RecordVia Switch

Store SYSTEMCard Parameters if Present for Boeing, Ames,
Langley or WPAFBcomputer installations
If Keywordis "END", Indicate NoMorePANAIR Directives Exist
If Too ManyInput Errors WereRecorded, Print Diagnostic and
Abort Run

GENCCOVERLAY(3,0) ° Generate JCL Control Cards for RequestedPANAIR
Problem (This code was previously used for Cyber computers and is not
invoked)

GENDBOVERLAY(2,0) -
A DIST
B WRITDB

Define MECData BaseTable
Display MECData Base Table
Write the Data BaseTable on the MECData Base

PRGEND- Terminate the Execution of the MECModule

v

2-B.4

APPENDIX2-C DATABASECOMMUNICATIONSCHART

The Data BaseCommunicationsChart is presented in three forms. The
first form has a column order of Data Base, Dataset Name,MapName,Common
Block, and Program/Subroutine. The second form has a column order of Data
Base, MapName,Dataset Name,CommonBlock, and Program/Subroutine. The third
form has a column order of CommonBlock, Data Base, MapName,Dataset Name,
and Program/Subroutine. Thus a person can get a cross reference on a data
element by knowing either the Dataset Name,MapNameor CommonBlock.

V

2-C.I

V

DATA
BASE

MEC
MEC

DATASET-NAME

DATA-BASE-HEADER

DATA-BASE-LOCATION

DATA

BASE MAP NAME

MEC DBHED
MEC DBLOC

COMMON DATA
BLOCK BASE

/MECDB/ MEC
/MECDB/ MEC

FIRST FORM

MAP NAME

DBHED

DBLOC

SECOND FORM

DATASET-NAME

DATA-BASE-HEADER

DATA-BASE-LOCATION

THIRD FORM

COMMON

BLOCK

/MECDB/
/MECDB/

COMMON

BLOCK

/MECDB/

/MECDB/

DATASET-NAME MAP N_4E

DATA-BASE-HEADER DBHED
DATA-BASE-LOCATION DBLOC

PROGRAM/

SUBROUTINE

WRITDB

WRITDB

PROGRAM/
SUBROUTINE

WRITDB
WRITDB

PROGRAM/

SUBROUTINE

WRITDB
WRITDB

2-C.3

PRECEDING PAGE BL/_NK NOT FILMED P4GE _--'_, _. INTENTIONAI,Ly BLANJl

V

V

V

APPENDIX 2-D MASTER DEFINITION

The data base master definition listing of the MEC module has been

deleted from this document. It is produced from the PAN AIR tape during

installation.

v

"-" 2-D.I

V

v

3.0 DATA INPUT PROCESSOR (DIP) MODULE

3.1 INTRODUCTION

The DIP module is the input processor for the PAN AIR system. It reads

user supplied PAN AIR directives, collects them into related groups of data
and stores them on the DIP database for use by other modules in the PAN AIR

system. DIP also provides some diagnostic information to the user on the

output file. Most of the contents of DIP deals with the recognition of

alphanumeric data and the consequent storage of the data. DIP has two modes

of operation. The first mode of operation is invoked to define a new
problem. The second mode of operation involves an "update" or change in the
parameters describing a previously executed problem. User supplied directives

to module MEC (see Paragraph 6.3 of Reference 2) determine the mode of DIP

operation.

3.2 DIP OVERVIEW

V

3.2.1 Purpose of DIP

The DIP module reads the user's description of the problem and stores it

for use by other modules. The DIP module consists of a top level program

which calls from two to seven primary overlays. The first primary overlay

performs the module initialization function. The second primary overlay reads
and loads the global data. The third primary overlay reads and loads the
network data. The fourth primary overlay reads and loads the geometric edge

matching data. The fifth primary overlay reads and loads the flow properties
calculation data. The sixth primary overlay reads and loads the data printout

directives. The seventh primary overlay performs the module termination

function. All PAN AIR input data, except execution control directives, are
read by the DIP module. The data is checked for accuracy and loaded into the

DIP data base for use by subsequent modules.

3.2.2 DIP Input/Output Data

The DIP module receives input from three sources. The first is the MEC

data base which provides DIP with problem identification, user identification
and run mode. The run mode will indicate that DIP is either to generate a new

data base or use an old data base. The second source of input is the old DIP

data base if this is an update or follow-on run. The final source of input is

the user supplied input data for DIP.

The DIP module produces a printout of each input record (card) read,

followed by any diagnostics associated with the record. The printed output
also contains a summary of the global data, a list of the solutions and a

summary of the networks.

3.2.3 Data Base Interface

The DIP module creates/updates a DIP data base which is used by the
other PAN AIR modules. This data base contains the flow regime data,

configuration data, a list of networks plus individual network data, and a
list of solutions plus individual solution data. It also contains the DIP

global defaults, flow properties data, PAN AIR module print flags, and data

printout directives.

3.1

The DIP modulealso writes the problem identification and user
identification on the MECdata base.

3.3 MODULE DESCRIPTION

3.3.1 Overall Structure

The main overlays of DIP are briefly summarized in this paragraph.
Lower level subroutines are described in Paragraph 3.4. The DIP functional

decomposition and a chart of the subroutine tree diagram are presented in
Appendices 3-B and 3-A, respectively. The overall structure of DIP is

depicted in Figure 3.1.

3.3.2 Overlay Descriptions

3.3.2.1 DIP Overlay (0,0)

The top level overlay initializes the data base and default parameters

by calling Overlay (l,O) (Program INITIL). The module then responds to input

data, calling overlays GLOBDP, NETWDP, GEOMDP, FLOWDP, and PPPDIR. The global

data is processed by GLOBDP, the network data is processed by NETWDP, the
geometric edge matching data is processed by GEOMDP, the flow properties data

is processed by FLOWDP and the data printout directives are processed by
PPPDIR. At the completion of input data, the module calls overlay FINIS.

3.3.2.2 INITIL Overlay (l,O)

The second level overlay INITIL (Figure 3.2) opens the data base and
reads the data base header and the run options. The DIP data base is then

checked and opened. If the MEC run options indicate an update run, INITIL

reads the global level data sets from the DIP data base into core.

3.3.2.3 GLOBDP Overlay (2,0)

The second level overlay GLOBDP (Figure 3.3) is called in response to a

"BEGIN GLOBAL DATA" input record. It processes all of the global data input
by the user. Data transmitted to the DIP data base consists of header data,

global defaults, and global prints. Data transmitted to the MEC data base is
header data.

3.3.2.4 NETWDP Overlay (3,0)

The second level overlay NETWDP (Figure 3.4)is called in response to a

"BEGIN NETWORK DATA" input record. It processes all of the network data input

by the user. Data transmitted to the data base consists of individual network

data for panel coordinates and constraints.

3.3.2.5 GEOMDP Overlay (4,0)

The second level overlay GEOMDP (Figure 3.5) is called in response to a

"BEGIN GEOMETRIC EDGE MATCHING" input record. It processes the edge matching
(abutment) data. Data transmitted to the data base consists of the user

defined abutments.

3.2

V

V

v

3.3.2.6 FLOWDP Overlay (5,0)

The second level overlay FLOWDP iFigure 3.6) is called in response to a

"BEGIN FLOW PROPERTIES CALCULATIONS DATA" input record. Surface flow

properties are processed by the third level overlay SURFLO. Forces and
moments are processed by the third level overlay FORMOM.

3.3.2.7 SURFLO Overla_ 15,1)

The third level overlay SURFLO IFigure 3.6) is called in response to a
"SURFACE FLOW PROPERTIES" input record.

3.3.2.8 FFDATA Overlay (5,2)

The third level overlay FFDATA (Figure 3.6) is called in response to a
"FIELD FLOW PROPERTIES" input record.

3.3.2.9 FORMOM Overlay (5_3)

The third level overlay FORMOM (Figure 3.6) is called in response to a
"FORCES AND MOMENTS" input record.

3.3.2.10 PPPDIR Overla_, (6,0)

The second level overlay PPPDIR (Figure 3.7) is called in response to a
"BEGIN PRINT PLOT" input record. The data group processed by this overlay

specifies point options for the Print/Plot Processor (PPP) module. Geometry
print options are processed by the third level overlay PPGEOM. Flow

properties at points print options are processed by the third level overlay

PPPOIN. Force and moment data for surface configurations is processed by the
third level overlay PPCONF.

3.3.2.11 PPGEOM Overlay (6,1)

The third level overlay PPGEOM (Figure 3.7) is called in response to a
"GEOMETRY DATA" input record. The input record set processed by this overlay

specifies the print files that PPP will create from DQG data.

3.3.2.12 PPPOIN Overlay (6,2)

The third overlay PPPOIN (Figure 3.7) is called in response to a "POINT

DATA" input record. The input record set processed by this overlay specifies
the print files that PPP will create from PDP data.

3.3.2.13 PPCONF Overlay (6,3)

The third level overlay PPCONF (Figure 3.7) is called in response to a

"CONFIGURATION DATA" input record. The input record set processed by this
overlay specifies the print files that PPP will create from CDP data.

3.3.2.14 FINIS Overlay (7,0)

The second level overlay FINIS (Figure 3.8) is called in response to a

"END PROBLEM" input record or an END-OF-FILE mark on the input file. This
overlay writes the global and global flow data sets to the DIP data base and

closes the DIP data base. It then closes the MEC data base.

3.3

3.3.3 DIP Data Base

DIP creates one permanent data base.

in Appendix 3-D.

The Master Definition is described v

3.3.4 DIP Interfaces

3.3.4.1 System Interfaces

The DIP module is accessed through MEC by user control cards and a

system procedure. This interface is described in Sections l.O and 2.0 of this
document.

3.3.4.2 External Interfaces

The DIP data base is used by all other modules. DIP isthe only module
which can write on the DIP data base. DIP also writes on the MEC data base.

The problem identification (PID), and user identification (UID), are the only

variables affected.

3.3.4.3 Internal Interfaces

The interfaces between the overlays and the subprograms are defined by a

tree structure diagram in Appendix 3-A.

3.3.5 Data Flow

The flow of execution is depicted in Figure 3.9. During execution, data

flows between overlays, subprograms and data bases via labeled common blocks.

Figure 3.9 illustrates this activity in a general way. Detailed data flow

information can be found by consulting Figures 3.2 through 3.8, Appendix 3-C

(Data Base Communications Chart) , and the glossaries of the

programs/subroutines which are of interest.

3.4 LOWER LEVEL FUNCTIONS

The following paragraphs describe the general structure and purpose of

the overlays and their subprograms.

3.4.1 Functional Decomposition

See Appendix 3-B for a description of the DIP decomposition.

3.4.2 Subroutine Descriptions

3.4.2.1 Subroutines from GLOBDP - Overlay (2,0)

ADDE

Processes the "ADDED MASS COEFFICIENTS" input record. This record

may contain a moment reference point, but CDP apparently does not
use it.

The input data is loaded into DIP data set GLOBAL-FLOW-PROP.

_ I

V

3.4

_ J

v

AMCGLR

Generates the 6 solutions required for added mass coefficient
calculations by CDP, checks Mach number and checks for symmetric
planes of symmetry. The generated data is loaded into DIP data
set GLOBAL.

CHEC

Processes the-"CHECKOUT PRINTS" input record. This record

contains a parameter list of one or more abbreviated module names,

each followed by its own list of integer print options. The input

options are loaded into DIP data set GLOBAL-PRINTS.

CONF

Processes the "CONFIGURATION" input record. This record contains

the configuration and flow symmetry data. The input options are
loaded into DIP data set GLOBAL.

GLDAPR

Transforms the WM (magnitude of rotational flow) and WDC

(direction cosines of axis of rotation) into the rotational flow
vector for all new solutions.

Prints the global data, including new solutions, if the DIP global

data print flag is set true. This flag is set in CHEC in response

to DIP option"3."

GLOOPT

Processes the solution update parameter on the "BEGIN GLOBAL DATA"

input record. The options are:
NEW (DEFAULT) - no updates.

REPLACE purge solution data from previous
run(s).

UPDATE old solution data can be selectively

updated. No new solutions may be
defined. Solution idents remain

fixed.

GLOSOL

Processes the option 2 input records for global solution data.

This option introduces data by columns. An example is:

ALPHA : .2 , .3 , .5

The input data is loaded into DIP data set GLOBAL.

V

3.5

3.6

IDCNCV

Checks for missing input for Problem ID, User iD, configuration

symmetry and flow regime data. Load default values for all

missing items just listed. This routine is only called during a
creation run. None of the above items are updatable. The
defaults are written into the DIP data set GLOBAL.

MACH

Processes the flow regime definition record. This record defines
.the freestream Mach number and the direction of compressibility

effects. Angles are input in degrees. Examples:

MACH = 1.2, CALPHA = 2.0, CBETA = .05
MACH = 1.2, CALPHA = 2.0

Parameter defaults :

MACH = 0., CALPHA = 0., CBETA = O.

The input data is loaded into DIP data set GLOBAL.

OPlDAT

Processes the option l data input records for global solutions.

This option introduces data by rows. Examples:
.2 SOL-I

.3 SOL-2

.5 SOL-3

See OPiHED for headers.

The input data is loaded into DIP data set GLOBAL.

OPIHED

Processes the option 1 header input record(s) for global

solutions. This option introduces data by rows. Example:

........ ALPHA SiD _ __

See OPIDAT for data.

The input data is loaded into DIP data set GLOBAL.

PIDUID

Processes the "PID" and "UID" record types. Examples:

PID = THIS_iS_ A SAMPLE PROBLEM ID

UID = THIS IS A SAMPLE USER iD

The input data is loaded into DIP and MEC data sets
DATA-BASE-HEADER.

W

V

V

v ¸

RVPFIL

Provides reference velocity for pressure defaults and ratio of
specific heats defaults for solutions, when necessary.

The input data is loaded into DIP data set GLOBAL-DEFAULTS.

SOLFIL

Provides default solution data as required. If no solutions were
defined (creation run only), generate a single solution with the
values indicated below. Parameter defaults for solution data:

ALPHA BETA UINF WM WDC WCP SlD
O. O. I. O. 0.,I.,0. 0.,0.,0. (2

blank
words)

SOLTRN

Transforms the alpha, beta and unif (magnitude of uniform onset flow)
into the uniform onset flow vector for all new solutions.
The results are loaded into DIP data set GLOBAL.

3.4.2.2 Subroutines from NETWDP - Overlay (3,0)

BCSTEC

Checks user inputs and load defaults when required for the following
types of network data:

Supplement record duplication checks;
Boundary condition class and subclass input;
Method of velocity computation;
Singularity types;
Edge control point data;
Closure input for edges;
No doublet edge matching; and
Adjacent edge check for control point edges.

BOUN

Processes the Boundary Condition Specification record for networks.
Examples:

BOUNDARY CONDITION = OVERALL , I, 3
BOUNDARY CONDITION : LOCAL , I, 4

The class and subclass data is loaded into DIP data set NETWK-SPEC.

CBC123

Defines defaulted general boundary condition coefficients for classes
l, 2, and 3. Check user inputs of specified flows for classes 2 and

3. Check user inputs of tangent vectors for class 3.

v 3.7

CHKBC4

Checks user inputs of constraint data for a boundary condition class

4 problem.

CHKBC5

Checks user inputs to determine if the boundary condition coefficient

terms for RHS tangential (term indices 15 and 30) have been

specified. If user did not input these terms, define default term
with a value of -l for first and second equations.

CLDATA

CLOS

COEF

Processes the values for the closure edge boundary condition data set
for a network. The closure values may appear as a floating point

value, an array of values, or as indexed input. Indexed input starts

with a left paten as follows:

(row, column) = value

Processes the closure edge boundary condition data set for a

network. It recognizes the following record types:

TERM =

SOLUTIONS =

values

This routine is responsibile for loading data into DIP data sets

CLOS-COND and NETWK-BDC.

Processes the coefficients of general boundary condition equation

data set for a network. It recognizes the following record types:

TERM =

SOLUTIONS =

POINTS :

values

This routine is responsible for loading data into DIP data sets

COEF-GEN-BC and NETWK-BDC.

3.8

V

GRID

LOCA

METH

Processe_ the network grid point data which follows the network ID

record. Each point is defined in triplet form (X, Y, Z) and must not

spill across record boundaries. Each data set contains one complete

grid column.

The data is loaded into DIP data set PANEL-COORDS.

Processes the local incremental onset flow data set for a network.

It recognizes the following record types:

TERM =

INPUT-IMAGES =

SOLUTIONS =
POINTS =

values

This routine is responsible for loading data into DIP data sets
LOCAL-FLOW and NETWK-BDC.

Processes the "METHOD OF VELOCITY COMPUTATION" record for network

data. Examples:

METHOD OF VELOCITY COMPUTATION = LOWER-SURFACE-STAGNATION

The data is loaded into DIP data set NETWK-SPEC.

NDELDR

Loads general network data defaults in response to the network
identifier record. All defaults may be over-written by user inputs.

NECDWR

Writes following network control data sets to DIP data base:

NETWK-SPEC

NETWK-BDC

NETWORK-UPDATE-CODES

NEDAPP

Prints network data for all known networks, including input order

number, user label, status (NEW, REPLACED, UPDATED, DELETED, or OLD),

boundary condition class and subclass, singularity types, and grid

point row and column counts.

3.9

NETIDS

Isolates the network ID (if any) found in the parameter list of the
network identifier record.

v

NETOPT

Process the option parameter at the end of the network record.

options are:

DELETE

SOLUTION (IC)
REPLACE

NEW (Default)

NETW ID

The

Recognizes network data records. Examples:

STORE VIC MATRIX

STORE LOCAL INCREMENTAL ONSET FLOW
DELETE REFLECTION IN PLANE OF SYMMETRY
WAKE FLOW PROPERTIES TAG

TRIANGULAR PANEL TOLERANCE =
UPDATE TAG =

BOUNDARY CONDITION =
METHOD OF VELOCITY COMPUTATION =

SINGUL.ARITY TYPES = SA DA
EDGE CONTROL POINT_=[OCATIONS =

NO DOUBLET EDGE MATCHING =
CLOSURE EDGE CONDITION

COEFFICIENTS OF GENERAL BOUNDARY CONDITION EQUATION

TANGENT VECTORS FOR DESIGN
SPECIFIED FLOW __i_
LOCAC-INCREMENTAL ONSE_[OW _...._ _
NETWORK

V

NODOUB

3.10

Processes the "NO DOUBLET EDGE MATCHING" record for network data.

Examples:

NO DOUBLET EDGE MATCHING = 2, 4

NO DOUBLET EDGE MATCHING = l

The data is loaded into DIP data set NETWK-SPEC.

NOPCHK

Processes the network option for update runs. This option is
specified or defaulted in the parameters list of the network

identifier record. The option was decoded by routine NETOPT. Also
loads network ID for new networks. The ID is loaded into DIP data
set GLOBAL.

V

V

SING

SPEC

TANG

UPDA

Processes the "SINGULARITY TYPES" record for network data.

SINGULARITY TYPES = NOS, NOD
SING = SA, DA
SING = SDI, DDI

SING = DWI

SING = DW2

The data is loaded into DIP data set NETWK-SPEC.

Examples :

Processes the specified flow data set for a network.

record types are recognized:

TERM =
INPUT-IMAGES --

SOLUTIONS" :
POINTS :

values

The following

This routine is responsible for loading data into DIP data sets
NETWK-BDC and SPEC-FLOW.

Processes tangent vectors for design data set for a network. It

recognizes the following record types!

TERM =

UNALTERED
SOLUTIONS =

POINTS :

values

This routine is responsible for loading data into DIP data sets
NETWK-BDC and TANG-VEC.

Processes the "UPDATE TAG" record for network data.

UPDATE TAG = l, 2, 3, 4

UPDATE TAG
UPDATE TAG = l

The data is loaded into DIP data set NETWK-SPEC.

Examples :

3.11

3.4.2.3 Subroutines from GEOMDP - Overlay (4,0)

ABNEID

Processes the abutment definition records parameter list. The list

included the network ID's and their whole or partial edges which form

the abutment. Each network ID must be preceded by an equal sign

(=). Examples:

ABUTMENT = NETWORK-NO-2, 2, l, 5 +

= NETWORK-NO-5, 4, ENTIRE-EDGE +
=7 ,4

ABUT = 2, 2, l, 5 = 5, 4, = 7, 4

The data is loaded into DIP data set USER-ABUT.

ABUT

Recognizes the abutment definition record. It also processes the

supplement records for planes of symmetry and smooth edge treatment.
Examples:

ABUTMENT = 7 , 4

PLANE = SECOND

SMOOTH EDGE TREATMENT

The data is loaded into DIP data set USER-ABUT.

3.4.2.4 Subroutine from FLOWDP - Overlay (5_0)

FLWOPT

Processes the post solution update option on the "BEGIN FLOW

PROPERTIES CALCULATION = option" input record. The options are:

NEW (Default) /

REPLACE /
UPDATE /

All new cases

Purge old, all new cases
Update old, add new cases

3.4.2.5 Subroutines from SURFLO - Overlay (5,1)

FPPOIN

Processes the calculation point locations record for surface flow

properties calculations. Examples:

POINTS = CENTER-CONTROL-POINTS

POINTS : EDGE-CONTROL-POINTS
POINTS = ADDITIONAL-CONTROL-POINTS
POINTS : ALL-CONTROL-POINTS

POINTS - GRID

The data is loaded into DIP data set SURF-FLOW.

3.12

V

v

V

v

SFDELO

Checks surface flow case record type counts to determine if there is

any duplication of same, or a missing surface flow properties
record. Also load default values for any missing record types.

3.4.2.6 Subroutines from FFDATA - Overlay (5,2)

CVRTVC

Translates velocity correction requests from an input record form to

an output database specification form.

CVTPDR

Translates print and database requests from their input form to their

output form.

FFDEFA

Uses the defaults for any record in a field flow properties case that

has not been specified. If the record cannot be defaulted then the

user is warned and the case is dropped.

FFINIT

Initializes the labeled common blocks which describe the allowable

record syntax and parameter values. It also maps the record type to
the posiition in a labeled common block where its parameter values
are stored.

FFOREQ

Processes the parameters specified in the PRINTOUT or DTA BASE
records. It reads the compressed list of option selections (by
number of keyword) and produces a full option list whose set entries

correspond to selected options.

FFSOL

Processes the SOLUTION record by transfering the solution number

directly to a local array and by interpreting the solution number
from the solution name and transfering it to a local array.

LISPAC

Converts a list of options selected and not selected to a packed list

of only those options selected. It can extract two types of packed
lists. It does not do word packing.

LOOKUP

Finds the occurance(s) of an item in a list of items.

3.13

MARKRC

Records the occurance of a record type and warns if that record type
was previously specified.

OBCASE

Controls the handling of off body case records.

OBCLOS

Replaces unspecified records in an off body case with their defaults,
converts the input specifications to a form suitable for the Field
Data Processor to user, and writes the data to the DIP data base.

OBOPEN

Initializes the defaults for an off body case. For a standard run,
thses defaults will include global defaults. For an update run,
these defaults will be the values for the previous case.

OFLOAD

Transfers a numerical (integer or real) list of parameters in an

input record to a local array.

PDRCVT

Translates print and data base requests from their output form to
their input form.

REPARS

Reads and parses the next valid record in the input stream.

SLCASE

Controls the handling of streamline case records.

SLCLOS

Replaces unspecified records in a streamline case with their
defaults, converts the input specifications to a form suitable for
the Field Data Processor to use, and writes the data to the DIP data
base.

SLOPEN

Initializes the defaults for a streamline case. For a standard run,
these defaults will include global defaults. For an update run,
these defaults will be the values for the previous case.

VCHECK

Checks the validity of the current input record by comparing it with
the allowable forms of syntax and values defined by several labeled

3.14

V

V

V

common areas initialize by FFINIT.

3.4.2.7 Subroutines from FORMOM - Overlay (5,3)

FMACCU

Processes the "ACCUMULATE" record from the forces and moments data

subgroup of the flow properties data group.

FMACDE

Processes the parameter defaults for the forces and moments
"ACCUMULATE" record. The data is loaded into DIP data set SURF-FAM.

FMACPL

Processes the parameter list for the forces and moments "ACCUMULATE"
record. The data is loaded into the DIP data set SURF-FAM.

FMASDL

Loads the defaults for user selected axis systems.

loaded into DIP data set SURF-FAM.

FMASPS

The data is

Processes the parameter list on the AXIS SYSTEM record. The data is
loaded into DIP data set SURF-FAM.

FMAXSY

Processes the AXIS SYSTEMS record from the forces and moments data

subgroup of the flow properties data group.

FMCASE

Processes forces and moments "CASE" records plus 14 supplement record

types. The supplement record types are:

NETWORKS-IMAGES

EDGE FORCE CALCULATION

MOMENT AXIS

LOCAL REFERENCE PARAMETERS

SURFACE SELECTION
SELECTION OF VELOCITY COMPUTATION
COMPUTATION OPTION FOR PRESSURES

VELOCITY CORRECTIONS
PRESSURE COEFFICIENTS RULES

RATIO OF SPECIFIC HEATS

REFERENCE VELOCITY FOR PRESSURE
LOCAL PRINTOUT

LOCAL DATA BASE

ACCUMULATE

FMEDFO

Processes the EDGE FORCE CALCULATION record from the forces and

moments data subgroup of the flow properties data group. The data is
loaded into DIP data set SURF-FAM.

V

FMGLDE

Initializes supplement (global) record type counts and load global
defaults for the forces and moments data subgroup. The default data

is loaded into the DIP data set SURF-FAM.

FMLODE

Checks inputs and load defaults as required for case level data in
the forces and moments subgroup. The data is loaded into DIP data

set SURF-F_4.

FMLOIN

Initializes case level defaults and parameter values. The default

data is loaded into DIP data set SURF-FAM.

FMMDAX

Processes the MOMENT AXIS record from the forces and moments subgroup

of the flow properties data group. The default data is loaded into
DIP data set SURF-FAM.

FMSURF
V

Processes the SURFACE SELECTION record from the forces and moments

data subgroup of the flow properties data group. The data is loaded
into the DIP data set SURF-FAM.

3.4.2.8 Subroutine from PPGEOM - Overlay (6,1)

NETDQG

Processes the network ID list on the NETWORKS record for the PPP

"GEOMETRY DATA" group. The data is loaded into DIP data set

GEOM-PRINT-PLOT.

3.4.2.9 Subroutines from PPPOIN - Overlay (6,2)

NETPDP

Processes the network ID list and corresponding images on the

NETWORK-IMAGES record for the PPP "POINT DATA" group. The data is

loaded into DIP data set POINT-PRINT-PLOT.

PPARAY

Processes the "ARRAY" record for PPP "POINT DATA". This record

indicates grid direction (rows or columns) and point type (control or

grid). The data is loaded into DIP data set POINT-PRINT-PLOT.

3.16

3.4.2.10 Subroutine from PPCONF - Overlay (6,3)

NETCDP

Processes the network ID list and corresponding images plus panel

and/or column-sum options on the NETWORK-IMAGES record for the PPP
CONFIGURATION DATA group. The data is loaded into DIP data set

CONFIG-PRINT-PLOT.

3.4.2.11 Subroutine from FINIS - Overlay (7,0)

AMCFLR

Responds to an "ADDED MASS COEFFICIENTS" input record at time of DIP
termination. Wake networks are eliminated. CDP cases are updated to
reflect the 6 new Added Mass Coefficients onset flows (SOLUTIONS).

v

. i

3.17

V

v

v

_ _o
0

L
L

\

Lu_

_"-Jt3
'.,-.. Iiii. I

I
i

r

y

PRECEDING PAGE BLANK NOT FILMED
3.19

v

OVERLAY (5,0)

OVERLAY (5,1)

SURFLO

Process Surface

Flow

Properties Data

OVERLAY (5,3)

FORMOM

i

Process Forces

and

Moments Data

3.20 - ContinuedFigure 3.1

v

OVERLAY (6,0)

OVERLAY (6,1)

PPGEOM

i

Process Geometry

Print Data

OVERLAY (6,2)

PPPOIN

Process Point

Print Data

OVERLAY (6,3)

PP_ONF

Process

Configuration

Print Data

Figure 3.1 - Concluded 3.21

1MEC

/
r

DATA-BASE-HEADERMACRO-OPTIONS

OVERLAY (1,0)

INITIL

V

i,|, |m

(Update Runs Only)

DIP:

DATA-BASE-HEADER

GLOBAL

GLOBAL-FLOW-PROP

GLOBAL-DB-OUTPUT

GLOBAL-DEFAULTS

GLOBAL-PRINTS

NETWORK-UPDATE-CODES

r

Figure

3.22

3.2 - Structure and Data F1 ow of OVERLAY (1,0)
V

v

GIN GLOBAL_
DATA =

I L

PID =

UID =

l

Ii

OVERLAY (2,0)GLOBDP

PIDUID

DATA-BASE-HEADER

r

t MEC

/
DIP:

II DIP

DATA-BASE-HEADER

GLOBAL-DEFAULTS

GLOBAL-PRINTS

1

CONF

6Ac - _ I
ALPHA =

C--_A = _ MACH

I
L

.__ Figure 3.3 - Structure and Data Flow of OVERLAY (2,0) 3.23

3.24

LPHA
1-'-_A

I
|

_pha
beta...

!
L i

LPHA -

(1)
laIpha(2)_

I|

I

_UR FACE

!
!

o__V cTIO

EL. N

! i
t

OMPUTA -

l--Ti-ON. ,
[

L

_ELOCITY

l

II

__RESSURI-_,. _.
I,

I

ATIO OF

T_Ec.-
|

!

ELRENCE

O. ,,
|

|

J

?

-i

-I

y

OPIHED

OPIDAT

GLOSOL

FPVALU

SURF

SELE

COMP

VELO

PRES

REFE

Figure 3.3 - Continued

[

.

I
i
]

v

TORE VIC

MAT--

I I

_o__o__
I I

[
SETFLG

HECKOUT
PRINTS -

|!

i i •

Y"-I CHEC

DDED MASS
COEFF -

l

ADDE

G_IN_XXXX

I_E,___o
I

l

GLDAPR

Figure 3.3 - (Concluded)

3.25

NB(_ I-N
TWORK =

ill

ETWO RK -_
L[

Grid Points

(1)
c_):...

I|

TORE_MAT

i t

L INC

i,

-i

__JDVERLAY (3,01
I NETWDP

._I NETWID

GRID

PANEL-COORDS

SETFLG

_ELETE _ --I PLAN
IRE-_-LECTI0II "-I

]
i_ SETFLG;_o_"III -i

'-_IANGU - _ IR PAN = _ FPVALU

I | , ,,....

PDATE _
TAG UPDA

I I

3.26 Figure 3.4 - Structure and Data Flow of OVERLAY (3,0") V

v

V

COND.

I,,-_RITY

BLET = "

I I

l_TS-
I I

ANGENT _
.|L _ _

LOCAL INC

i I

-!
J
-[

BOUN

METH

SING

EDGE

NODOUB

||

CLOS

COEF

TANG

SPEC

LOCA

CLOS-zCOND
ii

COEF-GEN-BC

/ .

r

SPEC-/_FLOW

LOCAl-FLOW

Figure 3.4 - Continued

.,._ " 3.27

m i

i_ -_IE_INxxxx_I NETWORK

I I

NECDWR

NETWK-SPEC

NETWK-BDC

NETWORK-UPDATE-CODES

DIP 1 V

G_IN XXXX

!

NEDAPR

Output Fil_

3.28 Figure 3.4 - Concluded

GEOMIovELA4o
-_ GEOMDP1 I

ABUT

/
USER-ABUT

DIP 1
V

.__ Figure 3.5 - Structure and Data Flow of OVERLAY (4,0) 3.29

B_._GINFLOW= _ _L
I I

OVERLAY (5,0)

FLOWDP V

URFACE _ _I

FLOW :

t I

OVERLAY (5,1)

SURFLO

IET.oRK " _IMAGES - y

NETWIM

OLUTIONS - SOLSFP

Co_ INTS =

_.UURFACE

SELE. -

I I

FPPOIN

SURF

ELECTION :_ "_I
I I

SELE

3.30 Figure 3.6 - Structure and Data Flow of OVERLAY (5,0)

T

 T;oo RE ESPEC. =

I I

EFERENCEVEL. -

!

REFE

V

RINTOUT -

|I

ELOCITY

CORR =

I I

RESSURE

- COEF. -

Ii.

SFPRDB

VELO

PRES

I

__REGI N XXXX

FACE FLOW

I_ES
I

(PALIB)

SURF-FLOW

DIP)
Figure 3.6 - Continued 3.31

1

I<

I>
Io

T

<_
_0
0._

<
0 _ r,j

Z.,,_

_o
_.o

T
I
|
i

Z

_8

0

T
o

z_
_z

_o
_o

g

Ii '_z
O0

A

0

m

0

Z

!

V

V

3.32

V

FORCES and _[I---_OMENT S

L

_EFERENCE _,PARA =

1
L

SYSTEMS
I

I

,_OLUTIONS

I
L

PR INTOUT =
L i

CASE _,

I I

• iMAGES =

GE FORCE =_
l

VERLAY (5,3

-I FORMOM

FMREFE

FMAXIS

SOLSFP

d FMPRDA

-I

FMCASE

NETWIM

_I FMEDFO

--.-/_ Figure 3.6 - Continued 3.33

M .ENTAXlS-
I I

 cALREFErhPAR.-

lj

URFACE

SELEC -

I L

_ OF =

L I

OPT N

L'

ELOCITY _

CORR -

I[.

ATIO OF

SPEC. -

I I

EFERENCE -

IL

4

FMMOAX

r

FMREPA

i

FMSURF

SELE

COMP

VELO

PRES

REFE

i

REFE

W

V

3.34 Figure 3.6 - Continued

v

CAL
I PRINTOUT :'

I I

Li0CA L DATA

FMPRDB

CUMULATE =_

tL

FMACCU

v

I_ACEF/_-EGINIIE-_-_D-XXXX_

FPDAWR

(PALIB)

SURF-FAM

DIP

Figure 3.6 Concluded 3.35

EGIN PRINT

l

._VERLAY (6,0

--I PPPDIR

V

_L _EOMETRY
" DATA

L

In i i

 ovER A o,11
r I PPGEOM

• Ill

_i NETWORKS = _
_ NETDQG

i V

f/___TWORKS

Ip-_T
IC--_-_-IGURAT I0_

IE-_- (PALIB) / _ DIP

GEOM-PRINT-PLOT

3.36 Figure 3.7 - Structure and Data Flow of OVERLAY (6,0)
V

V

I
I

DATA
_VERLAY (6,2

-I PPPOIN

CASE =
PPCASE

I

OLUTIONS =_

ii_,

SOLSFP

ETWORKS =

IL

NETPDP

ARRAY = PPARAY

-_ E
NFIGURATIOh

J G--E'OMETRY

I BEGIN xxxx
I E_N__ED

I

J[PPPORT(PALIB)

/
POINT-PRINT-PLOT

DIP)

Figure 3.7 - Continued 3.37

VERLAY (6,3

PPCONF

PPCASE

I I

_ETWORKSII-

SOLSFP

i

NETCDP

_CASE

F
|GEOMETRY

|_N xxxx

|END
I
L

PPPORT

(PALIB)

I i

CONFIG-PRINT-PLOT

DIP

3.38 Figure 3.7 - Concluded V

EL__ND- PROBLEM

(or)

"END OF FILE

OVERLAY (7,0)

FINIS /
GLOBAL

GLOBAL-FLOW-PROP

GLOBAL-DB-OUTPUT

DIP

Figure 3.8 - Structure and Data Flow of OVERLAY (7,0) 3.39

3.40

MEC
DataBase

Da tDaI_ase

obal

Data

=_D=Netw°rkata

eomet ric_,
dqe IL
a_cchi ng Jl__
ata Ill

_low _I

opertie

ata

_FI_urface
ow Data

I

_,ELo,_o,k
I DATA,, JJj

Figure 3.9 -

MEC

Execution

DIP

Executes

INITIL

Executes

GLOBDP

Executes

NETWDP

Executes

GEOMDP

Executes

FLOWDP

Executes

_, eader Dat 1

Global

eader Dat_

Global |

r/Data/'

Network
Data

-I

User

Abutment

Data

J

su LoI surface
Executes --/-Flow Data

FFDATA

Executes _ FIELD FLOW
DATA

r

!

v

V

FORCES &

MOMENTS
DATA

I|

/Prlnt
Data.

I I

Gegmetry _

Print
Data

I!

rint

ata

|l

p_C.,r°tnfigura'_
ion II_

int Datal I F

FORMOM
EXECUTES

PPPDIRExecutes

PPGEOM
Executes

PPPOINExecutes

_I PPCONFExecutes

FINISExecutes

._I FORCES & 1
MOMENTS

DATA

I

Geometry
PPP Data

_I Point

PPP

Data

.__Configur-\ation I

Global
Data

I
KZZ

I E

Figure 3.9 - Concluded 3.41

V

-V- APPENDIX 3-A TREE STRUCTURE

The tree structure diagram of the DIP module has been deleted from this

document. It is, however, available on the installation tape.

v

3-A.l

APPENDIX3-B DIP FUNCTIONALDECOMPOSITION

The functional decomposition of the DIP module is presented here. The
decomposition labels are given in the order of their execution and therefore
may not be alphabetic.

"-_ 3-B.l

v_

V

V

V

DIP - Data Input Processor

DIP (0,0) Overlay -

I - Program initialization
H PRGBEG - Begin DIP execution

ISDMS - Initialize SDMS

J LODREC - Read input record
JB - Load first two key words, if any.

JC - If input file empty, terminate run.

A INITIL (l,O) Overlay - Initialize for input data processing

A DBOPEN - Open MEC data base.
B DSMAP, - Define MEC maps and read MEC header data and MEC

ESGET run options (update flags).
C CHPADB - Check DIP data base - if bad, terminate run.

D PAOPEN - Open DIP data base.
E DSMAP - Define DIP maps for DIP global level datasets

F ESGET - If run options indicate an update run, read DIP

global level datasets.
G - Initialize key global parameters
AA - If errors occurred in INITIL, terminate DIP.

B GLOBDP (2,0) Overlay - Read, write, check and load global input
data, if first two key words are B E G I N
GLOBAL.

W GLOOPT - Proce_ global option flag on BEGIN GLOBAL DATA
record

B LODREC - Read next input record.
- Load first two key words, if any.

V OPIDAT - Load option l solution data, if present.

C PIDUID - Process problem ID or user ID record if first key
word is P I D or U I D.

D CONF - Process c-on-fTgurationrecord, if first key word is
CONFIGURATION.

E MACH - -Fr-6c_ssflow regime data record, if first key word
is MAC H or C A L P H A or C B E T A.

F OPIHED - Process option-l-s_l_tion heave-{ record if first

key word is A L P H A or B E T A or U I N F or W M
or W D C orT_ C P or S I D and no parameter list
del imeter exTs-_s-/

x GLOSOL - Process option 2 solution data record if first key
word is A L P H A or B E T A or U I N F or W M or
W D C or-W-C-P-or S I-D-a-nd-is f-61To_e'Jby _-

parameter-IT_.

G FPVALU - Process geometric network edge matching tolerance
record, if first key word is G E 0 M E T R I C.

H SURF - Process surface selection record, if first key

word is S U R F A C E.
I SETFLG - Process store Tic matrix record when first two key

words are S T 0 R E V I C.

J SETFLG - Process st_To_al onset flow for computation of

pressure record, if first two key words are
STORE LOCAL.

A SELE - Process sele-cTi_n-of velocity computation record,

if first key word is S E L E C T I 0 N.

3-B.3

PRECEDING PAGE BLANK NOT FILMED _E_ _,__,t:_I_'_],,0_,_I,:LY '3LAJ_

C

3-B.4

0 COMP

K VELO

T PRES

L REFE

M REFE

N CHEC

U ADDE

P IDCNCV

Q SOLFIL
E AMCGLR

Y RVPFIL

Z CLDAPR
R SOLTRN

T
S

m

w

SA REP
SB ESPUT

thru
SD

NETWDP (3,0) Overlay -

A DSPtAP

B LODREC

C NETWID

T NETOPT

U NETIDS
V NOPCHK

Z NDELDR
M GRID

B LODREC
A

L SETFLG

D SETFLG

E PLAN

F SETFLG

G FPVALU

- Process computational option for pressure record,

if first key word is C 0 M P U T A T I 0 N.
- Process velocity corrections record, if first key

word is V E L 0 C I T Y.

- Process pressure coefficient rule record, if first
word is P R E S S U R E.

- Process "re'_e_encevelocity for pressure record, if

first key word is R E F E R E N C E.
- Process ratio of s_eTiTiT heats record, if first

key word is R A T I O.
- Process checkout prints record, if first key word

is C H E C K 0 U T.
- Process added mass coefficients record, if first

key word is A D D E D.
- Check need oT _eTaults for problem ID, user ID,

configuration and field flow data.
- Check need of default solution data.

- Generate 6 solutions required for added mass
coefficient calculations.

- Check need to fill reference velocity for

pressures list.
Check need to print new solutions.

Transform input solution data to vectors.

Compute first, second and third handy matrices.

Write global level data to data base.
- Write header data to MEC data base.

- Write header data, global defaults

and global prints to DIP data base.

Read, write, check and load network input

data, if first two key words are B E G I N
NETWORK.

- Define maps Tor individual network datasets.
- Read input record.

- Load first two key words, if any.
- Process network iD record if first key word is

NETWORK.

- P--ro--c_s-snetwork record update parameter option, if

any.
- Process network record ID, if any.

- Check network update option.
- Load network defaults.

- Read network grid data.

- Read input record.
Load first two key words.

- Process store vic matrix records, if first two key
words are S T 0 R E V I C.

- Process st_r_ ToTal onset flow for computation of

pressure record, if first two key words are
STORE LOCAL.

- l_rocess deITtT _e-i_lectionin plane of symmetry

record, if first key word is D E L E T E.

- Process wake flow properties _ag "re_ord, if first

key word is W A K E.
- Process triangular'panel tolerance record, if

first key word is T R I A N G U L A R.

V

V

3

v

v

H UPDA

I BOUN

C METH

J SING

K EDGE

0 NODOUB

P CLOS

A

B

D

E

F

N COEF

A

C

D

E

D

Q TANG

A

C

D

R SPEC

- Process update tag record, if first key word is
UPDATE.

- l_r_c_s-sboundary conditions record, if first key
word is B 0 U N D A R Y.

- Process m-ethod of velocity computation record, if

first key word is M E T H 0 D.
- Process singularity types record, if first key

word is S I N G U L A R I T Y.

- Process _d_e-c_ntrol point locations record, if
first key word is E D G E.

- Process no doublet edge matching record, if first

key word is N O.
- Process closu-r_ edge condition data, if first key

word is C L 0 S U R E.
EDGE - Process the identifier and locator

parameters on the closure edge condition
record.

NBDORT - Read next record, load key word, identify,

and check order of input.
BDTERM - Process term, ID, if key word is

TERM.

SOLSFP - l_rTcess solutions list, if key word is S 0 L
U.

CLDATA - "Process closure data values, if first key
word is a numeric.

- Process coefficients of general boundary condition

equation data, if first key word is
COEFFICIENTS.

NBDOR_" - Read next record, load key word, identify,

and check order of input.

BDTERM - Process term ID, if key word is
TERM.

SOLSFP - _-r_ce_ solutions list, if key word is S 0 L
U.

NEPOIN - P-rocess control point locations record, if

key word is P 0 I N T.
NEDATA - Process coefficient data values, after a

control point locations record.
- Process tangent vectors for design data, if first key

word is T A N G E N T.

NBDORT - --'#e_d--nextrecord, load key word, identify,
and check order of input.

BDTERM - Process term ID, if key word is T E R M.

- Set flag to suppress scaling of vectors to
unit length, if key word is U N A L T E R E
D.

SOLSFP - Process solutions list, if key word is S 0 L
UTIONS.

NEPOIN - i_rocess control point locations record, if

key word is P 0 I N T.
NEDATA - Process tangent _aTa values or a method of

computation flag record after a control
point locations record.

- Process specified flow data, if first key word is
SPECIFIED.

3-B.5

D

A

C

D

E

F

G

H

S LOCA

A

C
D

E

F

G

W

A
AC

AD

NBDORT

BDTERM

INPIUM

SOLSFP

NEPOIN

NEDATA

ESGET

AE CHKBC4
AF CHKBC5

AG NECDWR
AH NEDAPR

GEOMDP (4,0) Overlay -

A DSMAP

B LODREC

BB

C ABUT

A
B ABENID

- Read next record, load key word, identify,
and check order of input.

- Process term ID, if key word is T E R M.

- Process input or images options,-i-f'l_eyword
isINPUT.

- Process solutions list, if key word is S 0 L
UTIONS.

- P-rocess control point locations record, if

key word is P 0 I N T.

- Process specified Tlow data values after a

control point locations record.
- Read existing boundary Condition

coefficients data from dataset NETWK-BDC

- Process local incremental onset flow data, if first

key word is L 0 C A L.
NBDORT - Read n_x't record, load key word, dentify,

and check order of input.

BDTERM - Process term ID, if key word is T E R M.

INPUIM - Protess input or image options, if key word
isINPUT.

SOLSFP - Process s_lutions list, if key word is S 0 L
UTIONS.

NEPOIN - Process control point locations record, if

key word is P 0 I N T.
NEDATA - Process-ITcTl-incremental onset flow

values after a control point locations
record.

- If key word is B E G I N or E N D, set network

complete flag.
- Perform network checks.

BCSTEC - If not a solution update, check user

inputs for current network.

CBC123 - Check data for boundary condition l, 2
or 3.

- Check data for boundary condition 4.

- Check data for boundary condition 5.
- Write network control data to data base.

- Print summary of networks data, if
networks data complete flag set.

Read, write check and load geometric edge

matching data, if first two key words are_B
EGIN GEOMETRIC.

Define-n_t_ork _i_e_sTons and use abutment data

maps.
Read a record from input.

- Load first two key words, if any.
Process abutment record, if first key word is
ABUTMENT.

- Tnitiaiize and update parameters.

- Process parameter list of abutment
definition record.

V

3-B.6

= =

E

C LODREC

E
H PLAN

I SETFLG

J w

thru

M

N ESPOR

FLOWDP (5,0) Overlay -

- Read a record from input.

- Load first two key words, if any.
- Process planes of symmetry record,

if first key word is P L A N E S.
- Process smooth edge t_tmen't

record, if first key word is
SMOOTH.

When first key word is A B U T M E N T

or B E G I N or E N D, test
current a_utmen t--_.

- Write user abutment on data base.

Read, write, check and load flow

properties calculations data, if first
two key words are B E G I N F L 0 W.

A FLOWPT - Process the post solution upd_tTT_ionTn-BTGTN
FLOW record.

B LODREC - Read a record from input and load first two key
words.

C SURFLO (5,1) Overlay - Process surface flow properties, if

A DSMAP

B FPCASE

C

D LODREC
F

I NETWIM

J SOLSFP

K FPPOIN

M SURF

N SELE -

0 COMP m

R REFE

S REFE

T

U
SFPRDB -
SFPRDB

B SFOULD

first two key words are S U R F A C E
FLOW.

Define surface flow properties data maps
Process case name on "SURFACE FLOW"
record.

Initialize output array and supplement
record counts.

Read a record from input.

Load first two key words, if any.
Process network images list record, if
first key word is N E T W 0 R K -
IMAGES.

- Process solutions list records, if
first key word is
SOLUTIONS.

- Process control points record, if

first key word is P 0 I N T.
Process surface selection record, if

first key word is S U R F A C E and
second key word is-_t-F-L 0 W.

Process selection of veToTiTy-

computation record, if first key word
is S E L E C T I 0 N.

Process computation option for
pressures record, if first key word is
C OMP _JTAT I 0 N.

_-r_cess ratio of specific heats record,

if first key word is R A T I O.
Process reference vel_cTt_ }'or pressure

record, if first key word is
REFERENCE.

_-r_cess printout/database record,

if first key word is P R I N T 0 U T
or DATA.

- Process parameters list of
printout/data base record.

3-B.7

C LODREC
E
F PRES

G VELO

I SFOUCL

V SFDELO

W FPDAWR

FFDATA(5,2) Overlay -

A

B

m

l

m

Read a record from input.
Load first two key words, if any.

Process pressure coefficient rules
record, if first key word is
PRESSURE.

- Process velocity corrections

record, if first key word is
VELOCITY.

Load output array with pressure
and velocity data.

Load defaults for current surface

flow properties calculation case.
Write current surface flow

properties calculation case to
data base.

Process field flow properties if first

two key words are F I E L D F L 0 W
Perform field flow initialization.

A Define maps
B FFINIT - Initialize labeled common areas

C Process field flow subgroup identifier
REPARS - Read and parse a valid input record
A LODREC - Read and parse the next input record

B VCHECK - Check the validity of that input record
A Check for valid record type

B Check for valid record sequence
C Check for valid record syntax

Interpret off body case specifications

A OBOPEN - Initialize processing for an off body
case

A Initialize default data with global defaults
B Retrieve case identifier

C Add a new case on an update run

D Use an old case on an update run
E Add a new case on a standard run

B OBCASE - Process off body case records

A REPARS - Read and parse a valid input record
(see EEB)

B FFSOL - Process solution record

C Process point list header record

D Process point list record
E Process grid definition record
F Process grid limits record

G Process grid plane density record

H ProceSs pressure computation record
I Process ratio of specific heats record

J Process reference velocity record

K FFOREQ - Process print request record
L Process velocity correction print record

M Process pressure rule print record
N FFOREQ - Process data base request record

0 Process velocity correction data base record

P Process pressure rule data base record

V

3-B.8

D

E
FORMOM(5,3) Overlay -

C OBCLOS- Completeprocessing for an off body case
A FFDEFA- Useavailable defaults on unspecified

records
B Convert data in input form to output form to match

dataset specifications
C Write data to database

Interpret streamline case specifications
A SLOPEN- Initialize processing for a streamline

case
A Initialize default data with global defaults
B Retrieve case identifier
C Adda newcase on an update run
D Usean old case on an update run
E Adda newcase on a standard run

B SLCASE- Process streamline case records
A REPARS- Readan parse a valid input record (see

EEB)

B FFSOL - Process solution record

C Process step size record

D Process number of integrations record

E Process integration error record
F Process streamline direction record

G Process streamline type record
H Process streamline limits record

I Process print frequency record

J Process starting points header record
K Process starting points list record

L Process pressure computation record
M Process ratio of specific heats record

0 FFOREQ - Process print request record
P Process velocity correction print record
Q Process pressure rule print record
R FFOREQ - Process database request record

S Process velocity correction data base record
T Process pressure rule database record

C SLCLOS - Complete processing for a streamline
case

A FFDEFA - Use available defaults on unspecified
records

B Convert data in input form to output form to match
dataset specifications

C Write data to database

Replace global flow properties dataset

A DSMAP

B FMGLDE

C LODREC

F FMREPA

G FMAXSY

Process forces and moments data, if

first key word is F 0 R C E S.
- Define surfac_-_c_s'and moments

data map.
- Initialize forces and moments

global values.

- Read a record from input and load

first two key words.

Process references parameters
record, if first key word is
REFERENCE.

l_roc_s_ axis systems record, if

first key word is A X I S.

3-B.9

3-B.lO

SOLSFP

FMPRDA
FMPRDA

FMPDCK

FMCASE

B FPCASE
C FMLOIN

D LODREC
D

E NETWIM

F FMEDFO

G FMMOAX

H FMREPA

I FMSURF

J SELE

K COMP

L VELO

M PRES

N REFE

0 REFE

P FMPRDA

Q FMPRDA

R FMACCU

- Process solutions list record, if

first key word is
SOLUTIONS.

- P-r6-ce--s-sprintout/data base record,
if first key word is
PRINTOUT or DATA.

- _hec_/Toad global printout/data

base options.
- Process case record, if first key

word is C A S E.

- Process case record parameter list.
- Initialize local variables.

- Read a record from input.

- Load first two key words.

- Process networks images list
record, if first key word is
NETWORKS-IMAGES.

- l_r_c_ edge force calculations

record, if first key word is
EDGE.

- Process moment axis record, if

first key word is M 0 M E N T.
- Process local reference parameters

record, if first two key words are
LOCAL REFERENCE.

- l_r_cess surface s_lection record,

if first key word is S U R F A C E.
- Process selection of TeToTi_y

computation record, if first key
word is S E L E C T I 0 N.

- Process computation option for
pressures record, if first key
word is C 0 M P U T A T I 0 N.

- Process TeTo_ity corrections

record, if first key word is
VELOCITY.

- _r'ocess pressure coefficient rules
record, if first key word is
PRESSURE.

- l%rTc_s_ ratio of specific heats

record, if first key word if
RATIO.

- l_r'ocessreference velocity for

pressure record, if first key word
is R E F E R E N C E.

- Process 1_cal printout/local data
base record, if first two key
words are L 0 C A L
PRINTOUT orLOCAL
l_X T X.

- Process accumulate record, if

first key word is
ACCUMULATE.

= --

W

S

SA FMPDCK

SB FMLODE
T FPDAWR

W
X

XA FPDAWR

PPPDIR (6,0) Overlay -

- End of case processing.

- Check/load local printout/data
base options, if first key word is

S U R FAC E, orB E G I N, or
l_ITl_r C A S E.

- _o_d-de fau-lTs_- -
- Write dataset SURF-FAM to data

base.

- Set forces and moments done flag,
if first key word is
S U R F A C E, or B E G I N or
_"]TIT.-

- _e'n_ate a pure accumulation case,

if any accumulations in previous
data.

- Write dataset SURF-FAM to data
base.

- Set flow complete flag, if first

key word is B E G I N or E N D.
Read, write, checIT_n_ Toad data_
directives.

C LODREC - Read a record from input.

D - Load first two key words, if any.

E PPGEOM (6,1) Overlay - Process geometry data record set, if

A DSMAP
B

C
D PPPORT

F NETDQG -

PPPOIN (6,2) Overlay -

A DSMAP -
B

C

D PPPORT -

F PPCASE -

G SOLSFP -

H NETPDP -

I PPARAY -

first key word is G E 0 M E T R Y.
Define geometry PPI_ _a--maps.
Initialize.

Load default network count.

Read next record, load key word,
identify, and check order of input.

Process networks record, if key word is
NETWORKS.

l_r_s_ point data record set, if first
key word is P 0 I N T.

Define point PPP data map.
Initialize.
Load defaults.

Read next record, load key word,

identify and check order on input.
Process case record and load lower

level defaults, if key word is C A S E.
Process solutions list record a_d'-ITa_

lower level defaults, if key word is S
OLUTIONS.

Process surface record and load lower

level defaults, if key word is S U
RFACE. --

_r_cess array record, if key word is A
RRAY.

G PPCONF (6,3) Overlay -

A
B

C

DSMAP

Process configuration data record set,
if first k_ word is
CONFIGURATION.

_i_e configuration PPP data maps.
Initialize.
Load defaults.

3-B.II

G

D PPPORT - Read next record, load key word,

identi_ and check order of input.
F PPCASE - Process case record and load lower

level defaults, if key word is C A S E.
G SOLSFP - Process solutions list record a-6d_a_

lower level defaults, if ke_ word is
OLUTIONS.

H NETCDP - Process surface record, if key word is
SURFACE.

H - Set PPP complete flag, if key word is B E G I N or
END.

FINIS (7,0) Ov_l_y-- Conclude input data processing
B ESPOR - Write global data to data base.
F PACLOS - Close DIP and MEC data bases.

H PREGEND - End DIP execution.
J _.ICFLR - Delete wake networks and update

solution lists for CDP cases

(response to added mass record).

V

V

3-B.12

V;

APPENDIX 3-C DATA BASE COMMUNICATIONS CHART

The Data Base Communications Chart is presented in three forms. Each form is

alphabetized by columns, from left to right. The first form has a column
order of Data Base, Dataset Name, Map Name, Common Block, and
Program/Subroutine. The second form has a column order of Data Base, Map

Name, Dataset Name, Common Block, and Program/ Subroutine. The third form has

a column order of Common Block, Data Base, Map Name, Dataset Name, and

Program/Subroutine. Thus a person can get a cross reference on a data element
by knowing either the Dataset Name, Map Name or Common Block name.

3-C.l

v

D_A

BASE

DIP

DIP
DIP

DIP
DIP

DIP

DIP
DIP

DIP

DIP

DIP
DIP

DIP

DIP
DIP

DIP
DIP

DIP
DIP

DIP
DIP

DIP

DIP

DIP
MEC

MEC

DATASET NAME

CLOS-COND

COEF-GEN-BC
CONFIG-PRINT-PLOT

DATA-BASE-HEADER
GEOM-PRINT-PLOT

GLOBAL

GLOBAL-DB-OUTPUT
GLOBAL-DEFAULTS

GLOBAL-FLOW-PROP

GLOBAL-PRINTS

LOCAL-FLOW

NETWK-BDC

NETWK-SPEC

NETWORK-UPDATE-CODES

OFFBODY-OPTIONS

PANEL-COORDS

PANEL-COORDS

POINT-PRINT-PLOT
SPEC-FLOW

STREAMLINE-OPTIONS
SURF-FAM

SURF-FLOW
TANG-VEC

USER-ABUT
DATA-BASE-HEADER

MACRO-OPTIONS.

FIRST FORM

MAP NAME

DIP-CLOS

DIP-COEF
DIP-CONF

DIP-HEADER

DIP-GEOM
DIP-GLOGLO

DIP-GLODBO
DIP-GLODEF

DIP-GLOFLO

DIP-GLOPRI

DIP-LOCF

DIP-NETBDC
DIP-NETSPC

DIP-NETWUD

DIP-OBCOUT

DIP-NETDIM
DIP-PANCRD

DIP-POIN
DIP-SPEC

DIP-SLCOUT
DIP-SURFAM

DIP-SURDAT

DIP-TANV

DIP-USEABU
MEC-HEADER

MEC-RUNOPT

COMMON

BLOCK

/NETABC/

/NETABC/

/CONFDA/
/HEADER/

/GEOMDA/
/GLOBAL/
/DQGPAR/
/NETDAT/

/SOLDAT/

/GLOPPP/
/GLODEF/

/GLOFLO/

/GLOPRI/

/NETABC/

/NETBDC/
/NETSPC/

/NETWUD/

./OBCOUT/
/NETDIM/

/PANCRD/
/NETABC/

/POINDA/

/NETABC/

/SLCOUT/
/SURFAM/

/SURDAT/

/NETABC/

/USEABU/
/HEADER/

/RUNOPT/

PROGRAM/
SUBROUTINE

NETWDP
NETWDP

PPCONF
INITIL

PPGEOM
INITIL

PPPDIR
INITIL
INITIL

INITIL
NETWDP

INITIL
INITIL

NETWDP

INITIL

FFDATA
GEOMDP

GRID

PPPOIN
NETWDP

FFDATA

FORMOM
SURFLO

NETWDP
GEOMDP

INITIAL

INITIL

3-C.3

PRECEDING PAGE BLANK NOT ,:iLMED __ INIEN_IONAI,Ly

DATA

BASE

DIP

DIP
DIP

DIP
DIP

DIP
DIP

DIP
DIP

DIP
DIP

DIP
DIP

DIP

DIP
DIP

DIP

DIP
DIP

DIP
DIP

DIP
DIP

DIP
MEC

MEC

MAP NAME

DIP-CLOS

DIP-COEF
DIP-CONF

DIP-GEOM
DIP-GLOGLO

DIP-GLODBO
DIP-GLODEF

DIP-GLOFLO
DIP-GLOPRI

DIP-HEADER

DIP-LOCF

DIP-NETBDC
DIP-NETDIM
DIP-NETSPC

DIP-NETWUD
DIP-OBCOUT

DIP-PANCRD

DIP-POIN
DIP-SLCOUT

DIP-SPEC
DIP-SURFAM

DIP-SURDAT

DIP-TANV

DIP-USEABU

MEC-HEADER

MEC-RUNOPT

SECOND FORM

DATASET NAME

CLOS-COND

COEF-GEN-BC
CONFIG-PRINT-PLOT

GEOM-PRINT-PLOT

GLOBAL

GLOBAL-DB-OUTPUT
GLOBAL-DEFAULTS

GLOBAL-FLOW-PROP

GLOBAL-PRINTS

DATA-BASE-HEADER
LOCAL-FLOW

NETWK-BDC
PANEL-COORDS

NETWK-SPEC

NETWORK-UPDATE-CODES

OFFBODY-OPTIONS
PANEL-COORDS

POINT-PRINT-PLOT
STREAMLINE-OPTIONS

SPEC-FLOW
SURF-FAM

SURF-FLOW

TANG-VEC
USER-ABUT

DATA-BASE-HEADER

MACRO-OPTIONS

CO_,ION

BLOCK

PROGRAM/
SUBROUTINE

/NETABC/

/NETABC/
/CONFDA/

/GEOMDA/

/GLOBAL/

/DQGPAR/
/NETDAT/
/SOLDAT/

/GLOPPP/ PPPDIR

/GLODEF/ INITIL

/GLOFLO/ INITIL

/GLOPRI/ INITIL
/HEADER/ INITIL

/NETABC/ NETWDP
/NETBDC/ INITIL

/NETDIM/ GEOMDP
/NETSPC/ INITIL

NETWDP

/NETWUD/ INITIL

/OBCOUT/ FFDATA
/PANCRD/ GRID
/NETABC/

/POINDA/ PPPOIN

/SLCOUT/ FFDATA
/NETABC/ NETWDP

/SURFAM/ FORMOM

/SURDAT/ SURFLO

/NETABC/ NETWDP
/USEABU/ GEOMDP

/HEADER/ INITIL
/RUNOPT/ INITIL

NETWDP
NEI'WDP

PPCONF
PPGEOM

INITIL

V

3-C.4

W

COMMON
BLOCK

/CONFDA/
/DAGPAR/
/GEOMDA/
/GLOBAL/
/GLODEF/
/GLOFLO/
/GLOPPP/
/GLOPRI/
/HEADER/
/NETABC/

/NETABC/

/NETABC/

/NETABC/
/NETABC/

/NETABC/

/NETBDC/

/NETDAT/
/NETDIM/

/NETSPC/

/NETWUD/

/OBCOUT/
/PANCRD/

/POINDA/

/RUNOPT/
/SLCOUT/

/SOLDAT/
/SURDAT/

/SURFAM/

/USEABU/

/HEADER/

DATA
BASE

DIP

DIP

DIP

DIP

DIP
DIP

DIP
DIP

DIP

DIP

DIP

DIP
DIP

DIP

DIP

DIP

DIP

DIP

DIP
DIP
DIP

DIP
DIP

DIP

DIP

DIP

MEC

THIRD FORM

FtAPNAME

DIP-CONF
See /GLOBAL/
DIP-GEOM
DIP-GLOGLO
DIP-GLODEF
DIP-GLOFLO
DIP-GLODBO
DIP-GLOPRI
DIP-HEADER
DIP-CLOS

DIP-COEF

DIP-LOCF

DIP-PANCRD
DIP-SPEC

DIP-TANV

DIP-NETBDC

See /GLOBAL/
DIP-NETDIM

DIP-NETSPC

DIP-NETWUD

DIP-OBCOUT
DIP-PANCRD

DIP-POIN

MEC-RUNOPT

DIP-SLCOUT
See /GLOBAL/

DIP-SURFLO

DIP-SURFAM

DIP-USEABU

MEC-HEADER

DATASET NAME

CONFIG-PRINT-PLOT

GEOM-PRINT-PLOT

GLOBAL

GLOBAL-DEFAULTS
GLOBAL-FLOW-PROP
GLOBAL-DB-OUTPUT

GLOBAL-PRINTS

DATA-BASE-HEADER
CLOS-COND

COEF-GEN-BC

LOCAL-FLOW

PANEL-COORDS
SPEC-FLOW

TANG-VEC

NETWK-BDC

PANEL-COORDS

NETWK-SPEC

NETWORK-UPDATE-CODES

OFFBODY-OPTIONS
PANEL-COORDS

POINT-PRINT-PLOT

MACRO-OPTIONS
STREAMLINE-OPTIONS

SURF-FLOW

SURF-FAM

USER-ABUT

DATA-BASE-HEADER

PROGRAM/
SUBROUTINE

PPPCONF

PPPGEOM
INITIL

INITIL
INITIL

PPPDIR
INITIL

INITIL
NETWDP
VALUE
NETWDP

VALUE

NETWDP

VALUE
GRID
NETWDP
VALUE

NETWDP

NEDATA

VALUE
INITIL

GLOOPT

NETWDP
NECDWR

GEOMDP
ABNEID

NETWDP

NECDWR
NEDAPR
NOPCHK

INITIL
NECDWR
FFDATA

GRID
PPPOIN

PPPORT

INITIL
FFDATA

SURFLO

FPDAWR
FORMOM

FPDAWR
GEOMDP

ABUT
INITIL

3-C.5

W

r_

APPENDIX 3-D MASTER DEFINITION

The data base master definition listing of the DIP module has been deleted

from this document. It is produced from the PAN AIR tape during installation.

3-D.I

V

v

4.0 DEFINING QUANTITIES GENERATOR (DQG) MODULE

4.1 Introduction

The Defining Quantities Generator (DQG) is a stand alone program which
is a module of the PAN AIR system. DQG performs many tasks which, from a
general point of view, translate the definition of the configuration and flow
properties in terms which are convenient to a user into a definition which is
more mathematically tractable. DQG also performs a number of convenience
operations (such as auto_atically indexing control points and singularity
parameters and automatically defining abutments) and performs a comprehensive
analysis of the problem for errors in the configuration which might lead to a
singular or invalid solution.

4.2 DQG OVERVIEW

4.2.1 PURPOSE OF DQG

The problem of finding the flow around a body of arbitrary shape is

reduced by PANAIR to the problem of solving a large system of linear
equations viz., [AIC] [_] = [b]. This is done by approximating the surface of

the body by flat rectanguar and/or triangular panels. For each panel two

unknown singularity parameters are introduced. Once these parameters [_] are

found, the solution to the original problem can be constructed.

DQG performs a variety of calculations to provide data necessary for the
construction of the AIC matrix. These calculations are associated with four

classes of data: network data, abutment data, control point data and panel

data. With regard to network data, DQG indexes control points and singularity
parameters in the network and assures that panels in the network are large

enough to allow accurate calculation and that panels do not have excessive
aspect ratios (less than 10,000). For more details see PAN AIR User's

Document, Section B.1.3 (Reference 2). The relationships between networks are

defined by the abutment data. This data defines where alternate boundary
conditions must be imposed to assure doublet continuity across network

boundaries. The control point data defines which user-defined boundary
condition or alternate boundary condition is imposed at control points and

provides geometrical data (tangent and normal to surface) required for the
evaluation of the boundary condition. The panel data includes geometrical

properties of the panel and a description of how the source and doublet

distribution on the panel surface depends on surrounding singularity
parameters. Also included inthe panel data are certain integrated moments of

source and doublet strength evaluated over the surface of the panel. These

are employed by MAG to more efficiently determine the panel influence on
control points which are not too near the panel.

While computing the required quantities, DQG constantly evaluates the

results for conditions that might produce a singular or incorrect solution.

More than seventy irregular conditions are noted by fifty-nine error messages
and sixteen warning messages. In addition the user may require DQG to produce

printed output which can be evaluated by the knowledgeable user to assure that

not only will the data produced by DQG produce a solution, but the solution
will be the solution to the problem the user thinks he has defined. (See the
PAN AIR User's Manual, Section 7, record G.17 (Reference 2) and Section 8 of

the same document.)

4.1

4.2.2 DQG Input/Output Data

Input to DQG occurs only through the SDI,ISdatabase system (see Section
1 and Section 13 of this document). DQG reads databases created by the MEC

and DIP modules. The MEC database contains information concerning the names

of files which contain the databases which DQG requires or will generate. The
DIP database contains the user's description of the problem. The information"

which DQG reads from the DIP database may be classified as global

configuration data (such as Mach number, direction of flow, symmetry
properties of the problem), network data (singularity types of networks,
boundary conditions which the user wishes to imposer coordinates of points in
the network) and abutment data, if any is supplied (a description of how the
networks connect together to form the configuration). DQG also reads

information on the DIP database which defines what types of printed output the

user has requested from DQG.

DQG offers a number of output options which may be selected by the user

through data provided to DIP.

The default output consists of a general description of the status of
DIP and DQG data bases, timing statements at the end of each overlay, and a

description of some global and network properties of the problem at the end of
execution. In addition fatal errors encountered during execution produce

diagnostic messages. A small number of mandatory warning messages are also
produced when a questionable situation arises. No more than ten fatal error

messages are permitted to accumulate before execution stops. There is no
limit to the number of warning messages. A complete list of error and warning

messages is provided in Appendix 4-E, The PAN AIR User's Manual Section 8
(Reference 2) discusses the interpretation of the error and warning messages.

Additional warning messages are printed as situations arise if the user

has specified that warning messages are desired. There is no restriction on
the number of warning messages that are produced.

Either the coarse grid coordinate of the networks (corner point

coordinates) or the fine grid coordinates of the network (corner, edge

midpoint and center point coordinates) or both are printed as the user

requests. Those network edges which are collapsed have the corner point

coordinates flagged to indicate the DQG modified the collapsed edge points to

assure that they all had identical coordinates.

DQG may print descriptions of gap filling panels which have been added.
Included in this printout are the corner points of the gap filling panels, the

edges of the networks to which they are attached, and whether they are

triangular gap filling panels.

A description of empty space abutments or of all abutments may be

produced. Besides indicating how the networks are joined together, this
output also describes which network edges and corner points will be assigned
doublet or source matching boundary conditions to replace those which are

specified by the user.

4.2

Control point and boundary condition data _ay be printed at the end of
execution if the user requests. The control point data include global index
and network and fine grid lattice indices of the control point as well as it's
hypothetical location, normal vector and boundary condition characterization.
The boundary condition data includes all of the indexing information of the
control point data and lists all non-vanishing cofficients for the left hand
side of the boundary condition equation.

In addition to the above, DQGmaybe compiled from its programlibrary
with diagnostic print statements inserted automatically. A description of how
to accomplish this is given in Appendix 4-F.

Appendix 4-G contains an exampleof output obtained from DQGexecution.
Section 8.1 of the PANAIR User's Manual (Reference 2) discusses the
interpretation of the DQGoutput.

4.2.3 Database Interface

Module DQG reads input data from databases created by MEC and DIP. The

MEC database provides database names, account numbers, database status, date
of execution and other similar information. The DIP database contains the

user's description of the problem.

DQG creates a single database during its execution. The database

provides a description of the user's problem in a form that the other PAN AIR
modules can easily process. The information is used by the MAG, RHS, MDG_and
PPP modules.

The DQG database master definition is described in Appendix 4-D. (See

Section l of this document for an introduction to SDMS).

4.3 MODULE DESCRIPTIQN

The main overlays and subroutines of DQG are briefly summarized in this

section. Estimates of the core requirements and execution time requirements

of the overlays of DQG are also provided. Lower level subroutines are
described in secton 4.4. A tree diagram of the calling relationships of the

subroutines in DQG may be found in Appendix 4-A. The DQG functional

decomposition is contained in Appendix 4-B.

Figure 4.1 contains a simplified configuration which illustrates the
concepts of panel, network and abutment. Singularity parameters are defined
to be located on networks. These parameters are related to perturbations in

the flow field. The values of the singularity parameters are determined by

imposing boundary conditions at selected points on the network called control

points. DQG translates fairly simple geometric data into mathematical
descriptions of the boundary conditions and singularity parameters.

4.3.1 Overall Structure

The overall structure of DQG is described in Figures 4.2, 4.3 and 4.4.

The figures also provide some indication of data flow during DQG execution.
The data flow aspects of the figures is discussed in paragraph 4.3.5.

4.3

The seven primary overlays of DQGare indicated as rectangular blocks in
Figure 4.2. Twoprimary overlays { the (3,0) and (5,0) overlays) are divided
into six and two secondary overlays respectively as is indicated in the
figure. The dotted line connecting the main (0,0) overlay with the seven
primary overlays indicates that the (0,0) overlay causes each one of the
primary overlays to be loaded and executed. Besides the overlay index (e.g.
(1,0)) the figure also gives the nameof the main program in the overlay (for
the (1,0) overlay it is OPENER).Below this there is a short summaryof the
operations which the overlay performs. The solid lines in the figure indicate
the flow of data from the program to the disk files that makeup the DQG
database and from the MEC,DIP and DQGdatabase files into the program. Note
for example that the MECand DIP databases are read only in the (1,0) overlay
and that DQGnever writes on either one of them. All other input and output
for DQGoccurs from or to the DQGdatabase or to the printed output file.
Note that the output to the printed output file is not shownin the figure.
All overlays of DQGproduce someprinted outputs.

Figures 4.3 and 4.4 provide a similar overview of the structure and data
flow for the secondary overlays of the (3,0) and (5,0) overlays respectively.

4.3.2 Overlay Descriptions

This paragraph describes the major functions which are performed in each

primary and secondary overlay of DQG. Paragraph 4.3.5 discusses data flow in
the program.

4.3.2.1 OPENER Overlay (1,0)

This overlay obtains input data from the MEC and DIP databases and

copies data required to solve the problem onto the DQG databases. Certain
data are transformed into a form consistent with efficient processing and some

useful data is derived from the basic parameters describing the problem.

Figure 4.5 illustrates the main subroutine structure for the (1,0) overlay of

DQG. The main program OPENER opens the DIP and MEC databases and creates an

empty DQG database. There is only one major subroutine in the overlay. It is
called DIPDAT and copies data from the DIP database onto the DQG database.

4.3.2.2 NETDEF Overlay (2,0)

The second overlay checks that the networks satisfy certain required

properties and provides a global index for all control points and singularity

parameters in the problem. Indexing schemes used in DQG are described more
fully in Appendix 4-F. Figure 4.6 illustrates the main subroutines for the

(2,0) overlay of DQG. The main program in the overlay is NETDEF. It calls a

sequence of subroutines which perform the varied tasks of the overlay. Three
main tasks are performed. They may be rougiqly characterized by the terms

geometrical tasks, indexing tasks and output operations. The geometrical
tasks are discussed first.

Subroutine DFEDGE defines the coordinates of the corner points on the

perimeter of the network. EDGCHK computes the length of the edges to check
for collapsed edges (see PAN AIR Theory Manual, Section 1.4 of Appendix D
(Reference 1) and the PAN AIR User's Manual Section B.l(Reference 2)). INDCTR

computes the coordinates of a point that is at the indicial center of the
network. Subroutine TRICHK checks each panel in the network for both aspect

V

4.4

v

ratio and triangularity. (No interior panel of a network is permitted to be

triangular.) Subroutine FINGRD defines the fine grid coordinates of the

network from the panel corner point coordinates and writes them in the
FINE-GRID-COORDS dataset.

The indexing tasks are performed by SINGDF (and the subroutines it

calls) and by CONTPT. SINGDF defines a unique index for every source and
doublet parameter in the configuration. The exact indexing schemes are

discussed in Appendix 4-H of this manual. This subroutine also labels

singularity parameters that lie on a collapsed network edge as "null", i e.,
they do not contribute any effects to the flow. Control point indexing is

performed by the subroutine CONTPT. Note that control points are always
defined for a network at the same locations (all panel center points, the four

network corner points and the edge midpoints on the perimeter of the network)

even though, for example, on a wake network, all control points located at
panel centers do not have any boundary conditions (see PAN AIR User's Manual,
Section B.3.4 (Reference 2) and the PAN AIR Theory Document, Appendix G
(Reference 1)). This is done to allow consistent processing of flow data in

post processing. The final function performed by the (2,0) overlay is to

print the coordinates of all of the corner points and/or fine grid points in
the network if requested by the user. Subroutine PRTNET performs this task.

4.3.2.3 EDGDEF Overlay (3,0)

The (3,0) overlay calls the secondary overlays (3,1)through (3,6).

These programs perform an analysis of abutments in the configuration. At the

end of the analysis a complete description of the abutments is printed at the

user's request.

4.3.2.4 PRABUT Overlay (3,1)

This program lists the abutments defined by the user in a more complete

form than the user provides to DIP. It initiates the automatic abutment
search by describing all pairwise abutments which have not been described

already by the user. A detailed description of the automatic abutment search

is given in Appendix 4-I. Figure 4_7 illustrates the main subroutines in the

overlay. First USEABT is called. This subroutine reads the user defined
abutments data and fills in any missing information. For example, the user

can specify only the network and edge index for all the networks in the
abutment. In this case USEABT defines the coarse grid lattice indices which

correspond to the start and end points of each network edge in the abutment
and adds these coarse grid lattice indices to the abutment data. After all

user abutment data is processed, a lower level subroutine (not illustrated)

prepares a list of network edge segments which the user has not defined to
take part in an abutment. Then in NETABT the automatic abutment search

begins. Each edge segment which has not been described by the user is
examined to see if any of the other such segnlents lie near it (see PAN AIR

Theory Document, Section 3 of Appendix F (Reference 1)). Subroutine EDGLST

prepares a preliminary list of all network edges which lie somewhat close to

the edge in question. The remainder of PRABUT defines all pairwise abutment
descriptions in which each segment takes part. This process is discussed more

fully in Appendix 4-I.

I

4.5

4.3.2.5 ABTHNT Overlay (3,2)

Overlay (3,2) completes the automatic abutment search. This procedure

is described in Appendix 4-I. After the search is over, all abutments are
checked to assure that they satisfy certain rules. Warning and error messages

are produced as questionable or erroneous situations arise. Figure 4.8
illustrates the major subroutines in the (3,2) overlay. Subroutines ABXPND,

CONABT and SEARCH complete the automatic abutment search. This process is

discussed fully in Appendix 4-I. Subroutine EDGPRP defines some additional
data that is required to characterize abutments (labelling of matching edges,
etc.). Subroutine CHECK examines all network abutments to see that they

conform to the appropriate set of rules concerning abutments (see PAN AIR
User's Manual, Section B.3.6 (Reference 2)).

W#

4.3.2.6 GAPSIZ Overlay (3,3)

This overlay computes gap sizes for all of the network abutments. The

gap size for a panel and a network edge is the greatest of the distances from

the panel to the closer point on all other network edges which take part in
the abutment.

4.3.2.7 MATCH Overlay (3,4)

Program MATCH determines which edges and corner points will be used to

impose doublet and source matching boundary conditions. Figure 4.9
illustrates the main subroutine structure of the (3,4) overlay. Subroutine

EMATCH determines which network edge among those that form an abutment will be
used to impose doublet matching boundary conditions at the abutment (see PAN

AIR Theory Document, Section 5.3 (Reference 1)). In an abutment where a wake
has been assigned voritcity matching, ENATCH will find a doublet analysis edge
on which to place the actual boundary condition. EMATCH also defines those

edges and corner points where source matching boundary conditions are

required. Subroutine INTRSC analyzes the configuration for abutment
intersections using a technique from graph theory. This is discussed more

fully in Appendix 4-J. Subroutine ASSIGN examines each abutment intersection

and assigns an appropriate number of corner points to insure doublet matching
at the abutment intersection.

V

4.3.2.8 GAPPNL Overla7 (3,5)

This program adds gap filling panels between network edges which have
been declared to form an abutment by the user but which lie further apart from

one another than the global tolerance distance. A description of how gap

filling panels are constructed is given in the PAN AIR Theory Document,

section 6 of Appendix F (Reference i) and Appendix 4-L of this document.

Figure 4.10 illustrates the subroutines in this overlay. The main program
GAPPNL searches the abutment related data for abutments where the gap size

exceeds the tolerance distance. The edges of network which make up such an

abutment are parameterized by subroutine PRMEDG (see the PAN AIR Theory

Document, Section 5 of Appendix F (Reference 1)). Subroutine DEFPNL defines
the data required to describe the gap filling panel (see Appendix 4-L).
Subroutine POSPNL defines gap filling panels for abutments with planes of

symmetry and which have gaps larger that the tolerance distance.

4.6

V

4.3.2.9 ADCPSG Overlay (3,6)

ADCPSG adds additional control points and doublet singularity parameters
at panel corner points where an abutment begins or ends, if the corner point
is not one of the four network corner points. This program also sets up a
description of matching edges and corner points in a form which is usable by
the fourth overlay (subroutine MTCHPT) and defines the extra hypothetical
locations for the matching points (subroutine XHLOC)(see PAN AIR Theory
Document, Appendix G (Reference I)). Figure 4.11 illustrates the subroutine
structure of the overlay.

4.3.2.10 BNDYDF Overlay (4,0)

This overlay defines geometrical data required at each control point and
selects the appropriate number and type of boundary condition to impose at the
point from those supplied by the user and those supplied by DQG. A detailed
description of what this overlay produces is described in the PAN AIR Theory
Document, Appendices G and H (Reference i). Figure 4.12 illustrates the major
subroutines in the overlay. GETBC obtains the boundary conditions for the
control points in the network. Subroutine CENTCP defines geometric data and
boundary condition coefficients for the generalized boundary condition
equation (see PAN AIR Theory Document, Section 5.4 (Reference i)) and
subroutine EDGECP defines similar data for corner and edge midpoint control

points.

4.3.2.11 TOPSPL Overlay (5,0)

This overlay calls the (5,1) and (5,2) overlays in sequence.

v
4.3.2.12 SAEDGS Overlay (5,1)

This overlay computes doublet spline vectors at points along the edges
of networks which form a smooth abutment. A detailed discussion of this
process occurs in Appendix 4-K of this document. Figure 4.13 shows the major
subroutines in the (5,1) overlay. Subroutine PTSFIL obtains coordinates of
the corner points in the vicinity of the smooth abutments (See Appendix 4-K).
SNGFIL obtains the singularity parameter indices for doublet singularities
located at center points near the smooth abutment. Subroutine PARMSA
parameterizes the smooth abutment (see PAN AIR Theory Document, Section 1.2 of
Appendix I and Appendix F (Reference i)). Subroutine COARSP defines the outer
spline vectors at each corner point and edge midpoint along the smooth edge
(see Appendix 4-K and the PAN AIR Theory Document, Section i of Appendix I
(Reference I)). Subroutine FINESP defines the outer spline vector for points
on the finer edge in terms of the splines along the coarse edge and the
parameterization of the abutment. The details of this process are discussed
in Appendix 4-K of this document and in the PAN AIR Theory Document, Appendix
I (Reference i).

4.3.2.13 SPLINR Overlay (5,2)

This program computes source and doublet spline vectors for all points
which do not fall on the edge of a smooth abutment. The details of this
procedure are provided in the PAN AIR Theory Document, Section i of Appendix I
(Reference i) and in Appendix 4-I of this document . Figure 4.14 illustrates
the main subroutines in the (5,2) overlay. ANALS computes the outer spline

4.7

vectors for source analysis networks. ANALD computes the outer spline vectors
for doublet analysis networks. DSGNIS and DSGNID compute the outer spline

vectors for source design and doublet design networks. Subroutine WAKGAP
defines the outer spline vectors for wake networks and for gap filling

panels. Appendix 4-K discusses the spline operations in greater detail. See

also the PAN AIR Theory Document, Sections 1 and 2 of Appendix I (Reference 1).

4.3.2.14 PANDEF Overlay (6,0)

The sixth overlay computes and assembles the panel defining quantities

required by MAG for the construction of the AIC matrix. These include
geometrical properties (areas, normal xectors a_d tangents, computed in
GEOMQU), the outer spline matrices, [Ba] and [BU], and subpanel spline

matrices, [SPSPLS] and [SPSPLD], computed in SDSPLM, (see PAN AIR Theory
Document, Sections I, 2, and 3 of Appendix I (Reference I)) and the far field

moments, computed in FFMOM, (PAN AIR Theory Document, Section 4 of Appendix I
(Reference 1)) for each network panel and each gap filling panel. Subroutine
PANDEF collects all the information, computes discontinuous source spline

vectors, and writes out the data as the PANEL-SPEC dataset. Figure 4.15

illustrates the main subroutines of this overlay.

4.3.2.15 SUMMRY Overlay (7,0)

The (7,0) overlay program SUMMRY transcribes some information on the
GLOBAL and NETWK-SPEC datasets and re-writes the datasets to the DQG

database. The other routines in this overlay read either the NETWK-SPEC

dataset or the BNDRY-CONDN-SPEC dataset in order to produce the requested

printed summary of network, control point and boundary condition properties.

4.3.3 Module Database

The master definition of the DQG database are given in Appendix 4-D.
The dataset names and contents are described in detail. The database
communication charts (See Section 1) may be found in Appendix 4-C.

4.3.4 Data Interfaces

4.3.4.1 System Interfaces

Figure 4.2 through 4.4 illustrate the internal and external interfaces
between the module and the MEC, DIP and DQG databases. The DQG database is

used by modules MAG, RHS and MDG.

4.3.4.2 Subprogram Interfaces

A tree diagram of all routines in DQG is given in Appendix 4-A. This

shows the interrelationships among the subroutines which make up DQG. Each

subroutine is briefly described in Section 4.4.2.

4.3.5 Data Flow in DQG

Figures 4.5 to 4.16 illustrate the data flow for the major sections of

DQG. They will aid the discussion in the following paragraphs.

4.8

v

v

After opening the DIP database and creating the DQGdatabase the first
overlay calls DIPDAT. Global, network data and abutment data are copied onto
the DQGdatabase. Then the boundary conditions are transcribed and written to
the DQGdatabase. The transcription is the major task of this overlay. DIP
provides information on howmanyboundary conditions have been specified by
the user in the NETWK-BDCdataset. Eachcoefficient is obtained from the
COEF-GEN-BCdataset and the TANG-VECdataset. The coefficients might be for
the whole network, for only center, edge-mid-point or corner control points in
the network or for only one control point in the network. DQGrequires that
all coefficients for one control point are grouped together. Data for network
wise NETWK-BNDY-CONDN-INdataset and is keyed by point type (center, edge
mid-point or corner point). Point-by-point specification of boundary
conditions is stored by CLASS-5-BC-DATAand is keyed by fine-grid lattice
index of the point (SeeAppendix 4-H). The transcription operation consists
of reading a non-zero coefficient from the DIP database, reading the current
DQGdataset for the control point, copying the additional coefficient to the
output array and writing a modified version of the DQGdataset. This is a
somewhatcostly I/O operation if point-by-point boundary conditions are
specified, i.e., if the user chooses Class 5 boundary condition specifications.

In the secondoverlay (Figure 4.6) networks are checked for short edges
and triangular panels, an EDGE-POINT-COORDSdataset is created which contains
the corner points on the network edges sequencedin a counter clockwise
direction whenlooking at the "upper" surface around the network perimeter,
and singularity parameters and control points are indexed. (See Appendix 4-H
for details concerning indexing schemsused in DQG.)

Twocomplimentary datasets are created by subroutine SINGDF. Oneis
called SINGULARITY-NAPand the other is called SINGULARITY-SPEC.The
SINGULARITY-MAPdataset allows one to find the index of a singularity
parameter given information about its location in the network. The
SINGULARITY-SPECdataset gives information about where a singularity parameter
is located in the network given its index. The CONTROL-PT-SPECdataset is
created by the CONTPTsubroutine.

In the third overlay (Figure 4.7) user defined abutments are created by
USEABT.The subroutine reads the user description from the dataset USER-ABUT
and writes the data to the ABUTMENT-SPECdataset. The SEARCH-LISTdataset
specifies those networks which the user has not defined to form abutments.
The SPECIAL-POINTSdataset defines which corner points on a network form start
or end points of the abutment. Subroutine EDGLSTreads the NETWK-SPECand the
EDGEoPT-COORDSdatasets in order to decide which edges lie sufficiently close
to another edge that they might form an abutment. The main program PRABUT
reads the EDGE-POINTS-COORDSand the NETWK-SPECdatasets. Subroutine NETABT
reads SEARCH-LISTto define the pairwise abutment data. This data is written
to the database as the IABUTdataset. In the (3,2) overlay (Figure 4.8),
subroutine ABXPNDreads the IABUTdataset and expands the pairwise abutment
description to form the expandedabutment description (see Appendix 4-I).
This data is stored on the database in the ABUT-KEYSand EXPANDED-ABUTMENT
datasets.

4.9

Subroutine CONABTreads the expandedabutment descriptions, contracts
them to form the abutment description (see Appendix 4-I) and writes the
abutment data to the ABUTMENT-SPECdataset. After all abutments are
processed, subroutine SEARCHreads the abutment descriptions and writes out
the SEARCH-LISTdataset again. This dataset is used later by subroutine
MTABUT(not illustrated) to define the empty space abutments. Subroutine
CHECKreads the ABUTMENT-SPECdataset and checks that the abutments satisfy
certain rules. Occasionally the subroutine modifies someof the abutment data
(whenthe rules have been violated) and must re-write the ABUTMENT-SPEC
dataset. CHECKalso labels singularity parameters which lie on a smooth
abutment as null. Thus it reads the SINGULARITY-MAPdataset and re-writes the
information contained in it as both the SINGULARITY-MAPand SINGULARITY-SPEC
datasets after it sets a flag indicating that the singularity parameter is
null. It also reads, sets a flag and re-writes a SPECIAL-POINTSdataset to
indicate to the fourth overlay that those control points on the smoothedge
are also null, i.e., that they do not have any boundary conditions to impose
at them.

In the (3,4) overlay, (Figure 4-9) the main program MATCH reads the
ABUTMENT-SPEC and EMPTY-SPACE-ABUT DATASETS and re-writes them after the edge
matching data has been defined by EMATCH. Subroutine EMATCH reads the
NETWK-SPEC dataset to determine the edge types of networks which might make
up and abutment.

Subroutine INTRSC reads the ABUTMENT-SPEC and EMPTY-SPACE-ABUT datasets

and generates the INTERSECTION dataset. This describes the abutment
intersections in the problem. The INTERSECTION dataset is read by subroutine
ASSIGN. A decision is made as to which corner point is assigned to impose

doublet matching and the appropriate abutment data is read from the database.
The data is re-written after setting the proper matching corner point flag.

In the (3,5) overlay GAPPNL reads the abutment data and checks the gap
sizes stored in th GAP-SIZE dataset. The GAP-SIZE dataset had been defined
in the (3,3) overlay. If gap filling panels are defined for the abutment, a

flag is set and the abutment data is re-written to the database. Also a
GAP-PANEL dataset is created which describes the gap filling panel.

In the (3,6) overlay (Figure 4.11) subroutine ADCPSG reads the

SPECIAL-POINTS dataset and, by noting where abutments start or end at places
other than at the corner of a network, adds extra singularity parameters and

control points. It writes CONTROL-PT-SPEC datasets, SINGULARITY-MAP datasets
and SINGULARITY-SPEC datasets. Subroutine MTCHPT reads the abutment data

(ABUTMENT-SPEC) and the SPECIAL-POINTS datasets, transfers the matching

information from the abutment data to the SPECIAL-POINTS dataset and re-writes
the SPECIAL-POINTS dataset. Subroutine XHLOC reads the abutment data, edge

point coordinates and the network data and determines the coordinates of the

extra hypothetical locations of control points along an abutment. See PAN AIR

Theory Document Section 5.4.1 (Reference 1). This data is written as the
EXTRA-HYPO-LOC dataset.

The data flow in the (4,0) overlay (Figure 4.12) is fairly simple.

NETWK-SPEC dataset is read by BNDYDF as is the coordinates of the corner

points (PANEL-CORNER-COORDS). Boundary conditions are read from either
NETWK-BNDY-IN or CLASS5-BC-IN datasets by subroutine GETBC. The
CONTROL-PT-SPEC dataset is read by CENTCP and EDGECP to obtain the control

The

4. i0

- ?

v

V

point index. After all the required data is assembled, the CONTROL-PT-SPEC,
BNDRY-CONDN-SPEC and B-POINTER datasets are written. These summarize all of

the boundary condition information for the control point. Note from Figure
4.12 that the subroutine EDGECP additionally reads the SPECIAL-POINTS dataset

to obtain information about where to impose matching boundary conditions.
Note also that some additional I/O occurs if there are any known singularity

parameters. If some boundary conditions lead to known singularity parameters,
a lower level subroutine in the fourth overlay reads the SINGULARITY-MAP

dataset, sets the appropriate known singularity flag and re-writes the data as
both the SINGULARITY-MAP and SINGULARITY-SPEC datasets.

In the (5,1) overlay (Figure 4.13), the main program reads the
ABUTMENT-SPEC dataset to find a smooth Abutment. Subroutine PTSFIL obtains

the required corner point coordinates from the PANEL-CORNER-COORDS dataset and
subroutine SNGFIL obtains the required singularity parameter indices from the

SINGULARITY-MAP dataset. The edges are parameterized by subroutine PARMSA,
which reads the EDGE-POINT-COORDS dataset. Subroutine COARSP computes the

outer spline vectors and writes them as the B-SPLINE-DOUBLET dataset. This

process requires reading some previously computed outer spline data as well
as the NET{_K-SPEC dataset, Also an INTERIOR-SPLINE dataset is written. It

is used in the (5,2) overlay to preVent a dependence of doublet strength on
too many doublet parameters (see Appendix 4-K and the PAN AIR Theory Document,

Section i of Appendix I (Reference 1)). Subroutine FINESP reads the doublet

spline data for the coarse edge, computes the doublet spline for the fine edge
and writes it as an additional element set of the B-SPLINE-DOUBLET dataset.

The I/O in the (5,2) overlay (Figure 4.14) for each major subroutine is

very similar to the others. Coordinate data (PANEL-CORNER-COURDS and
EDGE-POINT-COORDS), singularity parameter indices (SINGULARITY-MAP dataset)

and surrounding spline vectors (B-SPLINE-DOUBLET or B-SPLINE-SOURCE datasets)

are read, the new spline vector is computed and the vector is written to the

B-SPLINE-DOUBELT or B-SPLINE-SOURCE dataset.

In the (6,0) overlay (Figure 4.15) network data, panel corner

coordinates and gap panel data is read by the main program PANOEF. Subroutine

GEOMQU reads the GAP-SIZE dataset to compute the gap size to panel size
ratio. SPLINM reads the source and doublet spline vectors for the nine panel

defining points and assembles them into the outer spline matrix. After all

panel data are computed, PANDEF computes discontinuous source splines and
writes the data as the MAG-PANEL-SPEC, MDG-PANEL-SPEC and PANEL-SING datasets.

The (7,0) overlay program SUMMRY transcribes some information on the
GLOBAL and NETWK-SPEC datasets and re-writes the datasets to the DQG

database. The other routines in this overlay read either the NETWK-SPEC
dataset or the BNDRY-CUNDN-SPEC dataset in order to produce the requested

printed summary of network, control point and boundary condition properties.

This completes the execution of DQG.

4.4 LOWER LEVEL FUNCTIONS

The following paragraphs present the functional decompositions of the
overlays and their subprograms and gives the purpose of each subroutine.

4.11

4.4.1 Functional Decomposition

DQG functional decomposition is given in Appendix 4-B.

4.4.2 Subroutine Descriptions

The subroutines used in DQG are described below.

ABASGN

_Sets matching doublet flag in ABUTMENT-SPEC or EMPTY-SPACE-ABUT dataset

for imposition of matching boundary condition at corner point of
network. In this fashion it assigns a matching corner point to the
abutment (See Appendix 4-J).

ABXPND

Constructs expanded abutment descriptions from the pairwise abutment
descriptions (See Appendix 4-I).

AINV
Constructs the inverse of the reference coordinate to local subpanel

coordinate transformation (i.e., it computes the subpanel local to
reference coordinate transformation.) See PAN AIR Theory Document,

Appendix E, Section E.3 (Reference 1).
ANALD

_Top level routine for the computation of doublet spline vectors for
doublet analysis networks.

ANALS

_Top level routine for the computation of source spline vectors for

source analysis networks.

ANDFW
_Top level routine for the computation of forward weighted doublet

analysis network splines. This subroutine is a copy of ANALD.

ASGNBC

Assigns boundary conditions to control points from user-specified
boundary conditions and DQG generated conditions.

ASGNM

_Defines boundary condition coefficients and arrays to impose source,

doublet or vorticity matching boundary conditions; if closure conditions

are specified, calls routine to define closure data.

ASGNU

Defines boundary condition coefficients and arrays from user-specified

boundary conditions.

ASSIGN

Sets up the data needed for the selection and assignment of matching
corner points to abutments which form an abutment intersection (See

Appendix 4-J).

BNDYIN

Creates boundary condition dataset from class and subclass data or

term-by-term data provided by DiP.

4.12

V

V

CBLFFM
Computesdoublet cross product far field moments.
Document,Section 4 of Appendix I (Reference 1).

See PAN AIR Theory

CCPFN

Selects index of corner point on finer network edge which is closest to
specified point on coarser edge. Used to generate smooth abutment
splines (see Appendix 4-K of this document).

CCPGEO

Computes geometric properties of corner control points.
Theory Document, Appendix G (Reference 1).

See PAN AIR

CENTCP

_Creates CONTROL-PT-SPEC and BNDRY-CONDN-SPEC datasets for center control

points by computing geometric properties and assigning boundary

conditions to the point. See PAN AIR Theory Document, Appendix G and

Appendix H (Reference 1).
CENTER

Computes coordinates of center point of panels when performing smooth

abutment spline calculations.

CHECK

Checks all network abutments to assure that they do not violate certain
rules (See PAN AIR User's Document Section 3.5 of Appendix B (Reference
2)).

CHOOSE

Chooses boundary conditions from user specified and DQG specified
boundary conditions to assign to control points.

CHKPOS

Checks that networks which lie on a plane of symmetry totally lie on a
plane of symmetry. See PAN AIR Theory Document, Section 1.4 of Appendix

K, and PAN AIR User's Document Sec. B.I.3 (Reference 2).

CLOSTR

Creates a DQG database CLOSURE-IN dataset containing all of the values

of the closure coefficient required from the DIP input which is in the
form of one coefficient value per dataset.

CNCPBC

Assigns center control point boundary conditions.

COARSP

Top level routine for computation of smooth abutment spline vectors
along coarser edge of smooth abutment.

COLAPS

Collapses coordinates of a short network edge to a single point.

COLCPT

Sets up an array required to assure that the assignment of corner points
to abutments to assure doublet matching at abutment intersections is

performed correctly when the intersection includes the collapsed edge of
a network (See Appendix 4-J).

4.13

CONABT
Contracts the expandedabutment description to form an abutment
description (See Appendix 4-I).

CONTPT
_Indexes control points in a network (See Appendix 4-H).

COPYBC
_Copies value of single boundary condition coefficient from data supplied

by DIP to array of boundary condition coefficients used by DQG.

CPANAL
_Computes spline vector for corner point on the edge of a doublet

analysis network.

CPCSEL
Selects indices of adjacent corner points on coarser edge of a smooth
abutment which spans specified point on finer edge (See Appendix 4-K of
this document).

CPDSGN
_Computes spline vector for corner points on the edge of a doublet design

I network.

C13QTR
Computesthe coordinates of a point one-quarter and three-quarters of
the way along an edge segmentof an abutment (See appendix 4-I).

DATANL
Selects surrounding points at which doublet singularity parameters are

located to use in computing a doublet spline vector for a specified

point. See Appendix 4-K of this document and the PAN AIR Theory

Document, Section 1 of Appendix I (Reference 1).

DATS13

Selects surrounding points at which source singularity parameters are

located to use in computing a source spline vector for a specified

point. See Appendix 4-K of this document and the PAN AIR Theory

Document, Section 1 of Appendix I (Reference 1).

DBLFFM

Computes the doublet for field moment integrals for a panel.

DCSASP

Computes discontinuous outer splines for source analysis networks.

DEFLSQ

Defines coordinate and spline vector at specified point for use in

computing spline vectors at points on a smooth abutment.

DEFPNL

Defines geometrical data required to create a gap filling panel (See

Appendix 4-L).

4.14

W

V

l I
V

DEGOUT

Copies degenerate boundary condition to output array for case of network

which lies on a plane of symmetry.

DEGPRP

Defines boundary condition data for degenerate case of a network which

lies wholly on a plane of symmetry.

DFEDGE

Creates EDGE-POINT-COORDS dataset in which corner point coordinates of

points on a network edge and adjacent to a network edge are listed in a
sequence which corresponds to traversing the network edge in a counter
clockwise direction.

DIPDATReads- data from the DIP database and writes datasets on the DQG

database, sometimes changing or combining the data into a form which DQG

requires.

DISTQT

Computes the distances from the one-quarter and three-quarter points of
a network edge segment to the one-quarter and three quarter points of a

reference network edge segment. Used in the automatic abutment search

procedure (See Appendix 4-I).

DQGOUT
Copies DQG boundary condition to output array.

DSCT

Detemines how many DIP boundary condition related datasets must be read

by DQG to define the complete boundary condition arrays.

DSGNID
--Top level routine for the computation of doublet spline vectors for

doublet design I networks.

DSGNIS

_Top level routine for the computation of source spline vectors for

source design I networks.

DSGN2D

Dummy routine in case design II doublet capabilities are added to PAN
AIR.

DSGN2S

Top level routine for the computation of source design II spline vectors.

DTENSR

Computes D tensor for computation of far field moments.
Theory Document, Section 1 of Appendix I (Reference 1)).

(See PAN AIR

ECPGEO

Computes geometric properties of edge control points.

Theory Document, Appendix G (Reference i)).

(See PAN AIR

v

4.15

EDGCAL
Computes average panel length and minimum panel length along edge of
network.

EDGCHK
Decides whether a network edge satisfies the conditions which require it
to collapse. (See PAN AIR User's Document, Section 3.2.2 (Reference 2),
and PAN AIR Theory Document, Section 1.3 of Appendix D (Reference I)).

EDGCLS
Reads closure boundary conditions, adds required geometrical information
and writes a closure dataset.

EDGECP

Controls processing of corner point and edge midpoint control points.
Causes geometric properties to be computed and boundary conditions to be
defined for control points on network edges.

EDGLAT

_Transforms counter-clockwise-sense- sequential index of corner point on

a network edge to coarse lattice indices of point (See Appendix 4-H).

EDGLS

_Computes quadratic one-dimensional fit to four points. Used for
computation of doublet edge spline for non-matching edges of design
networks.

EDGLST
Prepares a list of edge candidates for a pair wise abutment (See Appendix
4-I).

EDGPRP

Computes and defines properties of network edge segments which make up
an abutment, such as upstream factor, matching/non-matching flag and
supersonic factor. See Appendix 4-I and 4-J and the PAN AIR Theory
Document, Section 4 of Appendix F (Reference i).

EDGSGQ

_Defines edge segments of a network edge which will be fit by a quadratic

one dimensional spline. See Appendix 4-K and the PAN AIR Theory
Document, Section 1.2.5 of Appendix I (Reference 1).

EMATCH

_Sets matching source, doublet and vorticity flags in Abutment-Spec or

Empty-Space-Abut datasets for imposition of matching boundary conditions
at edge midpoints along edge segment in abutment. See Appendix 4-J and

the PAN AIR Theory Document, Section 4 of Appendix F (Reference 1).

EMDSGN

Computes spline vectors at edge midpoints along non-matching edges of

doublet design I networks.

FFMOM

_Computes basic far field moments and calls routines which compute
source, doublet and doublet cross product moments. See PAN AIR Theory

Document, Section 4 of Appendix I (Reference I).

4.16

v

FINESP

Computes spline vectors on the finer edge of a smooth abutment.

Appendix 4-K.

See

FINGRD

Computes fine grid coordinates for a network.

FLIND

_Computes fine grid lattice indices for points on network edges which
form part of a smooth abutment.

GAMVEC

Computes the gamma vector (described in PAN AIR Theory Document, Section

1.5 of Appendix I (Reference 1) which is used to construct the edge

spline for non-matching edges of doublet design networks.

GAPSPL

Defines spline vectors for gap filling panels. See Appendix 4-L.

GEOMQU
_Controls computation of geometric data which are written to the

Panel-Spec dataset.

GETBC

--Obtains user's boundary condition coefficients for control points from

the DQG data base.

GISTYP

--Determines the symmetry type for a particular boundary condition.

INDCTR

Defines the coordinate of the indicial center of a network.

INTERN

--Writes a simplified spline vector for use in splining calculations for

points on the interior of a network which lie close to an edge which is
part of a smooth abutment. This assures that the spline is carried over

to the adjacent network across the smooth boundary without producing a

panel doublet spline matrix which depends on too many singularity

parameters. See Appendix 4-K.

INTRSC

Defines connections between corner points at abutment intersections and
then finds all abutment intersections in the entire configuration. See

Appendix 4-J.

KAPVEC

Defines the Kappa vectors used to compute subpanel doublet spline
matrices. See PAN AIR Theory Document, Section 2.2.2 of Appendix I

(Reference 1).

- j

KNOWSP

--Defines known singularity parameters for control points which have known
source or known doublet characteristics. See PAN AIR Theory Document,

Appendix H (Reference 1).

4.17

LATBC
Defines fine grid lattice indices for control points whenthe user has
defined point-by-point boundary condition specifications for a network.
See PANAIR User's Manual Sections 7.4 and B.3.1 (Reference 2).

LATEDG
Transforms coarse lattice indices of corner point at edge of network to
counter-clockwise-sense-sequential index around the edge. SeeAppendix
4-H and the inverse routine EDGLAT.

LATIND
_Computes fi_e grid lattice index from coarse lattice indices and point

type (corner, center edge mid-point row and edge mid-point column). See
Appendix 4-H.

LOC2D
_Computes a local two dimensional coordinate system for use in computing

doublet splines on the edge of a network which forms part of a smooth
abutment.

LSQDAT
_Defines coordinate of a point and index of singularity parameter located

there for use in computing doublet and source splines at points on a
network interior.

MAPB
Defines SDMSmapsused in the (2,0) overlay of DQG.

MDCP
Finds the most distant center point adjacent to the corner point on the
finer edge of a smoothabutment which is closest to a specified edge
mid-point on the coarser edge. SeeAppendix 4-K.

MDPLSG
Computesminimumdistance from a point to a line segment.

MODBC
_Modifies boundary conditions on superinclined panels and subpanels.

PANAiR Theory Document,Section 2.1 of Appendix H (Reference i).
See

MPPARM
Sets flags indicating to MAGwhich of the VIC, VIC • Nc or (VICx,
VICy, VICz) need to be computedand/or saved for use by MDG.

MTABUT
Defines empty space abutments at all network edge segmentswhich do not
take part in network abutments.

MTCHPT
Readsmatching flags from abutment data and sets flags in SPECIAL-POINTS
dataset which indicates the 4th overlay which control points will
receive matching boundary conditions.

NBCLAS
Determines numberof boundary conditions user has imposedat control
point and the boundary condition class of the user input.

4.18

V

V

NETABT

Searches the network edges, finds edges which abut and defines the

pairwise abutment data.

NTEDGA

--Controls computation of doublet edge spline on analysis-type edges of
networks.

NTEDGD

_Controls computation of doublet edge spline on non-matching edges of

design networks.

NTRLST

Defines abutment intersections. See Appendix 4-J.

ONDFCT

Computes a one-dimensional source spline for one column or one row
networks.

PARMSA

Controls parametrization of network edge segments which take part in a

smooth abutment. See Appendix 4-K.

PANGEO

Computes geometrical data associated with a panel.

PANPRj
_-Project reference coordinates to local panel coordinates.

PANSIZ

Computes panel size for panels on network edges and compares them with

the gap size.

PANSUB

Computes source and doublet panel sub-splines for use in intermediate
field PIC computations in MAG. See PAN AIR Theory Document, Section 3

of Appendix I (Reference i).

PBCDAT

_Prints boundary condition data at all control points in the

configuration. See Appendix 4-H.

PCPDAT

_--Points control point data at all control points in the configuration.

See Appendix 4-H.

PGNDAT

Points global and network properties of the problem. See Appendix 4-H.

POINT

_Computes the coordinates of the specified center point, edge midpoint or

corner point from the columns of corner point coordinates which are
available in core. Used in the computation of spline vectors at network

interiors.

"-_ 4.19

POSPNL
Constructs gap filling panels at network edges which abut a plane of
symmetry, see Appendix 4-L and the PANAIR Theory Document,Appendix F
(Reference i).

PRMEDG
_Parameterizes a network edge segment.

Section 6 of Appendix F (Reference 1).
SeePANAIR Theory Document,

PRTNET
Prints network corner point coordinates and fine grid coordinates as
requested by the user. See PANAIR User's Document,Section 7.3
(Reference 2).

PTSFIL
_Fills arrays of coordinates that are required to compute smoothabutment

splines. SeeAppendix 4-K.

QIDFIT
Computesa quadratic one dimensional fit to three one-dimensional
coordinates.

SALSQC
Controls computation of doublet splines at corner points on a network
edge which takes part in a smoothabutment. SeeAppendix 4-K.

SALS__E
Controls computation of doublet splines at edge midpoints on a network
edge which takes part in a smooth abutment. See Appendix 4-K.

SDSPLM

Assembles source or doublet spline matrix from spline vectors obtained

from the DQG database.

SEARCH

Defines segments of network edges which have not already been included

as part of a network abutment. See Appendix 4-I.

SEDGCL

Redefines source spline vectors on the collapsed edge of a network.

Appendix 4-K.

See

SELECT

Chooses a corner point for assignment to an abutment in order to impose

doublet matching at an abutment intersection. This subroutine is not
used in PAN AIR Version I. See Appendix 4-J.

SINGDF

Controls the process of assigning indices to singularity parameters of

networks. See Appendix 4-H.

SIP

Computes the trace of the inner product of the D tensor with a specified

segment of the far field moment matrix, that is, the shifted inner

product of the tensors. See PAN AIR Theory Document, Section 4 of

Appendix I (Reference 1).

4.20

V

v

SNGDA
Indexes singularity parameters on analysis edges of networks. See PAN

AIR Theory Document, Section 1 of Appendix D (Reference 1) and Appendix
4-H of this document.

SNGDD2

_Indexes singularity parameters on edges of source design II networks.

See Appendix 4-H.

SNGDW1

Indexes singularity parameters on matching edge of doublet wake I
network. See PAN AIR Theory Document, Section 1 of Appendix D
(Reference 1) and Appendix 4-H of this document.

SNGDW2

_Indexes singularity parameter on matching edge of doublet wake II

network. See Appendix 4-H and the PAN AIR Theory Document, Section 1 of

Appendix D (Reference 1).

SNGDEX

Computes or obtains from the database the singularity index of a
singularity parameter located at the specified point. Used for spline

computations.

SNGDFW

Generates the singularity parameters for the edges of a forward weighted

doublet analysis network.

SNGFIL

Fills array with indices of singularity parameters which are required to

compute doublet splines at a smooth abutment. See Appendix 4-K.

SNGUUL

_Defines null singularity parameters on collapsed edges of networks.

PAN AIR Theory Document, Section 1.4 of Appendix D (Reference 1).

See

SNGPAN

Indexes singularity parameters on network interiors. See Appendix 4-H.

SNGSD1

Indexes singularity parameters on edges of doublet design I networks.

See Appendix 4-H.

SNGSD2

Indexes singularity parameters on edges of source design II networks.

See Appendix 4-H.

SPLA
Obtains data, computes doublet spline and assembles spline vector for

specified point on the interior of a network. See Appendix 4-K.

SPLINM

Controls computation and assembly of source and doublet spline matrices,

subpanel spline matrices and panel-wide subspline matrices.

"-_ 4.21

SPLTRN
Computescoordinate of specified point in local two dimensional
coordinate system for use in computation of spline.

SRCFFM
Computessource far field moments.
4 of Appendix I (Reference 1).

SeePANAIR Theory Document,Section

SSIP
Computesscaled shifted inner product of D-tensor with basic far field
moment. Seeparagraph 4.4_2 SIP and PANAIR Theory Document,Section 4
of Appendix I (Reference 1).

SSP13
_Obtains data computes source spline and assemblesspline vector for

specified point. SeeAppendix 4-K.

SUBGEO
Computesgeometric data for subpanels.

SUBSPL
_Computes subpanel spline matrix. See PANAIR Theory Document,Section

4.2.1, Section 5.5 and Section 2 of Appendix I (Reference 1).

SYNFFH
Symmetrizes far field moments.
of Appendix I (Reference 1).

See PANAIR Theory Document,Section 4

TANGOP
Computestangent vector at Control point according to user option. See
PANAIR User's Manual, Section 7.4 (Reference 2).

TRICHK
Checkspanel in networks for short edgeswhich indicate panel is
triangular.

UNISPL
Defines unit spline vector. See Appendix 4-K.

UPDOWN

Calculates upstream downstream parameters. See Appendix 4-J.3

USEABT

Defines abutments according to user specification. See AppendiX 4-I,
and the PAN AIR User's Document, Section B.3.5 (Reference 2).

USROUT

Copies user boundary condition data to output array.

VECUN_I
Assembles spline matrix from spline vectors.

VECUNV

Assembles spline vectors from coefficients of constrained least squares

fit and spline vectors of points used in fit.

4.22

W

V

L
-v

XHLOC

Computes extra hypothetical locations of control points which are used

to match source, doublet or vorticity strength. See PAN AIR Theory

Document, Appendix G (Reference i).

XIETAV

Computes a local two dimensional coordinate system for use in computing

splines at points on the interior of a network. See Appendix 4-K and
the PAN AIR Theory Document, Section 1.2.3 of Appendix I (Reference 1).

XSCRIB
Transcribes DIP boundary condition coefficients (stored one per dataset)

into a form required by DQG (all coefficients for one control point in

one dataset).

XTEND

_Computes the first four rows of the extension matrix for source design
II networks. See PAN AIR Theory Document, Section 2.1.3 of Appendix I.

WAKGAP

Computes spline vectors for wake networks and calls routine which

defines spline vectors for gap fil|ing panels.

WTLSQ
_Defines upstream weighting coefficient for computing source and doublet

splines. See Appendix 4-K and PAN AIR Theory Document, Section 1.2.4 of

Appendix I (Reference 1).

"-I 4.23

V .

v

Panel

Abutment

Singularity and control point location

Networks

Figure 4.1- Illustration of Network, Abutment and Panel

4.25

PRECEDING PAGE BLANK NOT FILMED II_E_INTENTIONAI_LY BLANK

-ira

DQG TOP LEVEL

OVERLAY (0,0)
DQG

Initialize Program
and Call Other

Overlays

n Im_ imm@-m_ mm_

OVERLAY (1,0)
OPENER

Open Databases

Copy and
Transcribe DIP

Data

OVERLAY (2,0)
NETDEF

Jompute Network
Related

Properties

y

I

I
I
|

|1 IIINIII, H I H i H H H iI_- H H IiII
F

OVERLAY (4,0)
BNDYDF

Define Control

Points and Assign

Boundary Conditions

y

OVERLAY (5,0)
TOPSPL

-- Compute Outer and

Edge Spline Vectors _I

Secondary Overlays) It

/

MAGiRHS

MDG

OVERLAY (7,0)

SUMMRY

Mark Database
)lete and Print

Global Summary

mm-_ am_ m N _

OVERLAY (3,0)
EDGDEF

-- Compute Abutment

Properties
(Secondary Overlays)

I 2 3 4 5 6

,i

mm

OVERLAY (6,0)
PANDEF

Compute Panel
Data and

Spline Matrice_

Output File

4.26

Figure 4.2-Top Level Structure of DQG

y

OVERLAY (3,0)

EDGDEF

Compute Abutment _] Abutment I

"V

OVERLAY (3,1)
PRABUT

Define User

Abutments; First

Stage of Auto Search

I OVERLAY (3,2)

ABTMNT

Complete Automatic
Abutment Search
Check Abutments

• i

IOVERLAY (3,4)

MATCH
!

IAssign Matching

_'_doge_sand corner

OVERLAY (3,5)

GAPPNL

Add gap-filling
panels

OVERLAY (3,3)
GAPSIZ

Compute Gap
Sizes

r

OVERLAY (3,6)
ADCPSG

ii

Add extra control

points and singularity • I I
parameters and computel I

extra hypothetical

locations |I

y

v

Figure 4.3-Top Level Structure of Overlay (3,0)

4.27

OVERLAY (5,0)
TOPSPL

Call Secondary
Overlays

T

OVERLAY (5,I)
SAEDGS

Compute Smooth

Abutment Splines

r

DQG

OVERLAY (5,2)
SPLINR

Compute Network
Wide Splines

V

Figure 4.4-Top Level Structure of Overlay (5,0)

4.28

_J

MEC

DIP

DIP:
NETWK-SPEC
PANEL-COORDS
USER-ABUT
GLOBAL-PRINTS
TANG-VEC
CLOS-COND
COEF-GEN-BC
NETWK-BDC

OVERLAY (I,0)

OPENER

\{
GLOBAL
NETWK-SPEC
PANEL-CORNER-COORDS
USER-ABUT
NETWK-BNDY-CONDN-IN
CLOSURE-DATA-IN
CLASS-5-BC-DATA

DIPDAT DQG)

Figure 4.5-Structure and Data Flow of Overlay (1,0)

4.29

DQG

NETWK-SPEC

r
OVERLAY(2,0)

NETDEF

PANEL-CORNER-COORDS

SINGULARITY-MAP

PANEL-CORNER-COORDS
FINE-GRID-COORDS

NETWK-SPEC

DFEDGE
EDGCHK

INDCTR
TRICHK

FINGRD

SINGDF

CONTPT

PRTNET

y

m

FINE-GRID-COORDS
EDGE-POINT-COORDS

SINGULARITY-MAP
SINGULARITY-SPEC

CONTROL-PT-SPEC

y

CORNER POINTS

FINE GRID POINTS

Figure 4.6-Structure and Data Flow for Overlay (2,0) V

4.30

v

EDGE-POINT-COORDS
NETWK-SPEC

/
IOVERLAY (3,1)[

PRABUT

USER-ABUT

USEABT

NETWK'SPEC_ I

EDGE-POINT-COORDS

EDGLST

SEARCH-LIST NETABT

,ABUTMENT-SPEC

iSEARCH-LIST

SPECIAL-POINTS

I-ABUT

"v Figure 4.7 - Structure and Data Flow for Overlay (3;1)

4.31

DQG

NETWK-SPEC
EDGE-POINT-COORDS

3UTMENT-SPEC

d
J

.y
I-ABUT

ABUT-KEYS

OVERLAY (3,2)

ABTMNT

Y

EXPANDED-ABUTMENT

r

ABUT-KEYS
EXPANDED-ABUTMENT

ABUTMENT-SPEC

y

ABUTMENT-SPEC

NETWK-SPEC
PANEL-CORNER-COORDS

SPECIAL POINTS
SINGULARITY-MAP

I

ABXPND

CONABT

SEARCH

CHECK

EDGPRP

ABUTMENT-SPEC 0
ABUT-KEYS
EXPANDED-ABUTMENT

ABUTMENT-SPEC

SEARCH-LIST

SPECIAL-POINTS

I
ABUTMENT-SPEC
SPECIAL-POINTS

SINGULARITY-MAP
SINGULARITY-SPEC

DQG

y

y

r

y

)

4.32

Figure 4.8 -Structure. and Data Flow for Overlay (3,2)

v ABUTMENT-SPEC
EMPTY-SPACE-ABUT

/ I MATCH

. =! EMATCH

NETWK-SPEC I

ABUTMENT-SPEC
EMPTY-SPACE-ABUT

y

ABUTMENT-SPEC _I
EMPTY-SPACE-ABUT
INTERSECTION

ABUTMENT-SPEC "_]

EMPTY-SPACE-ABUT I

INTERSECTION

INTRSC

ASSIGN .

y

INTERSECTION

r

ABUTMENT-SPEC
EMPTY-SPACE-ABUT

()oqG)

Figure 4.9-Structure and Data Flow for Overlay (3,4)

4.33

DQG

ABUTMENT-SPEC
NETWK-SPEC
GAP-SIZE

)r OVERLAY (3,5)

GAPPNL
Y

ABUTMENT-SPEC
DQG

EDGE-POINT-COORDS

PRMEDG

DEFPNL

POSPNL I

y

GAP-PANEL

y

GAP-PANEL

W

4.34

Figure 4.10-Structure and Data Flow for Overlay (3,5)
V

V

v

DQG)

NETWK-SPEC

SPECIAL-POINTS

I
OVERLAY (3,6)]

iADCPSG

y

NETWK-SPEC

EDGE-POINT-COORDS

ABUTMENT-SPEC

ABUTMENT-SPEC

SPECIAL-POINTS

CONTROL-PT-SPEC

SINGULARITY-MAP

SINGULARITY-SPEC

XHLOC

EXTRA-HYPO-LOC

r

HTCHPT

SPECIAL-POINTS

jm.-_

V

Figure 4.11-Structure and Data Flow for Overlay (3,6)

4.35

DQG

NETWK-SPEC

PANEL-CORNER-COORDS

/_ [OVERLAY(4,0)BNDYDF

NETWK-BNDRY- IN

CLA$S-5-BC-IN

y

CLASS-5-BC-IN

CONTROL-PT-SPEC

GETBC

PANEL-CORNER-COORDsY I,

SPECIAL-POINTS

CONTROL-PT-SPEC

CENTCP

CONTROL-PT-SPEC

BNDRY-CONDN-SPEC

B-POINTER

._I EDGECP I
CONTROL-PT-SPEC

BNDRY-CONDN-SPEC

B-POINTER

I

°I

4.36

Figure 4.12-Structure and Data Flow for Overlay (4,0) V

V

DQG)
ABUTMENT-SPEC

OVERLAY (5,1) 0

SAEDGS

DQG

PANEL-CORNER-COORDS

Ira.

w

SINGULARITY-MAP

EDGE-POINT-COORDS

NETWK-SPEC

B-SPLINE-DOUBLET

B-SPLINE-DOUBLET

PTSFIL

SNGFIL

l

PARMSA

COARSP

FINESP

B-SPLINE-DOUBLET

INTERIOR-SPLINE

B-SPLINE-DOUBLET

INTERIOR-SPLINE

y

y

Figure 4.13-Structure and Data Flow for Overlay (5,1)

4.37

NETWK-SPEC

OVERLAY(5,2

SPLINR

PANEL-CORNER-COORDS
EDGE-POINT-COORDS

-MAPr -SPLINE-SOURCE

PANEL-CORNER-COORDS

EDGE-POINT-COORDS

SINGULARITY-MAP
SPECIAL-POINTS
INTERIOR-SPLINE

B B-SPLINE-DOUBLET

SINGULARITY-MAP

4.38

PANEL-CORNER-COORDS

EDGE-POINT-COORDS
SINGULARITY-MAP
SPECIAL-POINTS

B-SPLINE-DOUBLET

EDGE-POINT-COORDS
STNGULARITY-MAP
SPECIAL-POINTS

B-SPLINE DOUBLET
GAP-PANEL

ANALS

ANALD

ANDFW

DSGNIS

DSGN2S

DSGNID

WAKGAP

Figure 4.14 - Structure and Data Flow

B-SPLINE-SO_RCE

B-SPLINE DOUBLET

B-SPLINE-SOURCE

B-SPLINE-DOUBLET

B-SPLINE-DOUBLET

for Overlay (5,2)

V

V

L

DQG

NETWK-SPEC

PANEL-CORNER-COORDS

GAP-PANEL 1

OVERLAY (6,0)

' _ PANDEF

r

GAP-SIZE

Y

B-SPLINE-SOURCE

B-SPLINE-DOUBLET

PANEL-SPEC

PANEL-SING

GEOMQU
y

GAP-SIZE

SPLINM

y DQG

FFMOM

Figure 4.15-Structure and Data Flow for Overlay (6,0)

4.39

DQG

/

NETWK-SPEC

GLOBAL

r

OVERLAY (7,0)

SUMMRY

r

BNDRY-CONDN-SPEC

BNDRY-CONDN-SPEC

r

NETWK-SPEC

y

GLOBAL

NETWK-SPEC

DATA-BASE-HEADER

PBCDAT

PCPDAT

PGNDAT

w

Boundary Condition Data

Y

Control Point Data

Global Data

Ne_ork Data

V

Figure 4,16-Structure and Data Flow for Overlay (7,0)

4.40

W

APPENDIX 4-A TREE STRUCTURE

V"

The tree structure diagram of the DQG module has been deleted from this
document. It is, however, available on the installation tape.

x._i 4-A. 1

V

V

APPENDIX 4-B

FUNCTIONAL DECOMPOSITION OF DQG

This appendix describes the functional decomposition of DQG, that is, an
outline form of the modular structure of DQG organized by task. Where a

particular task is realized as a subroutine or subroutines in DQG, the

subroutine name is listed in parentheses after the textual description of the
operations which are performed. It is important to note that the execution

sequence of each of the levels of a modular decomposition is not necessarily
in accordance with the alphabetical order of _he outline form. The control

structure of the program (which is described in the comments within the

particular subroutine) determines the execution sequence of the submodules.

The alphabetical listing of the submodules is merely a listing device to guide
the reader to particular sections of the code.

4-B.l

V

V

v"

4-B.I Functional Decomposition of DQG

A. Open Database and Transfer Data from DIP database to DQG Database.

(OPENER) [Overlay (l,O)]

Ae Retrieve Information from MEC Database

A. Open the MEC Datbase (DBOPEN)

B. Define the SDMS Map (DSMAP/DVMAP/ENDMAP)
C. Get the Run, User and Problem ID's (ESGET)
D. Check the file for the Databases (CHPADB)

E. Close the MEC Database (DBCLOS)

B. Transfer Data from DIP to DQG Database (DIPDAT)

A. Define SDMS Maps (DSMAP/DVMAP/SVMAP/ENDMAP)
B. Get the Global Data (ESGET)
C. Get Network Data and Transform

D. Process User Abutment Information (BNDYIN)

E. Process Boundary Condition Information

A. Define Additional SDMS Maps (DSMAP/DVMAP/SVMAP/ENDMAP)
B. Get Network Data (ESGET)

C. Clear Boundary Condition Arrays
D. Define Class One BC Data

E. Transcribe BC Data (XSCRIB)
A. Initialfze

B. Modify Counter with Smear Option (DSCT)
C. Define User Class and Number of BC (NBCLAS)
D. Get DIP Database Data (ESGET)

E. Clear BC Arrays (ZERO)

F. Compute Lattice Indices for BC Data (LATBC)
G. Copy BC Data to Output Array (COPYBC)

H. Write BC Data to DQG Database (ESPOR)
F. Transcribe Closure Data (CLOSTR)

Ao

B.
C.

D.
E.

F.
G.

H.

I.

J.
K.

Define Number of Parallel and Perpendicular Panels
Define Lattice Increments
Define Lattice Indices

Clear Closure Arrays
Define Panel Indices

Fill Array Indices
Get Data from DIP (ESGET)

DefineS.c ale Coefficients

Get Index of Value Array
Add Contributions to Mass FLux and Source Terms

Write Data to Database (ESPUT)

C. Close Database (PACLOS)

PRECEDING PAGE BLAI_K NOT FILMED

4-B.3

B. Compute Network Defining Quantities (NETDEF) [Overlay (2,0)]

Ae Open Database and Define Maps

A. Open DQG Database (PAOPEN)
B. Define Maps (MAPB)

B. Get Network Data

Co

Do

Eo

Define Edge Point Coordinates (DFEDGE)
A. Initialize

B. Get Column of Points (ESGET)

C. Store Corner Points for Edge Four and those Adjacent to Edge
Four in Reverse Order

D. Store First and Second Corner Points for Edge One and its

Adjacent Row _. _
E. Store Last and Next to Last Corner P0_nts for Edge Three and its

Adjacent Row (Reyer_Qrder) i_.............

F. Store Corner Points for Edge Two and those Adjacent to Edge Two

G. Write Edge Point Coordinates to Database (ESPUT)

Check Network Edges (EDGCHK)

Ao

B.

C.
D.

E.
F.

Calculate Network Edge Length (EDGCAL)
Diagnose Collapsing Edge Error

Collapse the Network Edge (COLAPS)
Diagnose Collapsing Edge Error

Write Changed Coordinates to Database (ESREP)

Diagnose Adjacent Collapsed Edge Errors

Find Indicial Center of Network (INDCTR)

F. Get a Columns of Corner Points (ESGET)

G. Extract Panel Corner Points

H. Check for Triangular Panels and High Aspects Ratio (TRICHK)

I. Find Fine Grid Coordinates (FINGRD)

J. Place Fine Grid Points on Database (ESPUT)

Re Define Singularity Indices (SINGDF)
A. Establish Network Wide Variables

A. Extract from Common Blocks NETWK and SINGLR
B. Set to Default Values

Bo

C.

Generate Singularity Specifications for All Network Panels
(SINGPAN)

Generate Singularity Specifications for Doublet Network Edges
Ao

B.

C.
D.

E.
F,

Doublet Analysis Edges (SNGDA)

Doublet Design I Edges (SNGSDI)
Doublet Design II Edges (SNGSD2

Doublet Wake I Edges (SNGDWI)

Doublet Wake II Edges (SNGDW2)
Forward Weighted Doublet Analysis Edges (SNGDFW)

4-B.4

V

_a

Lo

M.

N.

D. Generate Singularity Specifications for Source Network Edges

A. Source Design I Edges (SNGSDI)
B. Source Design II Edges (SNGSD2)

E. Nullify Singularities at Collapsed Edges (SNGNUL)

Index Control Points (CONTPT)

Replace NETWK-SPEC Data Set (ESREP)

Print Requested Network Data (PRTNET)

v

4-B.5

Ce Compute Edge Defining Quantities (EDGDEF) [Overlay (3,0)]

A. Find Pairwise Abutments and Define User Abutments (PRABUT)

[Overlay (3,1)]

Ai Define User Abutments (USEABT)

Ae

B.
C.

D.
E.

Fe

G.
H.

Initialize Abutment Counters

Get User Abutment Data (ESGET)

Define Reference Network

Define Whole Edge to be in Abutment
Find Closest Corner Point to Start/End Point of Reference

Edge
Write Abutment Data to Database (ESPUT)

Define Total Number of Abutments
Define Search List for Automatic and Empty Space Abutment
Search (SEARCH)

B. Get Network Data (ESGET)

C. Setup Blank Common Storage (INITIR,STARTR)

D. Get Edge Point Coordinates (ESGET)

Ee Search for _etwork Abutment (NETABT)

AI

B.
C.

D.

E.
F.

G.
H.

I.

Get Search List for Current Reference Edge (ESGET)

Define Candidate Edges (EDGLST)
Define Search Pointers

Compute Minimum Distance from Point to Line Segment

Determine Nearby Segment Found
Start a New Pairwise Abutment

Extend an old Abutment
Terminate the Abutment

Determine Plane of Symmetry Abutment

F. Delete Blank Common Storage (DELETR)

V

4-B. 6

V

v

Bo Construct Abutments and Check Rules (ABUTMNT) [Overlay (3,2)]

Ao Generate Expanded List of Abutments (ABXPND)
A. Make List of Pairwise Abutments in Which Network Takes Part

B. Sequence Corner Point Indices

C. Define Expanded Abutment Arrays
D. Add Plane of Symmetry to Expanded Abutment Arrays

B. Contract Expanded Abutments to Form Abutment Description (CONABT)

Ao

B.

C.

D.
E.
F.

G.

H,
I.

J.
K.

Get Expanded Abutment Data (ESGET)
Find a Reference Edge

Compute Quarter and Three Quarter Point Coordinates (CI3QTR)
Computer Distance Between Quarter Points (DISTQT)

Add Network Edge to Abutment
Compute Distance from Quarter Points to Plane of Symmetry

Add Plane of Symmetry to Abutment

Copy Network Edges to Output Array
Copy Plane to Symmetry to Output Array
Clear Associated Information
Write Abutment Data (ESPUT)

C. Get Abutment Data (ESGET)

D. Compute Associated Edge Properties (EDGPRP)

E. Replace Abutment Data (ESREP)

F. Define Search List for Empty Space Abutments (SEARCH)

Gu Check Abutment Rules (ESGET)

A. Get Abutment Data (ESGET)

B, Check Smooth Abutment Rules

C. Define Null Singularity Rules

D. Count Number of Matching Edges
E. Check Plane of Symmetry Rules (CHKPOS)

4-B.7

Co

Dm

Compute Gap Sizes (GAPSIZ) [Overlay (3,3)]

A. Initialize

B. Get Abutment Data (ESGET)

C. Define Start and End Pointers

D. Define Two Panel Corner Points

E.

F.

G.

H. Write Gap Size to Database (ESPUT)

Define Empty Space Abutments (MTABUT)

A. Get Abutment Data (ESGET)

B. Compute Edge and Point Properti.es (EDGPRP)

C. Replace Abutment Data (ESREP)

D. Define Empty Space Abutment

E. Write Empty Space Abutment

Find Closest Point on Second Edge to Panel Point on First Edge

Find Minimum Distance to Closest Line Segment

Define Gap Size as Maximum of Minimum Distances

V

I

W

4-B.8

E. Assign Matching Data to Edges (MATCH)[Overlay (3,4)]

V

A. Get Abutment Data (ESGET)

Bo Assign Network Edge to Abutment (EMATCH)
A. Get Network Data (ESGET)

BQ

C.

Do

E.
F.

G.

Count Matching Edge

Find Leading Edge of Most Downstream Edge Which is also a

Supersonic Edge
Choose Finest Network

Define Matching Edge

Diagnose Fatal Error
Diagnose Matching Doublet Pointer for Empty Space Abutment

C. Replace Abutment Data (ESREP)

Do Define Abutment Intersections (INTRSC)

A. Get Abutment Data (ESGET)

B. Extend the Abutment List

C. Extend the Corner Point Map
D. Extend the Connection List

E. Sequence Connections by Downstream Parameter
F. Initialize Arrays for Intersection Description

G. Assign Entries to Intersection List (NTRLST)
A. Determine Corner Point Indices from Connection Data
Bo

C.

D.

E.

F.

H.

Define New Intersection List

Define Intersection Index

Add to Old Intersection List

Combine Intersections

Change Sign of Abutment Index for Closed Loop
Define Number of Intersections

Eo Assign Corner Points for Doublet Matching (ASSIGN)
A. Get Intersection Data (ESGET)

B. Count Distinct Abutments
C. Count Distinct Corner Points and Sequence Them

D. Diagnose Error in Intersection Data
E. Initialize Assignment Counter

F. Prepare Data Needed for Assignment
G. Choose Corner Point for Assignment (ABTINT)

H. Assign Corner Points to Abutments (ABASGN)
A. Define Abutment Index

B. Get Abutment Data (ESGET)

C. Define Matching Data

D. Increment Number Assigned

V

4-B.9

FB Add Gap Filling Panels (GAPPNL) [Overlay (3,5)]

A. Get Abutment Data (ESGET)

B. Define Panel Limits

C. Define Shift Index for Panel

D. Define Panel Index

E. Set Indicator for Gap Size Exceeded

F. Initialize Gap Panel Construction

G. Parameterize the Edge (PRMEDG)

H. Merge and Sequence Parameterizations

Io Define Gap Panel for Network Edges (DEFPNL)
A.

B.
C.

De

E.

F.

Initialize

Compute Four Coordinates from a Pair of Parameterizations

Compute Gap Panel Edge Lengths and Count Number of Short
Edges
Define Gap Panel Data

Write Gap Panel Element Set (ESPUT)
Error Exi t

Jo Define Gap Filling Panel for Plane of Symmetry (POSPNL)
Ao

B.

C.

Do

E.

F.

G.
H.

Find Plane of Symmetry Reference
Get.Coordinate Data (ESGET) •

Define Start and End Points and Lattice Indices of First
Point

Define Gap Panel Corner Points
Define Gap Panel Data

Count Number of Short Edges

Write Gap Panel Element Set (ESPUT)
Diagnose Error

V

V

4-B.IO

G. Add Extra Singularities and Control Points (ADCPSG) [Overlay (3,6)]

V

V

A. Get Network Data (ESGET)

B. Increment Number of Control Points

C. Assign Control Point Index

D. Add Extra Singularity Parameter

E. Replace Special Points Dataset (ESREP)

Fo Assign Extra Hypothetical Locations (XHLOC)
A. Get Abutment Data (ESGET)

B. Compute Extra Hypothetical Location for Corner Point
C. Parameterize Network Edge Segment (PRMEDG)
D. Define Extra Hypothetical Locations for Edge Midpoints

Go Define Flags for Matching Boundary Conditions
A. Get Abutment Data (ESGET)

B. Count Number of Planes of Symmetry in Abutment
C. Count Distinct Matching Pointers

D. Find Edge Segment for Matching

E. Assign Matching Condition

F. Replace Special Points Dataset (ESREP)
G. Define Special Points Dataset for Collapsed Edges

A. Define First and Last Points for Each Edge

Bo

C.
D.

Eo

F.
G.

H.

Get Special Points Dataset (ESGET)
Check if Matching Pointer Set for Null Control Point

Define Value for Opposite Corner Point Qn Collapsed

Edge

Replace Special Points Dataset (ESREP)

Define Special Points Dataset for Collapsed Edge
Define Matching Value for Point
Write Special Point Database for Collapsed Edge (ESPUT)

"-_ 4-Boil

DI Compute Control Point and Boundary Condition Data (BNDYDF) [Overlay

(4,0)]

A. Open Database and Define Maps (PAOPEN,DSMAP)

B. Get Network Data (ESGET)

Cl Get Network-Wide Boundary Conditions (GETBC)

A. Get BC Data (ESGET)

B. Compute Average and Difference Coefficients
C. Check for Nearly Vanishing Coefficients

D. Determine Number of Boundary Conditions Required

E. Copy Second Columns of Corner Points to First Column

FI Compute Center Control Point Data (CENTCP)

A. Compute BC Data

B. Compute Geomtric Data

C. Assign Boundary Conditions (ASGNBC)
A. Prepare User Boundary Conditions (ASGNU)

A. Initialize Characterization
B. Redefine BC Coefficients

C. Define C and D Vectors

D. Assign Characterizations and Sequence User BC by
Hierarchy

B. Assign Matching BC (ASGNM)
A. Test Point for Closure Point

B. .Define Vanishing C and D Vectors (ZERO)
C. Test Point for Closure Point
D. Test Point for Source Matching Point

C. Choose Required Boundary Conditions (CHOOSE)
A. Clear Output Array (ZERO)
B. Initialize BC Pointers

C. Copy DQG BC Data to Output Array (DQGOUT)

D. Copy User BC Data to Output Array (USROUT)
E. Copy Degenerate Data to Output Array (DEGOUT)
F. Add Default BC if Insufficient BC Assigned

D. Define MAG and PDP Parameters (MPPARM)

E. Prepare Degenerate BC Data (DEGPRP)

F. Clear Number of DQG Boundary Conditions

G. Define Known Singularities (KNOWSP)

D. Replace Control Point Dataset (ESREP)
E. Write Boundary Condition Dataset (ESPUT)

V

4-B.12

Go

Ho

Compute Boundary Condition Data for Edge (EDGECP)
A. Get Coordinates (ESGET)

B. Get Network Wide BC (GETBC)

C. Compute Geometric Information for Corner Points (CCPGEO)
A. Define Panel Points

B. Define Subpanel-on Which Point Lies
C. Compute Normal and Conormal

D. Compute Recession Vector
E. Define Control Point Location

F. -Compute Tangent Vector (TANGOP)

G. Define Remaining Geometric Data
H. Copy BC Data into User BC Array

A. Copy Data

B. Check for Superinclined Subpanel and Modify
Boundary Conditions (MODBC)

D. Assign Boundary Conditions to Point (ASGNBC)
E. Replace Control Point Dataset (ESREP)
F. Write Boundary Condition Datasets (ESPUT)

G. Compute Geometric Data for Edge Midpoints (ECPGEO)
A. Define Panel Points

B. Compute Normal and Conormal Vector
C. Compute Recession Vector

D. Compute Tangent Vector (TANGOP)
E. Define Miscellaneous Geometric Data

F. Check for Superinclined Subpanel and Modify Boundary
Conditions (MODBC)

H. Compute the Kutta Tangent Vector

Close Database (PACLOS)

4-B.13

Ee Choose Source and Doublet Splines (TOPSPL) [Overlay (5,0)]

A. Compute Smooth Abutment Splines (SAEDGS) [Overlay (5,1)]
A. Open Database and Define Maps (PAOPEN,DSMAP)
B. Get Abutment DaICa (ESGET)
C. Choose Closest Network

D. Parametrize Smooth Abutment (PARAMSA)

E. Get Coordinates for Smooth Edge (PTSFIL)

F. Get Singularity Parameter Indices (SNGFIL)

G. Define Spline Vectors for Coarse Edge
.A. Define Unit Spline Vectors at End Points (UNISPL)
B. Define Spline Data for Corner Points (SALSQG)

A. Initialize Counter

B. Find Closest Corner Point on Fine Network (CCPFN)

C. Define Least Squares Data (DEFLSQ)

D. Define and Write Internal Spline Vector (INTERN)
E. Define Local Two Dimensional Coordinate System

(LOC2D)

F. Computer Transformtion to Local Two Dimensional
Coordinate System (SPLTRN)

G. Compute Weights for Fit (WTLSQ)
C. Define Lattice Indices for Point (FLIND)

D. Perform Constrained Least Squares Fit (CQLSF)

E. Diagnose Error

F. Print Warning for Poor Fit
G. Accumulate Spline Vector (VECUNV)

H. Write Spline Vector to Database (ESPUT)
I. Define Spline Vector for Edge Midpoint)SALSQE)

Ao

B.
C.

D.

E.
F.

G.

H.

Initialize Counter
Find Closest Corner Point on Fine Network (CCPFN)

Find Most Distant Center Point Adjacent to
Closeset Corner Point (MDCP)

Define Least Squares Data (DEFLSQ)

Define and Write Internal Spline Vector (INTERN)
Define Local Two Dimensional Coordinate System
(LOC2D)

Compute Transformation to Local Two Dimensional
Coordinate System (SPLTRN)
Compute Weights (WTLSQ)

He Define Spline Vector for Fine Edge (FINESP)
A. Choose Corner Points on Coarse Edge (CPCSFL)

B. Compute One Dimensional Quadratic Fit (QIDFIT)

C. Accumulate Spline Vector (VECUNV)

D. Compute Internal Spline Data
E. Write Spline Vector

I. Close Database (PACLOS)

w

4-B.14

v

Be Compute Spline Vectors for Network (SPLINR) [Overlay (5,2)]

A. Open Database and Define Maps (PAOPEN,DSMAP)
B. Get Network Data (ESGET)

C. Compute Source Analysis Spline Vectors (ANALS)
A. Initialize

B. Define and.Write Unit Spline Vectors (UNISPL)

C. Get Arrays of Coordinates
D. Compute Lattice Indices of Point (LATIND)

E. Compute Least Squares Spline for Point (SSPI3)
A. Compute Least Squares Data for Point (DATSI3)

A. Initialize
B. Check for One Dimensional Fit
C. Increment Counter

D. Define Least Squares Data for Point (LSQDAT)
E. Define Xi and Eta Vectors (XIETAV)

F. Compute Coordinate Transformation (SPLTRN)

G. Compute Weights (WTLSQ)
H. Perform One Dimensional Fit

B. Perform Bilinear Fit (CQLSF)

C, Diagnose Spline Error
D. Print Warning Message

E. Accumulate Spline Vector (VECUNV)
F, Write Spline Vector (ESPUT)

Do

Eo

Compute Spline Vectors for Source Design Network

A. Compute Fine Grid Lattice Indices

B. Define Unit Spline Vector (UNISPL) r:

C. Define Spline Vector.
D. Get Singularity Index for Point (SNGDEX)
E. Write Spline Vector (ESPUT)

Compute Doublet Analysis Spline Vectors (ANALD)
A. Initialize

B. Calculate Edge Spline Vectors
A. Define Coarse Lattice Indices

B. Define Lattice Indices for Point (LATIND)

C. Define Unit Spline Vectors (UNISPL)
D. Define Lattice Indices for Last Corner Point on

Edge

E. Write Spline Vector for Point (ESPUT)

F. Perform Analysis Edge Spline (NTEDGA)
A. Get Edge Coordinates (ESGET)

B. Find Edge Segments for Quadratic Fit (EDGSGQ)

C. Define Spline Vectors for Additional Corner
Points

D, Compute Spline Vectors for Corner Points
(CPANAL)

E. Compute Spline Vectors for Edge Midpoints
F, Define Spline Vectors for Collapsed Edge

C. Define Unit Spline Vectors at Center Points (UNISPL)
D. Get Array of Corner Points (ESGET)
E. Compute Lattice Indices of Point (LATIND)

4-B.i 5

Fo

G_

Ho

Compute Spline Vector for Point (SPLA)

A. Compute Least Squares Data for Surrounding Points
(DATANL)
A. Initialize

B. Define Lattice Indices

C. Increment Counter

D. Define Least Squares Data for Point (LSQDAT)

E. Define Infinite Weight for Point
F. Define Xi and Eta Vectors (XIETAV)

G. Compute Coordinate Transformation (SPLTRN)

H. Define Weights (WTSLQ)
B. Perform Constrained Least Squares Fit (CQLSF)

C. Diagnose Error

D. Print Warning for Poor Fit
E. Accumulate Spline Vector (VECUNV)
F. Write Spline Vector (ESPUT)

Compute Doublet Design Spline Vectors (DSGNID)

A. Initialize Limit Arrays

B. Compute Network Edge Spline Vectors
A. Define Lattice Indices for Point (LATIND)

B. Define Unit Spline Vector for Point (UNISPL)
C. Define Lattice Indices for Last Point on Edge

D. Write Spline Vector for Point

E. Perform Analysis Edge Spline (NTEDGA)

F. Perform Design Edge Spline (NTEDGD)
A. Initialize

B. Get Edge Coordinates (ESGET)
C. Find Edge Segments for Quadratic Fit (EDGSGQ)

D. Define Unit Spline Vector for Extra Points

E. Compute Start/End Points for Segment
(LATEDG)

F. Parametrize the Segment (PRMEDG)

G. Compute Intermediate Spline Vector for Edge
Midpoints (GAMVEC)

H. Define Lattice Indices (EDGLAT)

I. Compute Corner Point Spline Vector (CPDSGN)

J. Compute Edge Midpoints Spline Vectors
(EMDSGN)

C. Define Fine Grid Lattice Indices

D. Define and Write Unit Spline Vectors (UNISPL)

E. Get Arrays of Corner Points

F. Compute Spline Vectors for Specified Point
A. Compute Lattice Indices (LATIND)
B. Define Shifts and Limits

C. Compute Spline Vector (SPLA)

Compute Wake or Gap Panel Spline Vectors (WAKGAP)

A. Define Corner Point Lattice Indices
B. Calculate Wake I Edge Spline

A. Find Matching Edge

B. Define Unit Spline Vector for Corner Points

4-B.16

J

V

Io

C. Perform Edge Spline for Matching Edge (NTEDGA)

C. Calculate Wake II Edge Spline

D. Diagnose Error

E. Define Spline Vectors for Interior of Wake Network
F. Define Spline Vectors for Gap Filling Panels (GAPSPL)

A. Get Spline Vector for Point (ESGET)
B. Define Network Data

C. Compute Lattice Indices (LATIND)

D. Compute Geomtric Weight Matrix
E. Define Weight Vector

F. Accumulate Spline Vector (VECUNV)
G. Write Spline Vector to Datbase (ESPUT)

Compute Forward Weighted Doublet Analysis Splines (ANDFW)

A. Initilize
B. Calculate Edge Spline Vectors

A. Define Coarse Lattice Indices
B. Define Lattice Indices for Point (LATIND)

C. Define Unit Spline Vectors (UNISPL)
D. Define Lattice Indices for Last Corner Point on

Edge

E. Write Spline Vector for Point (ESPUT)
F. Perform Analysis Edge Spline (NTEDGA)

A. Get Edge Coordinates (ESGET)

B. Find Edge Segments for Quadratic Fit (EDGSGQ)

C. Define Spline.Vectors for Additional Corner
Points

D. Compute Spline Vectors for Corner Points
(CPANAL)

E. . Compute Spline Vectors for Edge Midpoints
F. Define Spline Vectors for Collapsed Edge

C. Define Unit Spline Vectors at Center Points (UNISPL)
D. Get Array of Corner Points (ESGET)

E. Compute Lattice Indices of Point (LATIND)

4-B.17

Fo

4-B.18

Compute Panel Defining Quantities (PANDEF) [Overlay (6,0)]

A. Open Database, Define Maps and Get Data for Network

B. Compute Geometric Quantities (GEOMQU)

A. Compute Panel Defining Points
B. Compute Panel Geometric Data (PANGEO)

A. (Not Used)

_. Compute Normal and Conormal Vector

C. Compute Panel Diameter and Radius

D. Define Panel Updatability

E. Compute Skewness Parameters
F. Compute Projected Area of Panel and Subpanels

G. Compute Average Plane Corner Point Coordinates
C. Compute Subpanel Geometric Data (SUBGEO)

A. Compute Origin of Subpanel Coordinate System
B. Compute Normal and Conormal Vectors
C. Compute Transformation to Subpanel Coordinate System
D. Compute Subpanel Pointsin Subpanel Coordinate System

E. Compute In-Plane Side Normals
F. Define Zero Value for Data (Error Exit)

D. Compute Gap Size to Panel Size Ratio (PANSIZ)
A. Initialize

B. Compute Unit Normal to Panel Edge

C. Define Vector from Center to Edge Midpoint
D. Compute Inner Product of Vectors (VIP)
E. Get Gap Size for Panel (ESGET)

F. Compute Gap Size to Panel Size Ratio
G. Replace GAP SIZE Dataset (ESREP)

E. Compute Edge Normal in Subpanel Eight Coordinate System
C. Assemble Spline Matrices (SPLINM)

A. Construct Outer Spline Matrix (SDSPLM)
A. (Not Used)

B. Initialize Counter

C. Obtain Spline Vector (ESGET or DCSASP)
D. Accumulate Spline Vector to Form Matrix (VECUNM)

E. Clear Spline Matrix (ZERO)

B. Construct Least Squares Defining Point Vectors
C. Construct Subpanel Spline Matrix (SUBSPL)

A. Construct the Geometric Matrix

B. Invert the Geometric Matrix (JORDAN)
C. Assemble the Extension Matrix

D. Multiply the Inverse Geomertric and Extension Matrices
(CAB)

E. Define Zero Subpanel Spline Matrices (ZERO)
D. Construct Kappa Vectors (KAPVEC) _

A. Clear Kappa Vectors
B. Define Skewness Factors

C. Compute Kappa Vectors for Subpanels
D. Scale All Kappa Vectors

E. Construct Panel Subspline Matrix

A. Transform Point to Subpanel Eight Coordinate System
B. Define Weights According to Singularity Type

C. Compute Constrained Quadratic Least Squares Fit (CQLSF)
D. Define Zero Matrix (ZERO)

F. Write Fatal Error

G. Define Singularity Indices for Panel

V

V

V

Fo

Do Compute Far Field Moments (FFMOM)

A. Compute Basic Far Field Moments
A. Initialize to Ze+'o (ZERO)
B. Define Points

C. Compute Normal Distance from Origin to Line Segment
(VIP)

D. Compute Moments Along Line Segment

E. Compute. G(M,N) Along Line Segment
F. Accumulate Basic Far Field Moment Contributions

B. Compute Source Far Field Moments (SRCFFM)

A, Initialize to Zero (ZERO)

B. Define D Tensor (DTENSR)

C. Compute Monopole Term
D. Compute Dipole Term

E. Compute Quadrupole Term
F. Accumulate Contributions

G. Symmetrize Far Field Moments (SYMFFM)

C. Compute Doublet Far Field _1oments (DBLFFM)
A. Initialize to Zero (ZERO)
BQ

C.
D.

E.

F.

G.

Define D Tensor (DTENSR)

Compute Monopole Term
Compute Dipole Term

Compute Quadrupole Term
Accumulate Contributions

Symmetrize Far Field Moments (SYMFFM)

Summarize Execution (SUMMRY)

A. Print Global and Network Summary (PGNDAT)
A. Print Header at Top of Page
B. Write Global Data to Output File
C. Get Network Data (ESGET)

D. Write Network Data to Output File

BI Transform Data Representation
A. Get Network Data (ESGET)

B. Redefine Singularity Type
C. Redefine Edge Type

D. Replace Network Data (ESREP)

Ce Print Control Point Data (PCPDAT)
A. Initialize

B. Get Data (ESGET)

C. Increment Counter

D. Print Header

E. Compute and Write Data to Output File

DI Print Boundary Condition Data
A. Get Data (ESGET)
B. Increment Counter
C. Print Header

D. Compute and Write Data to Output File

E. Close Database (PACLOS)

4-B.19

Go Summarize DQG Operations
A.
B.

C.
D.

E.
F.

G.
H.

(SUMMRY) [Overlay (7,0)]
Open Database (PAOPEN)

Define Maps (DSMAP,SVMAP,DUMAP)
End Maps (ENDMAP)

Replace Global Data (ESREP)
Print Global and Network Data (PGNDAT)

Print Control Point _ata (PCPDAT)

Print Boundary Condition Data (PBCDAT)
Close Database (PACLOS)

V

4-B.20

APPENDIX4-C

DATABASECOMMUNICATIONSCHART

Tables 4-C.l through 4-C.3 describe the data flow within DQG. The
"First Form" chart (Table 4-C.l) lists the dataset namein alphabetical order
by overlay with its corresponding mapnamesused within the overlay and with
the destination of the data, usually a commonblock. Table 4-C.2 is the
"SecondForm" of the chart. It contains the sameinformation but has it
listed under MapNamein alphabetical order. Table 4-C.3 lists the common
blocks in alphabetical order by overlay and showsto which dataset the
information within the block connects. In the column labelled COMMONBLOCK
the word "Dynamic" sometimesappears. In this case the data is not
transferred to a commonblock but is transferred to whatever variables are
mentined in the I/O transfer call to ESGET,ESPUTor ESPOR.See Section 13 of
this document.

4-C.l

DATABASE

Table 4-C.l Data Flow for DQG First Form

DATASET-NAME

MEC DATA-BASE-HEADER

MEC MACRO-OPTIONS

DIP CLOS-COND

DIP COEF-GEN-BC
DIP GLOBAL

DIP GLOBAL-PRINTS
DIP NETWK-BDC

DIP NETWK-SPEC
DIP PANEL-COORDS

DIP TANG-VEC

DIP USER-ABUT

Overlay (I,0)

MAP NAME _

IDS

RUNOPT

DIPCLOSDAT

CGBCMP

GLOBAL-IN
PRINT-OPT

NETBDC

NETMAP
PAN-COR-PT

TVECTCOEFF

USABIN

COMMON BLOCK

/RUINDS/
local

/GENBCD/
/GENBCD/

/GLOBAL/

Dynamic
/NETBDC/

/NETWK/
/COORDS/

/GENBCD/

/ABUT/

SUBROUTINE

OPENER
OPENER

BNDYIN
BNDYIN

DIPDAT
DIPDAT

BNDYIN
DIPDAT

DIPDAT
BNDYIN

DIPDAT

DQG CLASS-5-BC-OATA
DQG CLOSURE-DATA-IN

DQG GLOBAL
DQG NETWK-BNDRY-CONDN-IN

DQG NETWK-SPEC
DQG PANEL-CORNER-COORDS

DQG USER-ABUT

DATABASE DATASET-NAME

DQG
DQG

DQG
DQG

DQG
DQG

DQG
DQG

CONTROL-PT-SPEC
EDGE-POINT-COORDS

FINE-GRID-COORDS

NETWK-SPEC

PANEL-CORNER-COORDS
SINGULARITY-MAP

SINGULAIRTY°SPEC
SINGULARITY-SPEC

CLASS

CLOSDIN
GLOB-DYN

BCDATIN

NETMAP
COORDS-GEN
USABUAT

Overlay (2_0)

MAP NAME

CNTRLPS
EDGPTS

FCNCORDS

NETMAP

CORNCOORDS
SINGMAP
SINGSPC

SINGSPEC

/NBCDIN/

/CLOSUR/
/GLOBAL/,Dynamic

/NBCDIN/
/NETWK/

Dynamic
/ABUT/

COMMON BLOCK

BNYDIN

BNDYIN
DIPDAT

BNDYIN
DIPDAT
DIPDAT
DIPDAT

SUBROUTINE

/CPGEOM/ MAPB

Dynamic MAPB

Dynamic MAPB
/NETWK/ MAPB

Dynamic MAPB
/SINGLR/ MAPB

/SINGLR/ MAPB

Dynamic MAPB

4-C.3

PRECEDING PAGE BLANK NOT FILMED BBGE.__)=_._tNIENT_n.-NAI_LI

DATABASE DATASET-N_IE

DQG ABUTMENT-KEYS

DQG ABUTMENT-SPEC

DQG CONTROL-PT-SPEC
DQG CONTROL-PT-SPEC

DQG EDGE-POINT-COORDS
DQG EMPTY-SPACE-ABUTMENTS

DQG EXPANDED-ABUTMENT
DQG EXTRA-HYPO-LOC

DQG GAP-PANEL
DQG GAP-SIZE

DQG I-ABUT
DQG INTERSECTION

DQG NETWK-SPEC
DQG NETWK-SPEC

DQG PANEL-CORNER-COORDS
DQG SEARCH-LIST

DQG SINGULARITY-MAP
DQG SINGULARITY-SPEC

DQG SINGULARITY-SPEC
DQG SPECIAL-POINTS

DQG USER-ABUT

Overlay (3,0)

MAP NAME

ABUTMENTS

ABUTMENT
CTLDEXMAP

CTLSPECDYN

EDGPTS
ESABUTMNT

EXPABUT
XHLOCCP

GAPPANEL
GAPSIZE

IABUTMAP
CONNECTION

NETMAP

NETWKS
COORDS-GEN
SEARCHLIST

SINGMAP
SINGSPC

SINGSPEC

SPECIALPT

USABUT

COMMON BLOCK

Dynamic

/ABUT/

Dynamic
Dynamic

Dynamic
/ABUT/
/EXPAND/
Local

/GAPANL/

Dynamic
/ABUT/

/MATCHD/

/NETWK/

Dynamic
Dynamic
/LIST/
/SINGLR/

/SINGLR/

Dynamic

/SPECPT/
/ABUT/

SUBROUTINE

ABUTMNT

EDGECP
ZHLOC

ADCPSG
EDGDEF

EDGDEF
EDGDEF

XHLOC
GAPPNL

EDGDEF
EDGDEF

MATCH

EDGDEF

EDGDEF
ABUTMNT
EDGDEF
EDGDEF

EDGDEF

EDGDEF

EDGDEF
EDGDEF

V

DATABASE DATASET-NAME

DQG BNDRY-CONDY-SPEC
DQG B-POINTER

DQG CLASS-5-BC-DATA

DQG CLASS-5-BC-DATA
DQG CLOSURE
DQG CLOSURE-DATA-IN

DQG CONTROL-PT-SPEC

DQG CONTROL-PT-SPEC

DQG CONTROL-PT-SPEC
DQG NETWK-BNDRY-CONDY-IN

DQG NETWK-SPEC
DQG PANEL-CORNER-COORDS

DQG SINGULARITY-MAP
DQG SINGULARITY-SPEC

DQG SPECIAL-POINTS

Overlay (4,0)

MAP NAME

BNDRY

BPOINT
CLASS5
XCLASS5D

CLOSURE
CLOSDIN
CNTRLPT

CTLDEXMAP

INDCTLMP

BCDATIN
NETMAP

COORDS-GEN

SINGMAP

SINGMAP
SPECIALPT

COMMON BLOCK

/BCDOUT/

/BCDOUT/
/NBCDIN/

/XBCDIN/
/CLOSUR/

/CLOSUR/
/CPGEOM/

Dynamic
Dynamic

/NBCDIN/
/NETWK/

Dynamic
/SINGLR/

Dynamic
/SPECPT/

SUBROUTINE

BNDYDF

BNDYDF
BNDYDF

BNDYDF
BNDYDF

BNDYDF
BNDYDF

BNDYDF
BNDYDF

BNDYDF
BNDYDF

BNDYDF
BNDYDF

BNDYDF
BNDYDF

V

4-C.4

Overlay (5,0)

DATABASE DATASET-NAME MAP NAME COMMONBLOCK SUBROUTINE

DQG ABUTMENT-SPEC
DQG ABUTMENT-SPEC

DQG B-SPLINE-SOURCE
DQG B-SPLINE-SOURCE

DQG B-SPLINE-DOUBLET

DQG B-SPLINE-DOUBELT

DQG B-SPLINE-DOUBLET
DQG B-SPLINE-DOUBLET

DQG EDGE-POINT-COORDS
DQG EDGE-POINT-COORDS

DG
D_G GAPPANELINTERIOR-SPLINE

DQG INTERIOR-SPLINE
DQG NETWK-SPEC
DQG NETWK-SPEC
DQG PANEL-CORNER-COORDS
DQG PANEL-CORNER-COORDS
DQG SINGULARITY-MAP
DQG SINGULARITY-MAP
DQG SPECIAL-POINTS

ABUTMENT /ABUT/
ABUTMENT /ABUT/
SPLINE-SRC Dynamic
SSPLINE /SPLINE/
DSPLINE /SPLINE/
DSPLINE /SPLINE/
SPLINE-DBL Dynamic
SPLINE-DBL Dynamic
EDGPTS Dynamic
EDGPTS Dynamic
GAP-PANEL /GAPAN/
INTSPLMP Dynamic
INTSPLMP Dynamic
NETMAP /NETWK/
NETMAP /NETWK/
COORDS-GEN Dynamic
COORDS-GEN Dynamic
SlNGMAP /SlNGLR/
SINGMAP /SINGLR/
SPECALPT /SPECPT/

SAEDGS
SPLTPR
SPLINR
SPLINR
SAEDGS
SPLINR
SAEDGS
SPLINR
SAEDGS
SPLINR
SPLINR
SAEDGS
SPLINR
SAEDGS
SPLINR
SAEDGS
SPLINR
SAEDGS
SPLINR
SPLINR

Overlay (6,0)

- j
v

DATABASE DATASET-NAME

DQG B-SPLINE-DBL

DQG BSPLINE-SRC
DQG GAP-PANEL

DQG GAP-SIZE
DQG MAG-PANEL-SPEC

DQG MDG-PANEL-SPEC

DQG NETWK-SPEC
DQG PANEL-CORNER-COORDS

DQG PANEL-CORNER-COORDS
DQG PANEL-SING

DQG PANEL-SPEC

MAP NAME COMMONBLOCK SUBROUTINE

SPLINE-DBL Dynamic

SPLINE-SRC Dynamic
GAPPANEL /GAPANL/

GAPSIZE Dynamic
MAGPSPEC /PANEL/

/SPLINE/

MDGPSPEC /PANEL/
/FFM/

NETMAP /NETWKI

COORDS-GEN Dynamic
CORNCOORDS /COORDS/

PANSING /SPLINE/

PANSPEC /FFM/
/PANEL/
/SPLINE/

PANDEF
PANDEF

PANDEF

PANDEF

PANDEF

PANDEF

PANDEF

PANDEF
PANDEF

PANDEF
PANDEF

Overlay (7,0)

DATABASE DATASET-NAME MAP NAME DATA SUBROUTINE

DQG BNDRY-CONDN-SPEC
DQG BNDRY-CONDN-SPEC
DQG DATA-BASE-HEADER
DQG GLOBAL
DQG NETWK-SPEC
DQG SPECIAL-POINTS

BCOUTDATA
CTLOUTDATA
DBHEADER
GLOB-DYN
NETMAP
SPECIALPT

Dynamic

Dynamic
Dynamic

/GLOBAL,Dynamic
INETWKI

/SPECPT/

PBCDAT
PCPDAT
SUMMRY
SUMMRY
SUMMRY
SUMMRY

4-C.5

DATABASE MAP NAME

MEC IDS

MEC RUNOPT

Table 4-C.2 Data Flow for DQG

Second Form

Overlay (l,O)

DATASET-NAME COMMON BLOCK

DATA-BASE-HEADER

MACRO-OPTIONS
/RUINDS/
local

DIP CGBCMP COEF-GEN-BC /GENBCD/

DIP DIPCLOSDAT CLOS-COND /GENBCD/

DIP GLOBAL-IN GLOBAL /GLOBAL/
DIP NETBDC NETWK-BDC /NETBDC/
DIP NETMAP NETWK-SPEC /NETWK/

DIP PAN-COR-PT PANEL-COORDS /COORDS/
DIP PRINT-OPT GLONAL-PRINTS DIPDAT

DIP TVECTCOEFF TANG-VEC /GENBCD/
DIP USABIN USER-ABUT DIPDAT

SUBROUTINE

OPENER
OPENER

BNDYIN
BNDYIN

DIPDAT
BNDYIN
DIPDAT
DIPDAT

BNDYIN

DQG BCDATIN

DQG CLASS

DQG CLOSDIN
DQG COORDS-GEN

DQG GLOB-DYN
DQG NETMAP

DQG USABUAT

NETWK-BNDRY-CONDN-IN

CLASS-5-BC-DATA

CLOSURE-DATA-IN

PANEL-CORNER-COORDS
GLOBAL

NETWK-SPEC

USER-ABUT

/NISCDIN/

/NBCDIN/

/CLOSUR/

Dynamic

/GLOBAL/,Dynamic
/NETWK/

DIPDAT

BNDYIN

BNYDIN
BNDYIN

DIPDAT
DIPDAT

DIPDAT

DATABASE MAP NAME

Overlay (2_0)

DATASET-NAME

DQG CORNCOORDS
DQG CNTRLPS

DQG EDGPTS
DQG FCNCORDS

DQG NETMAP

DQG SINGMAP
DQG SINGSPC
DQG SINGSPEC

PANEL-CORNER-COORDS

CONTROL-PT-SPEC
EDGE-POINT-COORDS
FINE-GRID-COORDS

NETWK-SPEC
SINGULARITY-MAP

SINGULARITY-SPEC
SINGULARITY-SPEC

COMMON BLOCK

Dynamic
/CPGEOM/

Dynamic

Dynamic
NETWK/

/SENCLR/

/SINGLR/

Dynamic

SUBROUTINE

MAPB

MAPB
MAPB

MAPB
MAPB

MAPB
MAPB

MAPB

4-C.6

V

DATABASE MAP NAME

DQG
DQG

DQG
DQG

DQG
DQG
D(G
D(G

D(G
D(G

D(tG

DQG
D(bG

D(IG

DCG
DC,G

DCG
DCIG

DCG
DCG

DC,G

ABUTMENT

ABUTMENTS

CONNECTION
COORDS-GEN

CTLDEXMAP
CTLSPECDYN

EDGPTS
ESABUTMNT

EXPABUT
GAPPANEL

GAPSIZE
IABUTMAP

NETMAP

NETWKS

SEARCHLIST
SINGMAP

SINGSPC
SINGSPEC

SPECIALPT
USABUT

XHLOCCP

Overlay (3,0)

DATASET-NAME

ABUTMENT-SPEC

ABUTMENT-KEYS

INTERSECTION
PANEL-CORNER-COORDS

CONTROL-PT-SPEC
CONTROL-PT-SPEC

EDGE-POINT-COORDS

EMPTY-SPACE-ABUTMENTS

EXPANDED-ABUTMENT

GAP-PANEL
GAP-SIZE
I-ABUT

NETWK-SPEC

NETWK-SPEC

SEARCH-LIST
SINGULARITY-MAP

SINGULARITY-SPEC
SINGULARITY-SPEC
SPECTAL-POINTS

USER-ABUT
EXTRA-HYPO-LOC

COMMON BLOCK

/ABUT/

Dynamic
/MATCHD/

Dynamic
Dynamic

Dynamic

Dynamic
/EXPAND/
/EXPAND/

/GAPANL/

Dynamic
/ABUT/

/NETWK/

Dynamic
/LIST/

/SINGLR/
/SINGLR/

Dynamic

/SPECPT/
/ABUT/
Local

SUBROUTINE

EDGECP

ABUTMNT
MATCH

ABUTMNT
ZHLOC

ADCPSG

EDGDEF

EDGDEF
EDGDEF

GAPPNL
EDGDEF

EDGDEF
EDGDEF

EDGDEF
EDGDEF

EDGDEF
EDGDEF

EDGDEF
EDGDEF

EDGDEF

XHLOC

DATABASE MAP NAME

DQG BCDATIP
DQG BNDRY

DQG BPOINT

DQG CLASS5

DQG CLOSDIN
DQG CLOSURE

DQG COORDS-GEN
DQG CNTRLPT

DQG CTLDEXMAP
DQG INDCTLMP

DQG NETMAP
DQG SINGMAP

DQG SINGMAP
DQG SPECIALIS

DQG XCLASSSD

Overlay (4_0)

DATASET-NAME

NETWK-BNDRY-CONDY-IN

BNDRY-CONDY-SPEC
B-POINTER

CLASS-5-BC-DATA

CLOSURE-DATA-IN
CLOSURE

PANEL-CORNER-COORDS
CONTROL,PT-SPEC

CONTROL-PT-SPEC
CONTROL-PT-SPEC

NETWK-SPEC

SINGULARITY-MAP
SINGULARITY-SPEC

SPECIAL-POINTS

CLASS-5-BC-DATA

COMMONBLOCK

/NBCDIN/
/BCDOUT/
/BCDOUT/
/NBCDIN/
/CLOSUR/
/CLOSUR/
Dynamic
/CPGEOM/
Dynamic
Dynamic
/NETWK/
/SINGLR/

Dynamic

/SPECPT/
/XBCDIN/

SUBROUTINE

BNDYDF

BNDYDR
BNDYDF

BNDYDF
BNDYDF

BNDYDF
BNDYDF

BNDYDF
BNDYDF

BNDYDF
BNDYDF

BNDYDF
BNDYDF

BNDYDF
BNDYDF

4-C.7

DATABASE MAP NAME

DQG ABUTMENT
DQG ABUTMENT

DQG COORDS-GEN
DQG COORDS-GEN

OQG DSPLINE
DQG DSPLINE

DQG EDGEPTS

DQG EDGEpts
DQG GAP-PANEL

DQG INTSPLMP
DQG INTSPLMP

DQG NETMAP

DQG NETMAP
DQG SCPGMAP

DQG SLPGMAP
DQG SP_CALPT

D_G SPLINE-DBLD G SPLINE-DBL

DQG SPLINE-SRC
DQG SSPLINE

DATABASE MAP NAME

DQG COORDS-GEP

DQG CORNCOORDS

DQG GAPFILE

DQG GAPPANEL
DQG MAGPSPEC

DQG MDGPSPEC

DQG NETMAP
DQG PANSINF

DQG PANSPEC
DQG " SPLINE-DBL

DQG SPLINE-SRL

Overlay (5,0)

DATASET-NAME

ABUTMENT-SPEC

ABUTMENT-SPEC

PANEL-CORNER-CORDS

PANEL-CORNER-CORDS
B-SPLINE-DOUBLET
B-SPLINE-DOUBLET

EDGE-POINT-COORDS

EDGE-POINT-CORDS
GAPPANEL

INTERCOR-SPLINE
INTERCOR-SPLINE
NETWK-SPEC

NETWK-SPEC

SINGULARITY-MAP
SINGULARITY-MAP
SPECIAL-POINTS

B-SPLINE-DOUBLET
B-SPLINE-DOUBLET

B-SPLINE-SOURCE

B-SPLINE-SOURCE

,Overlay (6,0)

DATASET-NAME

PANEL-CORNER-COORDS
PANEL-CORNER-COORDS

GAP-FILE
GAP-PANEL

MAG-PANEL-SPEC

MDG-PANEL-SPEC

NETWK-SPEC

PANEL-SING
PANEL-SPEC

B-SPLINE-DOUBLET
B-SPLINE-SOURCE

COMMON BLOCK

/ABUT/

/ABUT/

Dynamic
Dynamic

/SPLINE/
/SPLINE/

Dynamic

Dynamic
/GAPAN/

Dynamic
Dynamic
/NETWK/

/NETWK/

/SENGLR/
/SENGLR/
ISPECPTI

Dynamic
Dynamic
SPLINR

SPLINR
i

COMMONBLOCK

Dynamic
ICOORDSI
Dynamic
IGAPANL/
/PANEL/
ISPLINE/
/PANEL/
/FFM/
/NETWK/
/SPLINE/
/FFM/

Dynamic
Dynamic
/PANEL/

/SPLINE/

SUBROUTINE

SAEDGS

SPLTPR
SAEDGS

SPLINR
SAEDGS

SPLINR
SAEDGS

SPLINR
SPLINR

SAEDGS
SPLINR

SAEDGS
SPLINR

SAEDGS
SPLINR

SPLINR
SAEDGS

SPLINR

SUBROUTINE

PANDEF
PANDEF

PANDEF
PANDEF

PANDEF

PANDEF

PANDEF

PANDEF
PANDEF

PANDEF
PANDEF

W

V

O,verlay (7,0)

DATABASE MAP NAME

DQG BCOUTDATA

DQG CTLOUTDATA
DQG DBHEADER

DQG GLOB-DYN
DQG NETMAP

DQG SPECIALPT

4-C.8

DATASET-NAME

BNDRY-CONDN-SPEC

BNDRY-CONDN-SPEC

DATA-BASE-HEADER
GLOBAL

NETWK-SPEC
SPECIAL-POINTS

COMMONBLOCK

Dynamic

Dynamic
Dynamic

/GLOBAL,Dynamic
/NETWK/
/SPECPT/

SUBROUTINE

PBCDAT
PCPDAT
SUMMRY
SUMMRY
SUMMRY
SUMMRY

COMMONBLOCK

Table 4-C.3 Data Flow for DQG

Third Form

Overlay (I,0)

DATABASE MAP NAME

local MEC RUNOPT

/RUINDS/ MEC IDS

/ABUT/
/COORDS/
Dynamic
/GENBCD/
/GENBCD/
/GENBCD/
/GLOBAL/
/NETBDC/
/NETWK/

DATASET-NAME

MACRO-OPTIONS
DATA-BASE-HEADE

DIP USABIN

DIP PAN-COR-PT

DIP PRINT-OPT

DIP DIPCLOSDAT
DIP TVECTCOEFF

DIP CGBCMP
DIP GLOBAL-IN

DIP NETBCD

DIP NEI_IAP

USER-ABUT
PANEL-COORDS
GLOBAL-PRINTS
CLOS-COND
TANG-VEC
COEF-GEN-BC
GLOBAL
NETWK-BDC
NETWK-SPEC

SUBROUTINE

OPENER
OPENER

DIPDAT
DIPDAT

DIPDAT
BNDYIN
BNDYIN

BNDYIN

DIPDAT

BNDYIN

DIPDAT

IV I

/ABUT/
Dynamic
/CLOSUR/
/GLOBAL/,Dynamic
/NBCDIN/
/NETWK/
/NlSCDIN/

DQG USABUAT
DQG COORDS-GEN
DQG CLOSDIN
DQG GLOB-DYN
DQG CLASS
DQG NETMAP
DQG BCDATIN

USER-ABUt
PANEL-CORNER-COORDS
CLOSURE-DATA-IN
GLOBAL
CLASS-S-BC-DATA
NETWK-SPEC
NETWK-BNDRY-CONDN-IN

DIPDAT
DIPDAT
BNDYIN

DIPDAT

BNYDIN
DIPDAT

BNDYIN

COMMONBLOCK

Dynamic
Dynamic
Dynamic
Dynamic
/CPGEOM/
/NETWK/
/SlNCLR/
/SlNGLR/

Overlay (2,0)

DATABASE MAP NAME

DQG CORNCOORDS
DQG EDGOTS
DQG FCNCORDS
DQG SINGSPEC
DQG CNTRLPS
DQG NETMAP
DQG SlNGMAP
DQG SlNGSPC

DATASET-NAME SUBROUTINE

PANEL-CORNER-COORDS
EDGE-POINT-COORDS
FINE-GRID-COORDS
SlNGULARITY-SPEC
CONTROL-PT-SPEC
NETWK-SPEC
SINGULARITY-MAP
SlNGULARITY-SPEC

MAPB
MAPB
MAPB
MAPB
MAPB
MAPB
MAPB
MAPB

-_w_.J

4-C. 9

COMMONBLOCK DATABASE MAP NAME

/ABUT/ DQG ABUTMENT
/ABUT/ DQG ESABUTMNT

/ABUT/ DQG IABUTMAP

/ABUT/ .DQG USABUT

Dynamic DQG ABUTMENTS
Dynamic DQG COORDS-GEN

Dynamic DQG CTLDEXMAP
Dynamic DQG CTLSPECDYN

Dynamic DQG EDGPTS
Dynamic DQG GAPSIZE

Dynamic DQG NETWKS
Dynamic DQG SINGSPEC
/EXPAND/ DQG EXPABUT

/GAPANL/ DQG GAPPANEL

/LIST/ DQG SEARCHLIST
Local DQG XHLOCCP

/MATCHD/ DQG CONNECTION
/NETWK/ DQG NETMAP

/SPECPT/ DQG SPECIALPT

/SINGLR/ DQG SINGMAP

/SINGLR/ DQG SINGSPC

Overlay (3,0)

DATASET-NAME

ABUTMENT-SPEC

EMPTY-SPACE-ABUTMENTS
I-ABUT

USER-ABUT

ABUTMENT-KEYS

PANEL-CORNER-COORDS
CONTROL-PT-SPEC

CONTROL-PT-SPEC
EDGE-POINT-COORDS

GAP-SIZE
NETWK-SPEC
SINGULARITY-SPEC

EXPANDED-ABUTMENT
GAP-PANEL

SEARCH-LIST
EXTRA-HYPO-LOC

INTERSECTION
NETWK-SPEC

SPECIAL-POINTS

SINGULARITY-MAP
SINGULARITY-SPEC

SUBROUTI NE

EDGECP

EDGDEF
EDGDEF

EDGDEF
ABUTMNT

ABUTMNT

ZHLOC
ADCPSG
EDGDEF

EDGDEF
EDGDEF

EDGDEF
EDGDEF

GAPPNL

EDGDEF
XHLOC
MATCH

EDGDEF
EDGDEF

EDGDEF
EDGDEF

V

COMMON BLOCK

/BCDOUT/
/BCDOUT/

/CLOSUR/

/CLOSUR/

/CPGEOM/

Dynamic

Dynamic
Dynamic

Dynamic
/NBCDIN/

/NBCDIN/
/NETWK/
/SINGLR/

/SPECPT/
/XBCDIN/

Overlay (4,0)

DATABASE MAP NAME DATASET-NAME

DQG BNDRY
DQG BPOINT

DQG CLOSURE

DQG CLOSDIN

DQG CNTRLPT
DQG CTLDEXMAP

DQG INDCTLMP

DQG COORDS-GEN

DQG SINGMAP
DQG BCDATIP

DQG CLASS5
DQG NETMAP

DQG SINGMAP
DQG SPECIALIS
DQG XCLASSSD

BNDRY-CONDY-SPEC

B-POINTER
CLOSURE

CLOSURE-DATA-IN
CONTROL-PT-SPEC

CONTROL-PT-SPEC
CONTROL-PT-SPEC

PANEL-CORNER-COORDS

SINGULARITY-SPEC

NETWK-BNDRY-CONDY-IY
CLASS-5-BC-DATA

NETWK-SPEC
SINGULARITY-MAP

SPECIAL-POINTS
CLASS-S-BC-DATA

SUBROUTINE

BNDYDR

BNDYDF
BNDYDF

BNDYDF
BNDYDF

BNDYDF
BNDYDF

BNDYDF
BNDYDF

BNDLYDF
BNDYDF

BNDYDF
BNDYDF

BNDYDF
BNDYDF

4-C.lO

V

Overlay (5,0)

COMMON BLOCK DATABASE I_tAPNAME DATASET-NAME SUBROUTINE

/ABUT/ DQG ABUTMENT
/ABUT/ DQG ABUTMENT

Dynamic DQG COORDS-GEN
Dynamic DQG COORDS-GEN

Dynamic DQG SPLINE-SCR

Dynamic DQG SPLINE-DBL

Dynamic DQG SPLINE-DJL
Dynamic DQG EDGPTS

Dynamic DQG EDGPTS
Dynamic DQG INTSPLMP

DYGnamic DQG INTSPLMP
APAN/ DQG GAP-PANEL

/NETWK/ DQG NETMAP

/NETWK/ DQG NETMAP

/SENGLR/ DQG SCPGMAP
/SENGLR/ DQG SLPGMAP

/SPECPT/ DQG SPECALPT
/SPLINE/ DQG SSPLINE

/SPLINE/ DQG DSPLINE

/SPLINE/ DQG DSPLINE

ABUTMENT-SPEC

ABUTMENT-SPEC

PANEL-CORNER-COORDS
PANEL-CORNER-COORDS
B-SPLINE-SOURCE

B-SPLINE-DOUBLET

B-SPLINE-DOUBLET
EDGE-POINT-COORDS

EDGE-POINT-COORDS

INTERCOR-SPLINE
INTERCOR-SPLINE
GAPPANEL

NETWK-SPEC

NETWK-SPEC

SINGULARITY-MAP

SINGULARITY-MAP
SPECIAL-POINTS

B-SPLINE-SOURCE
B-SPLINE-DOUBLET

B-SPLINE-DOUBLET

SAEDGS

SPLTPR
SAEDGS

SPLINR
SPLINR

SPLINR
SAEDGS

SAEDGS
SPLINR

SAEDGS
SPLINR
SPLINR

SAEDGS

SPLINR
SAEDGS

SPLINR
SPLINR

SPLINR
SAEDGS

SPLINR

Overlay (6,0)

COMMON BLOCK DATABASE MAP NAME

/COORDS/ DQG CORNCOORDS

Dynamic DQG COORDS-GET

Dynamic DQG GAPFILE

Dynamic DQG SPLINE-DBL
Dynamic DQG SPLINE-SRL
/FFM/ DQG MDGPSPEC
/FFM/ DQG PANSPEC

/GAPANL/ DQG C4_PPANEL
/NETWK/ DQG NETMAP
/PANEL/
/PANEL/ DQG MAGPSPEC

/PANEL/ DQG MDGPSPEC
/SPLINE/ DQG MAGPSPEC

/SPLINE/ DQG PANSING
/SPLINE/

DATASET-NAME

PANEL-CORNER-COORDS

PANEL-CORNER-COORDS
GAP-FILE

B-SPLINE-DOUBLET

B-SPLINE-SOURCE
MDG-PANEL-SPEC
PANEL-SPEC

GAP-PANEL
NETWK-SPEC

MAG-PANEL-SPEC

MDG-PANEL-SPEC

MAG-PANEL-SPEC
PANEL-SING

SUBROUTINE

PANDEF
PANDEF

PANDEF
PANDEF

PANDEF
PANDEF

PANDEF
PANDEF

PANDEF

PANDEF

PANDEF

PANDEF
PANDEF

COMMON BLOCK DATABASE

Overlay (7_0)

MAP NAME DATASET-NAME SUBROUTINE

Dynamic
Dynamic

Dynamic
/GLOBAL/Dynamic
/NETWK/
/SPECPT/

DQG
DQG

DQG
DQG

DQG
DQG

BCOUTDATA
CTLOUTDATA

DBHEADER
GLOB-DYN

NETWK
SPECIALPT

BNDRY-CONDN-SPEC

BNDRY-CONDN-SPEC
DATA-BASE-HEADER

GLOBAL
NETWK-SPEC

SPECIAL-POINTS

PBCDAT

PCPDAT
SUMMRY

SUMMRY
SUMMRY

SUMMRY

4-C.II

_W

V

-.....J

.,j

-....J

APPENDIX 4-D MASTER DEFINITION

The data base master definition listing of the DQG module has been

deleted from this document. It is produced from the PAN AIR tape during
installation.

4-D.I

APPENDIX 4-E

ERROR MESSAGES IN DQG

The following pages list the messages that accompany all diagnosed
errors in DQG. Section 8. of the PAN AIR User's Manual (Reference 2)
discusses interpretation of the messages and suggests causes and remedies.

v 4-E.I

V

PROGRAM OPENER

******** FATAL ERROR

RUN,PROBLEM, AND USER IDS NOT FOUND
ON THE MEC DATABASE

SUBROUTINE DIPDAT

******** ERROR

NO NETWORKS DEFINED
******** ERROR

ZERO LENGTH ABUTMENT

USER ABUTMENT INDEX 3
NETWORK EDGE START PT

1 l 3
******** ERROR

INVALID SOURCE/DOUBLET TYPE FROM DIP
NETWORK UPPER-WING

SOURCE TYPE l DOUBLET TYPE

END PT
3

SUBROUTINE NETDEF

******** FATAL ERROR

l COLUMN OR l ROW SOURCE DESIGN II

NETWORK ENCOUNTERED. NETWORK NO = 4
EXECUTION WILL BE TERMINATED.

******** THE FATAL ERROR LIMIT OF lO WAS EXCEEDED.

EXECUTION WILL BE TERMINATED

SUBROUTINE DFEDGE

******** FATAL ERROR

NETWORK 3 COLUMN l OF CORNER

POINTS NOT AVAILABLE ON DATABASE.

SUBROUTINE EDGCHK

******** FATAL ERROR

NETWORK (UPPER-WING) EDGE 3

SOURCE DESIGN I NETWORK CAN NOT HAVE A COLLAPSED EDGE.
******** FATAL ERROR

NETWORK (UPPER-WING) EDGE 3

SOURCE DESIGN II NETWORK CAN NOT HAVE A COLLAPSED EDGE.

******** FATAL ERROR

NETWORK (UPPER-WING) EDGE 4
AVERAGE PANEL LENGTH EXCEEDS TOLERANCE

BUT THE MINIMUM DOES NOT. THE EDGE
CANNOT BE COLLAPSED.

******** FATAL ERROR

TWO ADJACENT EDGES HAVE ZERO LENGTH.
NETWORK UPPER-WING EDGES l 2

PRECEDING PAGE BLANK NOT FILMED _[_#NTENTIO,._A(,Ly BEA#_

4-E.3

SUBROUTINE SNGPAN

******** FATAL ERROR
SINGULARITY TYPE NOT FOUND FOR NETWORK

SUBROUTINE TRICHK

******** FATAL ERROR
INTERIOR PANEL IS TRIANGULAR
NETWORKUPPER-WING PANEL COLUMN

******** FATAL ERROR
ZERO DENOMINATOR FOR ASPECT RATIO OF
NETWORKUPPER-WING PANEL COLUMN

******** FATAL ERROR
ASPECT RATIO = 0.6934E+06
NETWORKUPPER-WING PANEL COLUMN

* * * * WARNING
ASPECT RATIO = 0.6394E+04
NETWORKUPPER-WING PANEL COLUMN

5 AND ROW 2

1 AND ROW 6

3 AND ROW 8

3 AND ROW 9

V

SUBROUTINE SEARCH

******** ERROR
ERRONEOUSUSER ABUTMENT DATA
OVERLAPPING ABUTMENTS

NETWORK UPPER-WING
OVERLAP FROM COLUMN
TO COLUMN

EDGE
3 ROW

7 ROW

SUBROUTINE EDGLST

******** WARNING
TOO MANY NEARBY NETWORKEDGES
SOME ABUTMENTS MAY BE MISSED

NETWORKFIN EDGE 1

PROGRAM PRABUT

******** ERROR

INSUFFICIENT CORE MEMORY FOR AUTOMATIC ABUTMENT SEARCH

NUMBER OF EXTRA CORE MEMORY NEEDED 738
OR APPROXMATELY 2000 OCTAL

******** ERROR

ERROR IN REQUESTING BLANK COMMON IN SUB PRABUT
ERROR NUMBER 2

SUBROUTINE USEABT

******** ERROR
ERRONEOUSUSER ABUTMENT DATA

USER ABUTMENT NUMBER 3
NETWORK EDGE START-X START-Y

1 5 1 1
2 3 7 1

END-X

7

7

END-Y

1

7

4-E.4

V

v _

******** ERROR
NETWORK EDGES TO FAR APART FOR ABUTMENT

USER ABUTMENT NUMBER 4
NETWORK EDGE START-X START-Y END-X END-Y

l l l l 3 l
5 l 6 l l l

2 TH NETWORK EDGE IN LIST GT 1.357E+15
FROM FIRST NETWORK EDGE IN LIST

******** ERROR
KUTTA TANGENT IS NOT PERPENDICULAR TO PLANE-OF-SYMMETRY NORMAL

NETWORK EDGE DQGCP POS
3 4 37 l

******** ERROR

ABUTMENT POINTS NOT ON NETWORK EDGE
USER ABUTMENT NUMBER 7

NETWORK EDGE START-X START-Y

3 l 3 3

NUMBER OF ROWS IN NETWORK = 5

NUMBER OF COLUMNS IN NETWORK =
******** ERROR

ERRONEOUS USER ABUTMENT DATA

ZERO LENGTH ABUTMENT
USER ABUTMENT NUMBER 8

NETWORK EDGE START-X START-Y
7 2 5 l

******** ERROR

ERRONEOUS USER ABUTMENT DATA

COLLAPSED EDGE IN ABUTMENT
USER ABUTMENT NUMBER 3

NETWORK EDGE START-X START-Y

l 5 l l

2 3 7 l

ZERO LENGTH ABUTMENT

END-X END-Y

5 7

END-X END-Y
5 l

END-X END-Y

7 l
7 7

SUBROUTINE ABXPND

******** ERROR
TOO MANY NETWORK EDGES IN AN ABUTMENT
THIS MAY ARISE EITHER FROM HAVING TOO

MANY NETWORK EDGES COMING TOGETHER IN

A SINGLE ABUTMENT OR FROM THE SAME
NETWORK EDGES TAKING PART IN TOO MANY

ABUTMENTS.
NETWORK EDGE

l l

2 l

3 2
4 l
5 3

6 4

7 l
8 4
9 l

lO l

II 2

4-E.5

SUBROUTINE CHECK

******** ERROR

UPDATABLE NETWORK EDGE ABUTTING

A NONUPDATABLE NETWORK EDGE
ABUTMENT INDEX 3

NETWORK EDGE START-X

l l l
2 3 3

UPDATABLE FLAG l 0

******** WARNING
UPDATABLE NETWORK EDGE ABUTTING

A NONUPDATABLE NETWORK EDGE

START-Y

l

3

ABUTMENT INDEX 3
NETWORK EDGE START-X START-Y

l l l l
2 3 3 3

UPDATABLE FLAG l 0
******** WARNING

MORE THAN TWO NETWORKS IN SMOOTH ABUTMENT.
SMOOTH ABUTMENT TREATED AS NORMAL ABUTMENT.

END-X

5
l

END-X

5
l

ABUTMENT INDEX 4
NETWORK EDGE START-X START-Y END-X

i 2 4 l 4
2 l l l 4

3 2 5 l 5

******** WARNING

SMOOTH ABUTMENT DEFINED WITH DESIGN NETWORK

SMOOTH ABUTMENT TREATED AS NORMAL ABUTMENT.

ABUTMENT INDEX 7
NETWORK EDGE START-X START-Y END-X

4 l l l 6
5 l 6 l l

******** ERROR

ERRONEOUS ABUTMENT DATA
EDGE OUT OF RANGE

ABUTMENT INDEX 8
NETWORK EDGE START-X START-Y END-X

3 5 3 3 l
4 l l l 3

******** ERROR

MORE THAN ONE MATCHING EDGE IN ABUTMENT

ABUTMENT INDEX 9
NETWORK EDGE START-X START-Y END-X

5 l l l 7

6 l l l 3

******** WARNING

MATCHING EDGE ABUTS A PLANE OF SYMMETRY.
RESULTS DEPEND UPON THE CONFIGURATION.
THE AIC MATRIX MAY BE UNDER CONSTRAINED,

OVER-CONSTRAINED, SINGULAR OR REASONABLY
CORRECT. OTHER ERRORS MAY BE TRIGGERED

BUT PROCESSING WILL CONTINUE AND A

SOLUTION WILL BE ATTEMPTED
DOUBLET MATCHING IMPOSED AT ABUTMENT.

4-E.6

END-Y
l

l

END-Y
l

l

END-Y
5

l
5

END-Y
l

l

END-Y

3

l

END-Y
l

l

V

V

******** WARNING
NETWORKHASTOOFEWPANELSFORSMOOTHABUTMENT

ABUTMENTINDEX 9
NETWORK EDGE START-X START-Y

5 l l l
6 l 1 l

INDEXOFSMALLNETWORK 5
******** WARNING

VELOCITYOPTIONSNOTCOMPATIBLE
ABUTMENTINDEX

NETWORK EDGE START-X START-Y
5 l l 1
6 l l l

VELOCITYCOMPMETHODS l 2

END-X
7
3

END-X
7
3

END-Y
l
1

END-Y
l
l

SUBROUTINECHKPOS

******** ERROR
NETWORKENCOUNTEREDWHICHPARTIALLYLIES
ONA PLANEOFSYMMETRY.

NETWORKPLANER-BODY PLANEOFSYMMETRY
NUMBEROFPOINTSOFFP-O-S 20
NUMBEROFPOINTSONP-O-S lO

******** WARNING
NETWORKENCOUNTEREDWHICHPARTIALLYLIES
ONA PLANEOFSYMMETRY.

NETWORKPLANER-BODY PLANEOFSYMMETRY
NUMBEROFPOINTSOFFP-O-S 20
NUMBEROFPOINTSONP-O-S lO

SUBROUTINECONABT

******** ERROR
TOOMANYNETWORKSIN ABUTMENT

NETWORK EDGE START-X START-Y END-X END-Y
l l l l 3 l
2 l 6 l l l
3 l 4 l l l
4 l l l 5 l
5 l 7 l l l
6 1 8 1 1 l

******** WARNING
AUTOMATIC ABUTMENT SEARCH FINDS
EMPTY SPACE ABUTMENT IN MIDDLE OF

NETWORK EDGE. CHECK EMPTY SPACE

ABUTMENT DESCRIPTIONS IF USER
DID NOT SPECIFY THE ABUTMENT.

NETWORK EDGE START-X
l 1 l

START-Y

l

END-X
5

END-Y

l

4-E.7

SUBROUTINEGAPSIZE

******** ERROR
PROGRAMERROR.ZEROLENGTHABUTMENT.

ABUTMENTNUMBER l
NETWORKEDGE START-X START_Y

l 1 1 1
2 2 3 1

END-X
i
3

SUBROUTINEABASGN

******** ERROR
NOMATCHINGASSIGNMENTPOSSIBLE

INTERSECTIONNUMBER lO
ABUTMENTINDEX 33

NETWORK EDGE START-X
1 1 1
2 l 8

CORNERPOINTMAPINDEX 73
NETWORKEDGE START-X

l 2 8

START-Y END-X
l 8
l l

START-Y END-X
l

SUBROUTINEASSIGN

******** ERROR
ONLYONEABUTMENTIN AN INTERSECTION

INTERSECTIONNUMBER 3
WITHABUTMENTS

2
******** ERROR

NORMALVECTORNOTPERPENDICULARTOP-O-S
FORA NETWORKTHATLIES ONP-O-S

NETWORK 3 COLUMN l ROW l
NORMALVECTOR 8.782E-01 O.O00E+O0
V DOTN O.OOOE+O0

******** ERROR
INSUFFICIENTNUMBEROFCORNERPOINTSASSIGNED
TOIMPOSEDOUBLETMATCHING.
INTERSECTIONNUMBER 6
NUMBERASSIGNED l
NUMBERREQUIRED 2
WITHABUTMENTS

14 4 7
A PROGRAMERRORHASOCCURREDDQGIS ABORTED.

******** WARNING
INSUFFICIENTNUMBERO_ _6_NE_RPOINTS-ASSIGNE_
TO IMPOSEDOUBLETMATCHING.
INTERSECTIONNUMBER 7
NUMBERASSIGNED l
NUMBERREQUIRED 2
WITHABUTMENTS

2005 6 I002
SEETABLE8-17 OFPANAIR USER"SMANUAL.

O.O00E+O0

4-E.8

END-Y
l
4

END-Y
l
l

END-Y

U_

v

V

L

******** ERROR
TOO MANY ABUTMENTS IN AN INTERSECTION
INTERSECTION NUMBER II
WITH ABUTMENTS

1 2 2003 2004 6 7 2008

SUBROUTINE EMATCH

******** ERROR
MORE THAN ONE MATCHING EDGE IN ABUTMENT

ABUTMENT 3
NUMBEROF MATCHING EDGES 2
EDGE POINTERS 1 2

NETWORK EDGE START-X START-Y END-X
1 1 1 1 7
2 1 1 1 6

******** WARNING
NO DOUBLET MATCHING AT NETWORKEDGE

ABUTMENT INDEX 9
NETWORK EDGE START-X START-Y END-X

I0 4 1 1 1
II 2 3 1 3

SUBROUTINE INTRSC

******** ERROR
MISSING ABUTMENTS IN PILOT CODE CONNECTION
FOR CORNER POINT ON NETWORK 9 COLUMN
CORNERPOINT LABEL 9001011 ABUTMENTS

SUBROUTINE NTRLST

******** ERROR
TOO MANY ABUTMENTS INTERSECT
INTERSECTION NUMBER 5

ABUTMENT CP
1 1 2
2 2 3
3 3 4
4 3 4

30 53 2
31 1 3

CP

9 II

1
14

17

END-Y
1
1

END-Y
7

7

ROW

21

II

SUBROUTINE GAPPNL

******** ERROR

PROGRAM ERROR. ZERO LENGTH ABUTMENT.
ABUTMENT NUMBER l

NETWORK EDGE START-X START-Y

1 l l l
2 l l 1

END-X
l
3

END-Y
1
1

4-E.9

SUBROUTINE DEFPNL

******** ERROR

FACTOR FOR GAP PANEL .GT. l.O
NUMERATOR = l.O00E+O0 DENOMINATOR = l.O00E-Ol

ABUTMENTS INDEX= 5

POINT INDEX= 13
NETWORK LOOP INDEX= l
Tl2 ARRAY INDEX= 7

T(I,l) ARRAY
O.O00EO0 l.O00E-Ol l.O00E+O0

T(I,2)ARRAY
O.O00E+O0 l.O00E+Ol l.O00E+O0

Tl2(I) ARRAY
O.O00E+O0 l.O00E-Ol l.O00E+O0 l.O00E+Ol l.O00E+O0

******** ERROR

PROGRAM ERROR
ABNORMAL LOOP TERMINATION

ABUTMENT INDEX= 4

POINT INDEX = l
NETWORK LOOP INDEX= 2

T(I,l) ARRAY
O.O00E+O0 l.O00E+O0

T(I,2) ARRAY

O.O00E+O00.O00E+O0
Tl2(1) ARRAY

O.O00E+O00.O00E+O00.O00E+O0 l.O00E+O0
Tl2 ARRAY INDEX= 8

SUBROUTINE POSPNL

******** WARNING

GAP FILLING PANELS REQUIRED AT
ABUTMENT WITH NETWORK EDGE AND

TWO PLANES OF SYMMETRY. THIS

SITUATION IS BEYOND CURRENT

CAPABILITIES OF DQG.
SITUATION OCCURS FOR ABUTMENT 7

SUBROUTINE ASGNU

******** ERROR
MACH INCLINED PANEL AND/OR SUBPANEL

NETWORKFIN
PANEL COLUMN 3
PANEL ROW 6
NORMAL-CONORMALINNER PRODUCT 1.378E-13

4-E.lO

V

v

******** ERROR
VANISHINGLY SMALL INNER AND OUTER SUBPANELS

NETWORK WING
EDGE 2
CORNER PT COLUMN 8

CORNER PT ROW l

SUBPANEL NUMBER 2
PT I.O00E-I l 2.O00E-I l 3.O00E-I l

O.O00E O0 O. O.
O. O. O.

******** ERROR

NON-CONVEX PANEL WITH CORNER POINT

CLOSE TO PANEL CENTER POINT.
NETWORK WING

EDGE 3
CORNER PT COLUMN 5

CORNER PT ROW 3
SUBPANEL NUMBER 3

2+SKEW(1)+SKEW(2) l.O00E-03

l.O00E-ll
O.O00E-ll

O.

2.000E-ll
l.O00E-ll

O.

V

SUBROUTINE CCPGEO

******** ERROR

TANGENT VECTOR PROJECTION TO PANEL

IS LESS THAN HALF OF TANGENT VECTOR MAGNITUDE.

NETWORK WING

EDGE 4
CORNER PT COLUMN l

CORNER PT ROW 7

SUBPANEL 4

TANGENT VECTOR UPPER

******** ERROR
TANGENT VECTOR MAGNITUDE TOO SMALL

NETWORK WING

EDGE l
CORNER PT COLUMN 3
CORNER PT ROW l

SUBPANEL l
TANGENT VECTOR RHS

SUBROUTINE CENTCP

******** ERROR

TANGENT VECTOR PROJECTION TO PANEL
IS LESS THAN HALF OF TANGENT VECTOR MAGNITUDE

NETWORK UPPER-WING

PANEL COLUMN 3
PANEL ROW 2

USER CLASS

TANGENT VECTOR UPPER

4-E.ll

SUBROUTINECHOOSE

******** ERROR
TANGENT VECTOR MAGNITUDE TOO SMALL

NETWORKLOWER-WING
PANEL COLUMN 4
PANEL ROW 1
USER CLASS
TANGENT VECTOR AVERAGE

******** ERROR
INSUFFICIENT NUMBEROF USER-SPECIFIED BOUNDARY CONDITIONS

NETWORK UPPER-WING
PANEL COLUMN . 3
PANEL ROW 1
TOTAL NUMBER OF BOUNDARY CONDITIONS REQUIRED 2

******** WARNING
INSUFFICIENT NUMBER OF USER-SPECIFIED BOUNDARY CONDITIONS

PROGR_I WILL ADD BOUNDARY CONDITION OF ZERO
PERTUBATION MASS FLUX. IF THIS BOUNDARY

CONDITION IS UNSATISFACTORY, THE USER MUST ADD
A BOUNDARY CONDITION FOR THIS PANEL BY

INVOKING CLASS FIVE BOUNDARY CONDITIONS INPUT
TO MODULE DIP FOR THIS NETWORK. IF THIS IS

A WAKE NETWORK, NO USER ACTION IS ADVISED.
IF THIS NETWORK LIES ON A PLANE OF SYMMETRY.
BE SURE AT LEAST ONE BOUNDARY CONDITION IS

OF THE FORM NORMAL MASS FLUX, POTENTIAL OR
TANGENTIAL VELOCITY (ALL AVERAGE QUANTITIES).
NETWORK RIGHT-WAKE

PANEL COLUMN l
PANEL ROW l

TOTAL NUMBER OF BOUNDARY CONDITIONS REQUIRED 2

V

SUBROUTINE ECPGEO

******** ERROR
TANGENTVECTOR PROJECTION TO PANEL
IS LESS THAN HALF OF TANGENT VECTOR MAGNITUDE

NETWORKMID-WING
CORNER PT COLUMN 3
CORNERPT ROW 1
SUBPANEL NUMBER 5
TANGENT VECTOR DIFFERENCE

******** ERROR
TANGENT VECTOR MAGNITUDE TOO SMALL

NETWORKMIDWING
CORNERPT COLUMN 5
CORNER PT ROW 1
SUBPANEL NUMBER 5
TANGENT VECTOR DIFFERENCE

4-E.12

=V:

SUBROUTINE GETBC

******** ERROR

NO USER-SPECIFIED BOUNDARY CONDITIONS
NETWORK OUTER-WING

FINE GRID COLUMN INDEX 2
FINE GRID ROW INDEX 3 °

SUBROUTINE SPLTRN

******** ERROR
INCORRECT SELECTION OF XI-ETA VECTORS.
PROGRAM ERROR

XI ETA ZETA POINT

O.O00E+O0 1.414E-Ol O.O00E+O0 3.786E+01
O. 3.735E-01 O. 4.138E+00

O. O. O. 1.791E+Ol

PO
3.681E+01
3.147E+00

1.790E+Ol

VECTOR
1.050E+
9.990E-
l.O00E-

SUBROUTINE CPCSEL

******** ERROR
PROGRAM ERROR.

POINT NUMBER 5

SUBROUTINE PTSFIL

6 4 CORNER PT T-VALUE-l.368E-Ol

******** ERROR

ERRONEOUS ABUTMENT DESCRIPTION

ABUTMENT ARRAY l 5 1 1 7 1

SUBROUTINE SNGFIL

******** ERROR

ERRONEOUS ABUTMENT DESCRIPTION
ABUTMENT ARRAY l 5 1 l 7 l

SUBROUTINE CPDSGN

******** ERROR

PROGRAM/DATA ERROR.
ZERO DENOMINATOR FOR CORNER POINT WEIGHT
IN DOUBLET DESIGN EDGE SPLINE.

NETWORK MID-WING
EDGE 4

CORNER POINT NUMBER l
DISTANCES TO ADJACENT EDGE MIDPOINTS

l.472E-21
4.216E-21

5.688E-21

4-E.13

SUBROUTINENTEDGA

******** ERROR
PROGRAMERROR.
INCORRECTCALLINGARGUMENTFOREDGEINDEX

NETWORKUPPER-TAIL
EDGE 7

V

SUBROUTINE ONDFIT

******** ERROR

PROGRAM ERROR
SINGULAR ONE DIMENSIONAL FIT

NETWORK NUMBER 3

LATTICE INDEX-X 4

LATTICE INDEX-Y 6

SUBROUTINE POINT

******** ERROR _
REQUIRED POINT COORDINATE NOT IN CORE

NETWORK INDEX 7

LATTICE INDEX-X 8
LATTICE INDEX-Y 6

COLUMNS IN CORE

4 5 6 7 8

SUBROUTINE SPLA

******** ERROR

SINGULAR LEAST SQUARES FIT
NETWORK WING-TIP

LATTICE INDEX-X 7
LATTICE INDEX-Y 3

DEVIATION FROM UNITY
******** WARNING

POOR LEAST SQUARES FIT.
NETWORK WING-TIP

LATTICE INDEX-X 7

LATTICE INDEX-Y 5
DEVIATION FROM UNITY

1.337E+00

5.369E-07

SUBROUTINE SSPI 3

******** ERROR
SINGULAR LEAST SQUARES FIT

NETWORKLOWER-WING
LATTICE INDEX-X 2
LATTICE INDEX-Y 3

CHISQUARE= 2.471E+I0

4-E.14

******** WARNING
POOR LEAST SQUARES FIT.

NETWORKLOWER-WING
LATTICE INDEX-X 1
LATTICE INDEX-Y 4

CHISQUARE= 4.149E+02

SUBROUTINE WAKGAP

******** ERROR
ERROR IN CALLING ARGUMENTS
WAKE SPLINE CALL FOR NON-WAKE NETWORK

NETWORKPRE-WAKE-WING-EDGE
DOUBLET TYPE DA

SUBROUTINE CBLFFM

******** ERROR
SINGULAR INVERSE FOR SUBPANEL XFM MATRIX
DUE TO INVALID MACH NUMBER
ONE MINUS MACH NUMBER SQUARED : 3.791E-16

SUBROUTINE DBLFFM

******** ERROR
SINGULAR INVERSE FOR SUBPANEL XFM MATRIX
DUE TO INVALID MACH NUMBER
ONE MINUS MACH NUMBER SQUARED : 3.799E-16

SUBROUTINE PANGEO

******** ERROR
MACH-INCLINED PANEL DISCOVERED

NETWORK UPPER-PLATE
PANEL COLUMN 3
PANEL ROW 5

******** WARNING
CRITICALLY INCLINED PANEL DISCOVERED

NETWORK UPPER-PLATE
PANEL COLUMN 3
PANEL ROW 6
ANGLE WITH RESPECT TO MACH CONE - -3.697E-03

******** WARNING
NON-CONVEX PANEL DISCOVERED

NETWORK UPPER-PLATE
PANEL COLUMN 7
PANEL ROW 3

******** WARNING
NEARLY NON-CONVEX PANEL DISCOVERED
NETWORK
PANEL COLUMN 7
PANEL ROW 4

4-E.I 5

******** WARNING

SUBPANEL AREA SET TO ZERO (BY PANGEO), SUBPANEL :
NETWORK RIGHT-TOP-WING
PANEL COLUMN 2
PANEL ROW 2

SUBROUTINE PANSIZ

******** ERROR

PANEL SIZE VANISHES
NETWORK WING

EDGE 3
PANEL INDEX ALONG EDGE 6

(CLOCKWISE DIRECTION)
******** WARNING

GAP SIZE EXCEEDS PANEL SIZE

NETWORK BODY

EDGE l
PANEL INDEX ALONG EDGE 9

GAPSIZE/PANEL SIZE = 3.691E+00

SUBROUTINE PANSUB

******** ERROR

LEAST SQUARES ERROR IN PANEL SUBSPLINE
NETWORK BODY

PANEL COLUMN 9
PANEL ROW 6

********WARNING

POOR LEAST SQUARES FIT IN PANEL SUBSPLINE
NETWORK BODY
PANEL COLUMN 7
PANEL ROW 6

SUBROUTINE SPLINM

******** ERROR

PANEL DEPENDENT ON TOO IvtANYPARAMETERS
NETWORK MID-BODY
PANEL COLUMN l

PANEL ROW 3

NUMBER OF SOURCE PARAMETERS = lO

NUMBER OF DOUBLET PARAMETERS = 22

******** ERROR
SINGULAR SOURCE SUBPANEL SPLINE MATRIX

NETWORK MID-BODY
PANEL COLUMN l

PANEL ROW 4

SUBPANEL NUMBER 5
******** ERROR

SINGULAR DOUBLET SUBPANEL SPLINE MATRIX

NETWORK MID-BODY
PANEL COLUMN 5
PANEL ROW 8

SUBPANEL NUMBER 6 V

4-E.16

SUBROUTINESRCFFM

******** ERROR
SINGULARINVERSEFORMATRIX
DUETOINVALIDMACHNUMBER.
ONEMINUSMACHNUMBERSQUARED= 6.425E-18

SUBROUTINESUBGEO

******** ERROR
MACHINCLINEDSUBPANELDISCOVERED

NETWORKTAIL
PANELCOLUMN9
PANELROW 3
SUBPANELINDEX7

******** WARNING
CRITICALLYINCLINEDSUBPANELDISCOVERED

NETWORKTAIL
PANELCOLUMN6
PANELROW 3
SUBPANELINDEXl
ANGLEWITHRESPECTTOMACHCONE= -3.769E-04

...i 4-E.I 7

V

APPENDIX 4-F

ADDITIONAL DIAGNOSTIC OUTPUT

During maintenance activities, additional diagnostic output may be
desired from DQG. This may be to investigate code errors or to better
understand the analysis of a particularly complex configuration by tailoring

the output for that configuration. If the DEFINE directive is available with
the UPDATE program then DQG can be instrumented with additional output code in
an efficient and straightforward manner. The redundancies of adding output
code in several routines can be reduced and the original code can also be left

unaffected. The general approach is outlined below.

First, all changes to the DQG program library should be surrounded by an
IF directive as shown below.

*IF DEF,DIAGNOS

(additional output code)

*ENDIF

% J
V

When DQG is updated prior to compilation with *DEFINE DIAGNOS, the output code
will be instrumented. If DQG is updated without the DEFINE directive, the

compiled code remains the same.

Second, two special COMDECKs are called from every routine in DQG. They

are DECLAR and ENDECL. Changes (enclosed by IF-ENDIF directives) to these

common blocks will be propagated to every DQG routine that is recompiled.
This assumes that the DEFINE directive was used. Only specification

statements should be placed in DECLAR. ENDECL may contain any data statements
followed by executable statements. The executable statements at the end of

ENDECL will be executed immediately upon entry to the subroutine. As an
additional aid the name of each subroutine is data loaded into the local

variable SUBNAM.

4-F. 1

L •

APPENDIX 4-G

SAMPLE OUTPUT FROM DQG

An example and a discussion of the output from DQG is contained in the

PAN AIR User's Manual, Section 8 (Reference 2).

'J 4-G.I

V

APPENDIX 4-H

INDEXING SCHEMES IN DQG

4-H.1

V

V

4-H.O Introduction

Indexing schemes are a basic part of DQG. Data organization and pattern
recognition or identification are its essence. Most algorithms in DQG depend
upon the availability of one or several indexing systems.

This section describes the important indexing schemes used in DQG.

4-H.1 The Panel.

The basic geometrical unit in PAN AIR is the panel. A panel (shown in
Figure 4-H.I) is an arbitrarily shaped quadrilateral. It is defined by its
four corner points. These are indexed in a counter clockwise sense (when
viewed from above the upper surface) as shown in the figure. Five additional
derived points are indexed. They are the four edge mid-points of the panel
and the center point of the panel. The set of nine points define eight
triangular subpanels. The subpanels are indexed as shown in Figure 4-H.2.
Figure 4-H.3 shows the numbering scheme for the points in the subpanel. These
indexing schemes are used primarily in the sixth overlay of DQG.

4-H.2 The Network.

Collections of panels make up a network. Networks are defined by a set of
rectangularly indexed corner points. Figure 4-H.4 shows the upper surface of
a network and the manner in which the previously discussed panel indexing fits
into the network.

The location of a corner point in the network is defined by a pair of
coarse grid lattice indices (Figure 4-H.5). These are a pair of indices which
indicate the position of the point in terms of a two dimensional lattice of
points.

Adding edge midpoints and center points to the panels in a network defines
the fine grid of points (Figure 4-H.6). These are referenced by the fine grid
lattice indices. These are similar to the coarse grid lattice indices. Note
that center points have (even, even) lattice indices, column edge midpoints
have (even, odd) lattice indices, row edge midpoints have (odd, even) lattice
indices, and corner panels have (odd, odd) indices in the fine grid lattice

coordinate system. In fact, if (I C, JC) are the coarse grid lattice indices

of a corner point, the fine grid indices of the point are (21r-l, 2J_-l). On
the perimeter of the network, the corner points are also referred tobby a
sequential point index in a counterclockwise sense. Figure 4-H.7 illustrates
the edge indexing. Subroutines LATEDG and EDGLAT are used to transform coarse
grid lattice indices to sequential edge indices (LATEDG) and vice versa
(EDGLAT). There is also a lattice indexing system for panels. Figure 4-H.8
shows the panel lattice indices of panels in the network. This lattice
indexing system is used mostly for internal processing. Error or warning
messages sometimes list panel column and panel row as an aid in identifying
where in the network the problem has occurred. These column and row indices
correspond to the panel lattice indexing coordinate system.

J

4-H.3

PRECEDING PAGE BLANK NOT FILMEP 1_61__INTENTIQ.NAI_LY BLM/K

4-H.3 Control Points.

Control points are located at every panel center point, at every edge

midpoint on a network edge, and at every corner point on a network edge which
is either a start point or an end point of an abutment. These last points

include at least the four network corner points.

Starting with the first network in the processing sequence, the control

points at panel centers are indexed first. Then the first corner point on the
first edge is assigned an index followed by an assignment to every edge

midpoint on the edge. This proceeds around the network in a counterclockwise
direction. After all networks have been processed, any additional control

points which were added because an abutment began or ended in the middle of an

edge receive an index. Figure 4-H.9 illustrates the indexing scheme.

4-H.4 Singularity Parameters.

Singularity parameters (_S, _D) are located at different places in a

network depending on the source and doublet type of the network. The scheme

used for assigning a global index to singularity parameters follows the
general scheme of the control point indexing (see Appendix 4-H, Section
4-H.3). The varying locations of singularity parameters introduces some

complications. See PAN AIR Theory Document, Section D.I (Reference 1).

The process of indexing singularity parameters is synonomous with creating
the SINGULARITY-NAP and SINGULARITY-SPEC datasets in the DQG database. These

datasets (see Appendix 4-D) contain information about where in the network the

singularity lies, whether it is a source or a doublet parameter and whether it

is a known singularity.

The general approach is to loop over panels and assign an index first to a

source parameter (if any) and then to a doublet parameter (if any). Any
singularity parameters that are on an edge of the network are not indexed at

this time. After the loop on panels ends, singularity parameters on the edges
are indexed. First doublet parameters on the four edges are indexed in a
counter clockwise sense. Then source parameters are indexed.

In Figure 4-H.14 it is clear that two singularity parameters are assigned
to each center point in the network since there are two indices associated

with each center point in the network. There is only one singularity

parameter located at the edge midpoints on the perimeter of the network and
only one parameter at each of the four network corner points. By examining
Table 4-H.1 we can see that singularity parameters 1 and 2 are source and

doublet parameters respectively, which (from Figure 4-H.14) are located at the

center point of the panel in the lower left corner of the network.

Figures 4-H.10 to 4-H.28 illustrate the indexing scheme for all
combinations of networks. (Since singularities locations for Doublet Forward

Weighted networks are identical to those of Doublet Analysis networks separate

figures are not given for doublet forward weighted networks.) Tables 4-H.1 to
4-H.12 label the indices as source or doublet for the dual networks in Figures

4-H.14 to 4-H.28.

4-H.4

% •

4-H.5 Some Useful Conversions.

Several different indexing schemes can be employed to describe the same
quantity. Often a need arises to convert from one indexing system to
another. This section provides a list of a number of algorithms which define
these conversions:

Coarse grid lattice indices denoted by (Ic,J c) to fine grid lattice indices

(I c, Jc) > (21c-i, 2Jc-l)

Panel lattice, panel point to fine grid lattice indices

(Ip, Jp), Np _ (21p-l, 2Jp-l) + (Ix(Np), ly(Np))

where the panel index and the corresponding lattice index within the panel

(Ix(Np),ly(Np)) may have the following values

Np I x ly Np I x ly
i 0 0 5 i 0
2 2 0 6 2 I
3 2 2 7 i 2
4 0 2 8 0 I

9 i I

Coarse grid indices to sequential counter clockwise edge index (Refer to
Figures 4-H.5 and 4-H.7)

(Ic, Jc) _ Ic
J
NC-I +1

Edge 1
Edge 2

Edge 3

Edge 4

where Nc : number of corner point columns and

NR = number of corner point rows.

"-_ 4-H.5

Table 4-H.1 Source/Doublet Parameters for

Source Analysis/Doublet Analysis Network (Figure 4-H.14)

Index S/D Index S/D Index S/D

1 S 36 D

2 D 37 S

3 S 38 D
4 D 39 S

5 S 40 D

6 D 41 S
7 S 42 D

8 U 43 S

9 S 44 D
10 D 45 S

11 S 46 D
12 D 47 S
13 S 48

14 D 49 S

15 S 50 D
16 D 51 S

17 S 52 D
18 D 53 S

19 S 54 D

20 D 55 S
21 S 56 D
22 D 57 D

23 S 58 D

24 D 59 D

25 S 60 D

26 D 61 D
27 S 62 D

28 D 63 D

29 S 64 D
30 D 65 D
31 S 66 D

32 D 67 D
33 S 68 D
34 D 69 D

35 S 70 D

71

72

73
74

75

76
77
78

79
8O
81

82

D

D

D
D

D
D

D
D

D
D

D
D

V

4-H.6

v

Table 4-H.2 Source/Doublet Parameters for
Source Design I/Doublet Analysis Network (Figure 4-H.15)

Index S/D Index S/D Index S/D

1 D 36 S 71 D
2 D 37 D 72 D

3 D 38 S 73 S
4 D 39 D 74 S

5 D 40 D 75 S
6 S 41 S 76 S

7 D 42 D 77 S

8 S 43 S 78 S

9 D 44 D 79 S
10 S 45 S 80 S

11 D 46 D 81 S
12 D 47 D 82 S

13 S 48 D 83 S
14 D 49 D 84 S

15 S 50 D 85 S
16 D 51 D 86 S

17 S 52 D 87 S
18 D 53 D 88 S

19 D 54 D 89 S
20 S 55 D 90 S

21 D 56 D 91 S
22 S 57 D 92 S

23 D 58 D 93 S

24 S 59 D 94 S

25 D 60. D

26 D 61 D

27 S 62 D
28 D 63 D

29 S 64 D
30 D 65 D
31 S 66 D
32 D 67 D

33 D 68 D

34 S 69 D

35 D 70 D

"-" 4-H.7

v

Table 4-H.3 Source/Doublet Parameters for

Source Analysis/Doublet Design I Network (Figure 4-H.16)

Index S/D Index S/D

1 S 36 S.
2 S 37 D

3 S 38 S

4 S 39 D
5 S 40 S

6 S 41 S
7 D 42 D
8 S 43 S

9 D 44 D

10 S 45 S
11 D 46 D

12 S 47 D
13 S 48 D

14 D 49 D
15 S 50 D

16 D 51 D

17 S 52 D
18 A 53 D
19 S 54 D
20 S 55 D

21 D 56 D

22 S 57 D
23 D 58 D
24 S 59 D
25 D 60 D
26 S 61 D
27 S 62 D
28 D 63 D
29 S 64 D
30 D 65 0
31 S 66 D

32 D 67 D
33 S 68 D

34 S 69 D

35 D 70 D

4-H.8

Table 4-H.4 Source/Doublet Parameters for
Source Design I/Doublet Design I Network (Figure 4-H.17)

Index S/D Index S/D Index S/D

1 S 36 D
2 D 37 D
3 S 38 D
4 D 39 D
5 S 40 D
6 D 41 D
7 S 42 D
8 D 43 D
9 S 44 D

10 D 45 D
11 S 46 D
12 D 47 D
13 S 48 D
14 D 49 D
15 S 50 D
16 D 51 D
17 S 52 D
18 D 53 D
19 S 54 D
20 D 55 D
21 S 56 D
22 D 57 D
23 S 58 D
24 D 59 D
25 S 60 D
26 D 61 S
27 S 62 S
28 D 63 S
29 S 64 S
3O D 65 S
31 S 66 S
32 D 67 S
33 S 68 S
34 D 69 S
35 S 7O S

71
72

73

74

75
76
77

78

79
8O

81

82

S
S

S

S

S
S

S
S

S
S

S

S

"J 4-H.9

V

Table 4-H.5 Source/Doublet Parameters for

Source Analysis/Doublet Wake I Network (Figure 4-H.20)

Index

1
2

3
4-

5

6

7
8

9
10

11
12

13
14

15
16

17

18

19
2O

21
22
23

24
25
26

27

28
29

30

31
32

33

34

35

S/D Index S/D

36 D
37 D

4-H.10

Table 4-H.6 Source/Doublet Parameters for
Source Analysis/Doublet WakeII Network (Figure 4-H.21)

Index

1

2

3

4
5

6

7
8

9
10
11

12

13

14
15

16
17

18
19

20

21

22
23

24
25
26

27
28

29

S/D

S
S

S

S
S

S

S
S
S

S
S

S
S

S

S
S

S

S
S

S

S
S

S

S
S

S
S

S
D

\ .

4-H.II

V

Table 4-H.7 Source/Doublet Parameters for
Source Design I/Doublet WakeI Network (Figure 4-H.22)

Index S/D Index S/D

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
D
S
S
S
S
S
S
S
S
S
S
S

36 S
37 S
38 S
39 S
40 S
41 S
42 S
43 S
44 S
45 S
46 S

4-H.12

L _

-V"

Table 4-H.8 Source/Doublet Parameters for

Source Design I/Doublet Wake II Network (Figure 4-H.23)

_r

Index S/D Index S/D

i
2

3
4
5

6

7
8

9

10
11

12
13
14

15

16

17
18

19
20

21
22

23

24

25
26

27
28

29

30
31
32

33

34
35

S
S

S

S
S

S
S

S
S

S

S
S
S

S
S

S-

S

S
D
S

S

S
S

S

S

S
S

S
S

S
S

S

S
S

S

36 S
37 S

38 S
39 S
40 S

41 S

_ 4-H.13

Table 4-H.9 Source/Doublet Parameters for
Source Design ll/Doublet Analysis (Figure 4-H.25)

Index S/D Index S/D Index S/D

1 D 36 D
2 S 37 S
3 D 38 D
4 S 39 S
5 D 40 D
6 S 41 S
7 D 42 D
8 D 43 D
9 S 44 S

10 D 45 D
11 S 46 S
12 D 47 D
13 S 48 S
14 D 49 D
15 D 50 D
16 S 51 D
17 D 52 D
18 S 53 D
19 D 54 D
20 S 55 D
21 D 56 D
22 D 57 D
23 S 58 D
24 D 59 D
25 S 60 D
26 D 61 D
27 S 62 D
28 D 63 D
29 D 64 D
30 S 65 D
31 D 66 D
32 S 67 D
33 D 68 D
34 S 69 D
35 D 70 D

71

72

73
74

75
76
77

78

79
80

81
82
83
84

85
86
87

88

89

D
D

D
D

D
S
S

S

S
S

S
S
S
S

S
S

S
S

S

V

4-H.14

Table 4-H.IO Source/Doublet Parameter for
Source Design ll/Doublet Design I Network (Figure 4-H.26)

Index S/D Index S/D Index S/D

i S 36 S
2 S 37 D
3 S 38 S
4 S 39 D
5 D 40 D
6 S 41
7 D 42 D
8 S 43 D
9 D 44 D

10 S 45 D
11 D 46 D
12 S 47 D
13 D 48 D
14 S 49 D
15 D 50 D
16 S 51 D
17 D 52 D
18 S 53 D
19 D 54 D
20 S 55 D
21 D 56 D
22 S 57- D
23 D 58 D
24 S 59 D
25 D 60 D
26 S 61 D
27 D 62 D
28 S 63 D
29 D 64 S
30 S 65 S
31 D 66 S
32 S 67 S
33 D 68 S
34 S 69 S
35 D 70 S

71
72
73
74
75
76
77

S
S
S
S
S
S
S

-_, 4-H.15

Index

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35

Table 4-H.11 Source/Doublet Parameters for
Source Design ll/Doublet Wake I (Figure 4-H.27)

s/o

S
S
S
S
S

,S-

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
D
D
D
D
D
S
S
S
S
S

Index S/D

36 S
37 S
38 S

4-H.16

_J

Index

I
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
2O
21
22
23
24
25
26
27
28
29
3O
31
32
33

Table 4-H.12 Source/Doublet Parameters for
Source Design ll/Doublet Wake II (Figure 4-H.28)

S/D

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
D
S
S
S
S
S
S
S
S

4-H.17

V

Edge 4 8

3

6 Edge 2

2

Edge 1

4-H.1 - The Panel

4-H.18

7

6

4-H.2 - The Subpanels

4-H.19

4-H.3 - Indexing of Subpanel Points
4-H.20 t_

3=
0
r_

Edge 3

Edg

dge 2

Edge 1

M(Column Index)

Figure 4--H.4- A Network

4-H.21

"C

3:
o
r_
v

z

(1,5)

(5,)

(8,5)

(8,1)

M(Column Index)

4-H.22

Figure 4-H.5- Coarse Grid Lattice Indices (M,N)

y
v

x
CXJ

C

o

v

Z

MF(COlumn Index)

Figure 4-H.6- Fine Grid Lattice Indices (MFNF)

-"-J 4-H.23

W

Edge Index
4-

Edge 3

8 7 6 5

Edge 4
Edge 2

'Edge Index

I 2

3 4 5 7 8 1

Edge 1

V

Edge Index

4-H. 24

Figure 4-H.7-Indexing at Edge Points

(1,4)

r-

X

"0
_.-

0

v

e",
Z

Mp(Column Index)

Figure 4-H.8-Panel Lattice Indices (MpNp)

4-H.25

x
0J

"o
c-

o
e_

v

z

50 49 48 47

$I 112 -"___45
-_ I 16 _-._ 44 43 42

53 2 / 6 \ 10 \ 14 _ 18_2! _ ;:6 \

29 30 31_ 32 i 33] _" "j - \37
36

M(Column Index)

V

Figure 4-H.9-Control Point Indexing

4-H.26

x

o

v

M(Column Index)

Figure 4-H. i0-
S

- Indexing of Singularity Parameters h i on

Source Analysis, Doublet-Null Networks

a

4-H.27

V

0

v

Z

50 49 48 47

slf4f /' / _-_8 45

\ \ _"_i _ / 2° L 24 i 2_ I_1

s__Is i 19 i2_/27/_ °

32_ f34 3 "a 36 _37

M(Column Index)

Figure 4-H.11 - Indexing of Singularity Parameters &Di on

Source Null, Doublet Analysis Networks V

4-H.28

0

v

Z

37: 36 3_5 34 -

38 3 6 32 . 31 3o

_ 6

M(Column Index)

v

s
Figure 4-H.12 - Indexing of Singularity Par.ameters hi on

Source Design I, Doublet Null Network

4-H.29

V

Matching Edge

3B, 37 ,,, ,,-' 36 _ 3

391 13 _ I -"-'_ 32

21 2 23

31 .-30

18_ 1 29

25

,,,,--,.,

"o

o

M(col umn Index)

Figure

D for a

4-H.13 " Indexing of singularity Parameters %i

Source Null, Doublet Design I Network

4-H.30

v

X

_..

0

78 77 76 75

-_2 ' i 7_

79

)

M(Column Index)

Figure 4-H.14 Indexing of Singularlty Parameters A Si Dand A i on a Source

Analysis Doublet Analysis Network. Odd Indices Between
i and 55 are Source Parameters. Even Indices Between 2

and 56 and all Indices Between 57 and 82 are Doublet
Parameters.

4-H.31

68,91_ 67 90 66 89 65 88

I __ 1 18 I 2s __-4s 62 8s 61

92_-_ \ ----._LT.._io. -- / 32 39 / 4T--!2°

X

"0
e-

3_
0

v

Z

M(Column Index)

,84

,8O

s D
Figure 4-H.15 - Indexing of Singularity Parameters)_i and Ai on a

Source Design I, Doublet Analysis Network r_

4-H.32
Z --_ .-

:r

!

Matching Edge

66-- 65 64 63 62

67/ 4 11110 17 I_ 60

r 45 _58

\ _ \ 8 _L25 /32_" ,3938/46 Js;

2Edge - 373_ 43

69 6 .7 :
- 7 21 8 41

54
50 51 53

0

v

M(Col umn Index)

Figure 4-H 16 Indexing of Singularity Parameters)S and AD for Source
• i i

Analysis Doublet Design I Networks

4-H. 33

\ V

Matching Edge

_9 55 78 54 77 53 76
56,. j_ I I 1_...._52 .,

57/ L 6 / / -"_s_ . 72
I J_,b I I I _'_._.'4 50 73 49 48

ng 'Matchi {58_ \ \ _!17_18 _-_3.24 ._9.30 I_5,36 J47 71

7O
s91 / \ \ \ \ \ \

37 3 _ l \

61 62 39 ' _ _- "*" ""J \44,6840 41 66 43
63

x 64 65 67

M(Column Index)

W

Figure 4-H.17 Indexing of Singularity Parameters ASi and)_Di for

Source Design I, Doublet Design I-Networks
V

4-H. 34

v

X

¢--

0

v

M(Column Index)

Matching Edge

D forFigure 4-H.18 Indexing of Singularity Parameter)k i

Source Null, Doublet Wake I Network

4-H.35

h

X

0

Z

Matching Edge

M(Col umn Index)

V

Figure 4-H.19 Indexing of Singularity Parameters _Di for

Source Null, Doublet Wake II Networks

4-H.36

Matching Edge

v

t-

o

v

37- 36 35 34 _ 33

M(Col umn Index)

Figure 4-H.20 Indexing of Singularity Parameters AS and _D for
1 1

Source Analysis, Doublet Wake I Network

4-H. 37

29I 4 I 8 I i_

I _ I 13 17 211_ \

X

_J

0

M(Column Index)

W

S D
Figure 4-H.21 Indexing of Singularity Parameters h i and h i for

Source AnalYsis, Doublet Wake II Network V

4-H. 38

v

X

3=
0

v

Z

43 ,42 " 41 40

3624

• Matching

0 .21

28 2! 3_ _9'32

M(Column Index)

Edge

Figure 4-H.22
S D

Indexing Singularity Parameters h i and h i for

Source Design I, Doublet Wake I Network

4-H.39

V

-#

c-

3:
o

v

Z

38- 37 36 35

\ \ \ _19 112 15 h,8 /3o

o,L/\

Matching Edge

M(Column Index)

r I

V

Figure 4-H.23 Indexing of Singularity

_ource Design I and

S D for
Parameters)_i and)_i

Doublet Wake II Networks V

4-H.40

J

35 34 33

10 :1_

Matching Edge

m(C_lum ImJex)

S
Figure 4-H.24 - Indexing of Singularity Parameters hi on a Source

Design II, Doublet-Null Network Matching Edge

"-_ 4-H.41

71

72

0,89 69,88 87

6 85

63

62

A

{:
N

]I

V

Z

74

75

I

M(Colmm IMex)

60

59
52,;

53,78 54, 55,80 56,8 57,82 58

Matching Edge

V

S . _9 on a Source
Figure 4-H.25 - Indexing of Singularity Parameters hi and i

Design II, Doublet Analysis Network

4-H.42

v

59 77. 58 76 57 75 56 74

Matching Edge o__ tl__]__ 0

47,70

x Matching Edge

m-

3
o

M(Column Index)

S D
Figure 4-H.26 - Indexing of Singularity Parameters h i and Ai on a Source

Design II, Doublet Design I Network

4-H.43

V

25

\ \ _--_j 2oi

27,36X 3\ ;t ' j / _34/ 7 4

'7s 1
x
O

c

3

O.

,l

I IMex)

S
Figure 4-H.27 - Indexing of Singularity Parameters hi and

Design II, Doublet Wake I Network

4'H.44

on a Sour¢ _

A

C
N

Z

32/ 2/ 61 i0_ 14_1_ 22_ \27 Edge

D

re(Colm Imdex)

DFigure 4-H.28 - Indexing of Singularity Parameters _ and)_i on a Source

Design II, Doublet Wake II Network

4-H .45

\

\

V

=

-v r

APPENDIX 4-1

AUTOMATIC ABUTMENT SEARCH

V

4-I.I

4-1.1 General Discussion.

DQG offers an-option to the user that greatly simplifies the tedious job

of specifying abutments, that is, describing which network edges meet. DQG
will search the configuration geometry for places where the distance between

network edges is less than some specified tolerance distance and will define
abutments there. This appendix describes the process which DQG employs to

identify abutments. The automatic abutment search is performed in the (3,1)
and (3,2) overlays of DQG.

Figure 4-1.1 shows a configuration consisting of five networks. There are

two kinds of abutments: network edge abutments and empty space abutments.

Network edges which meet other network edges or planes of symmetry are called

network edge abutments. Empty space abutments are those places where a

network edge does not meet another network edge or plane of symmetry. In the
figure there are six network edge abutments (Al through A6) and eight empty

space abutments (El through E8).

The automatic definition of abutments occurs in three stages. First, all
relations of the form "network A, edge N from point B to point C lies near
network D, edge P" are established. These are called pa_rw_se abutment

descriptions. In the second stage, all such descriptions for one network edge
are examined and a list of all network edges which a particular segment of the

one edge lies near is compiled. This is called the expanded abutment

description. The final process consists of contracting the expanded
description. In this procedure, start and end points of different network
edges in the abutment are defined consistently and the abutment assembly is

transferred to an output array (the WEABUT or IESABT array for network or
empty space abutments) and written as the ABUTMENT-SPEC or EMPTY-SPACE-ABUT
datasets.

The user has the option of completely specifying all abutments or

specifying part of them and allowing DQG to find the rest or of allowing DQG

to find them all. Any abutments specified by the user are not disturbed by
the automatic search.

4-I.2 Data Representations.

An understanding of the content and structure of certain arrays is

required to understand the manipulations of the automatic abutment search.

this section the arrays are defined.

In

The IABUT(8) array contans the pairwise abutment description. The first

six entries define the edge segment (as in IESABT). The seventh and eighth
entries are the network and edge of the other network which the segment lies
near.

The IXPAND array contains the expanded abutment description. This is a
list of all network edges which lie near one another. It is closely related

to the abutment description in the array WEABUT (see below), except that it
might contain several network abutments. It is dimensioned lO by 6. The first
index ranges over network edge segments which take part in an

4-1.3

PRECEDING PAGE BLANK NOT FILMF_D

abutment. The values of the second index indicate (I) network index, (2) edge

index, (3) and (4) start point column and row indices (coarse grid lattice
indices) and (5) and (6) stop point column and row indices (coarse grid

lattice indices). This structure is similar to that of the array WEABUT (see

below).

The WEABUT _rray is a 5 by 6 array which contains the abutment description

for network abutments, (that is , abutments which involve two or more network

edges, or one network edge and a plane of symmetry). A maximum of five

network edge segments are permitted in the abutment. The first index of the
array ranges over the network edge segments in the abutment. The second index

ranges from l to 6 and describes the network edge segmenet. WEABUT(I,I)
contains the network index of the Ith network in the abutment, WEABUT(I,2)

contains the edge index, WEABUT(I,3) and WEABUT(I,4) contain the coarse grid
column and row indices of the start point of the edge segment, and WEABUT(I,5)

and WEABUT(I,6) contain the coarse grid column and row indices of the end

point of the edge segment.

ISRCH is called the search list. It describes the portion of a particular

network edge which has not been defined by the user to form an abutment. It
is a two dimensional array which is dimensioned 20 by 4. The first index

ranges over individual edge segments along a single network edge (a network
edge may take part in up to twenty separate network or empty space

abutments). The second index ranges from l to 4 and defines the column and

row indices of the start and of the end point of the segment respectively.

LISTAB is a vector of dimension 20. It is a list of the pairwise

abutments in which a particular network edge takes part. This array is used

for diagnostic purposes. It is not essential to the automatic abutment search.
V

LISTCP is a list of the columns and rows of the start and end points of

the pairwise abutment segments in which a particular network edge takes part.
It is dimensioned 20 by 4. The first index ranges over edge segments on the

edge and the second index ranges over column and row indices of the start and

end point each edge segment.

SEQCP is a two dimensional array dimensioned 40 by 2. It contains the

same data as in LISTCP except that it is sequenced in increasing coarse grid
lattice index order.

ILIST is a list of all network edges which lie near one another. It is a

two dimensional array, lO by 2. ILIST(I,I) is the network index of the Ith

network edge segment in the abutment and ILIST(I,2) is the edge index of the

edge segment.

MSHARY is a two dimensional array dimensioned 2 by lO0. It contains the

mesh size of each network in the configuration.

EGLNTH is a two dimensional array dimensioned 4 by lO0. It contains the

edge length of each of the 4 edges of the networks in the configuration.

BLANK is a blank common array used to store all of the edge coordinates.

Its dimension is variable and is dependent on the configuration.

LPT is a vector of length 401. Its first element contains a zero. The

remaining elements contains, for each network edge, a cumulative count of the

number of edge points whose coordinates are stored in the blank common array.

4-1.3 Program Execution.

v In the (3,1) overlay of DQG program, program PRABUT calls subroutine

USEABT to define any user-provided abutments. At the end of this process
USEABT calls SEARCH to define the search list for abutments (Array ISRCH).

PRABUT then reads into memory the edge coordinates of all networks and PRABUT

sets up a bookkeeping vector, LPT, to keep track of the storage location of
the edge coordinates. Finally PRABUT calls subroutine NETABT, which

constructs the pairwise abutment arrays.

For each network edge a list is made of all network edges which are not so

far away that they are unlikely to take part in an abutment with the given

edge. This is done in subroutine EDGLST. A maximum distance is defined equal
to the larger of the edge length of the network whose pairwise abutments are

being constructed (the reference network edge) and the edge length of the
network being examined. Then if a point on the reference edge is closer to

either the first or last point on the network edge under examination than the

maximum distance, the edge under examination is added to the edge list.

When all network edges have been examined, the pairwise abutment arrays
are constructed for the reference edge. For each point on the reference edge
which is also in the search list, (ISRCH), the minimum distance to each line

segment (segment between two successive corner points on the edge) on the edge

of a network in the edge list is computed. If this distance is less than the
global tolerance distance, it means a pairwise abutment is found. The

reference network, edge and coarse lattice indices are added t6 the IABUT
arrays as well as the network and edge index of the edge under examination.

This begins the pairwise abutment.

A similar computation is made for the next joint on reference edge. If it

is also close to a line segment, the point is defined as the end point of the

pairwise abutment. This extends the pairwise abutment.

The extensions continue until there are no more points on the reference

edge or until there is a point on the reference edge which is not close enough

to the edge under examination. In either of these cases this signals the
termination of the pairwise abutment. A check is made to assure there are at

least two distinct corner points in the IABUT array and it iswritten to the
data base.

The process continues over all network edges in the edge list and for each

network edge in the configuration. Note that collapsed edges are never used
in the automatic abutment search.

_J

After the pairwise abutments are defined, they are expanded in subroutine
ABXPND in the (3,2) overlay. For each network edge a list is made of all the

pairwise abutments in which it appears as the reference network {array
ABLIST). At the same time the network and edge which the segment lies near
(IABUT(7) and IABUT(8)) are added to the array LSTNET. The start and end

point lattice indices are transferred to the array LISTCP. These are
sequenced in increasing lattice index without duplication in the SEQCP array.
Now a determination is made as to which of the network edges in the LSTNET

array all lie near which of the line segments of the reference network edge.
The successive entries in the SEQCP array define edge segments which lie near
a common set of network edges.

4-I.5

The average of two successive indices in SEQCP are computed. Then the

average indices are compared with the start and end points in LISTCP. If the
average lies within the start/end interval then the corresponding network edge

in NETLST lies near the edge segment defined by the successive entries in

SEQCP. The network and edge are added to the ILIST array and the edge segment
data is transferred to an array JXPND. After all entries in LISTCP are

examined, the reference network edg_ is added to the ILIST array. The entries

in ILIST are sequenced by the network edge constant. ILIST is transferred to
an array called IKEY. This is used as a key set to get any pre-existing

expanded abutment data. If the data is found, the new data in JXPND is added

to the expanded abutment data and the information is written to the disk. If
no data is present, this defines a new expanded abutment. The new key array
is written to the data base as the ABUT-KEYS data and the new expanded

abutment data is written to the EXPANDED-ABUTMENT data set.

The process continues until all network edges in the configuration have

been processed.

At the end of subroutine ABXPND, all of the edge segments of every network

edge which appears in a single abutment should be contained in some
EXPANDED-ABUTMENT element set. The only remaining tasks are to identify start

and end points of the edge segments in a consistent fashion and, for the rare
case shown in Figure 4-I.3, separate the two abutments which occur on common

edge segments. These are performed in CONABT.

In subroutine CONABT an expanded abutment description is read from the

disk. A single network edge from the IXPAND array is chosen to establish the

start and end points of the abutment. This edge is parameterized (see PAN AIR

Theory Document, Appendix F, Section F.6 (Reference l)) and the coordinates of
the points I/4 and 3/4 of way aYongthe edge are computed. Also a reference
distance is defined as the maximum of twice the global tolerance distance and

one tenth of the distance between th one,quarter and three-quarter points.

Then each other network edge in the expanded abutment is parameterized and the
distance from the I/4 and 3/4 points of the first_edg6 to the i/4 and 3/4

points of the other edge. If both the I/4-I/4 and 3/4-3/4 distances are less
than the reference distance or if both the I/4-3/4 and 3/4-I/4 distances are

less than the reference distance, the network edge is transferred to the
WEABUT array and written to the data base. If neither condition is satisfied,

the other edge is skipped and the rest of the edges in the expanded

description are checked.

After all expanded abutments are processed, a call is again made to

subroutine SEARCH. This again scans all abutments and writes to the DQG data

base all those network edges which do not take part in an abutment. These are
used in subroutine MTABUT to define empty space abutments.

V

V

4-I .6

v

4-1.4 An Example

Figure 4-I.2 shows a configuration which will be used to illustrate the

operations described in the previous section•

Before searching for pairwise abutments the program PRABUT determines that

there is sufficient core memory available to store the coordinates of all the

edge points• After reading the coordinates of an edge PRABUT stores in array
LPT the cumulative number of edge points which have been read into memory•

The edges are read in order of network number and edge number• Using the

array LPT the program may keep track of the storage locations of the edge

point coordinates•

Assume that no abutments have been defined by the user. The automatic

abutment search will then be executed for the whole configuration• The search
thefor pairwise abutments begins with first edge of the first network• The

configuration is sufficiently small that all network edges are close enough

together to be considered for an abutment with the first edge of network one.

Thus all edges in the configuration are searched for pairwise abutments• The

first network edge which lies within the global tolerance distance of the

first point on edge l of network l is network 4 edge 3. This causes the first
entries to be made in the IABUT array. The network edge and start point
column and row indices are listed in IABUT(1), IABUT(2), IABUT(3) and IABUT(4)

respectively• The network and edge which lie near the reference network edge
(network l edge l), namely network 4 edge 3, is stored in IABUT (7) and

IABUT(8) respecitvely. The end point column and row indices of the pairwise
abutment {IABUT(5) and IABUT(6) are set equal to the start point indices. The

IABUT array then looks like:

I : I, 2, 3, 4, 5, 6, 7, 8

IABUT(1) : (l' l']' l'

I I I I

T i _ : "

i ; T "
Network index- • _ _ _ •

{ref network) I i % •

I I

Edge index (ref network)---_ _ _ •

Col index, start pt- ' '• _

Row index, start pt--- 1

, 4, 3)
' i-Edge index

' (other network)
•

• _....Network index
• (other network)

Row index, last pt

Col index, last pt

Then the (2,1) point (that is, column 2 and row l) of network l is
examined• It too lies near edge 3 of network 4. Thus the end pont is

redefined (IABUT(5)=2 and IABUT(6)=I) and the IABUT array now looks like:

I = l, 2, 3, 4, 5, 6, 7, 8

IABUT(1) : (l, l, l, l, 2, l, 4, 3)

The process continues and the end point is redefined until the last point

on edge l of network l is reached. At this point the search stops momentarily
and the IABUT array is written to the DQG database as dataset I-ABUT with a

key which is a cumulative index of the number of pairwise abutments

discovered, beginning with one. The rest of the network edges are processed
in a similar fashion. At the end of program PRABUT, there are fourteen

4-1.7

element sets in the I-ABUTdataset. The contents of the I-ABUTdataset after
the end of PRABUTexecution are summarizedin Table 4-1.1. Note that the
fourth pairwise abutment involves the fourth edge of network l with the first
plane of symmetry. (Planes of symmetryare indicated by a negative network
index.) Note that the start and end points in Table 4-I.l are the coarse grid
lattice indices of the points on the network edges (see Appendix 4-H of this
manual).

After all the pair wise abutments have been defined, the expandedabutment
list is generated. A loop over network edges defines each network edge in
turn as a reference network edge. Theneach pairwise abutment is examinedto
see if the reference network edge is in the IABUTarray that defines the
pairwise abutment (i.e., that the reference network edge is in IABUT(1)and
IABUT(2)). For each of these pairwise abutment, the other network edge
(entries IABUT(7)and IABUT(8)) identifiers are extracted and added to the
LSTNETarray. The start and end points of the reference edge are recorded in
array LISTCP. To illustrate the process, consider network 2 edge 4 as the
reference network edge in the example introduced above. Examination of Table
4-1.1 showsthat network 2 edge 4 appears as the entry in IABUT(1) and
IABUT(2) in three pair wise abutments. In the first network 2 edge 4 from
point (1,3) to (1,6) lies near network l edge 2. This defines LSTNET(I,I)=I
and LSTNET(I,2):2 and LISTCP(I,I) = (1,3,1,6). The second pairwise abutment
in which network 2 edge 4 takes part states that points (l,l) to (1,6) lie
near network 3 edge 2. Thus LSTNET(2,1)=3and LSTNET(2,2)=2and LISTCP(2,1) =
(l,l,l,6). Finally the third pairwise abutment that the reference edge
appears in states that points (l,l) to (1,3) lie near network 4 edge 2. Thus
LSTNET(3,1)=4and LSTNET(3,2)=2with LISTCP(3,1) = (l,l,l,3).

After all pair wise abutments have been examinedthe points in LISTCPare
rearranged in increasing lattice index order. The order of the points after
the rearrangement is:

W

(I,I)
(l,l)
(I,3)
(I,3)

(l,6)

(I,6)

Duplicate entries in the list are deleted as the list is moved into the

array SEQCP. The results of these operations are summarized by the contents

of the arrays LSTNET, LISTCP and SEQCP in Table 4-I.2.

After the indices are copied into SEQCP, the average of each pair of

successive indices is computed. This is listed as "AVERAGE" in the SEQCP

ortion of Table 4-I.2. Now the expanded abutment description is assembled.
or each of the entries in the array LISTCP, _f the average index of the two

adjacent values of SEQCP lies between the start and end points in LISTCP, the
corresponding network and edge indices of the array LSTNET are added to the

array ILIST. For the first set of average values we have (Table 4-I.2)
(1,2). Comparing this with entries in LISTCP we see the point does not lie
between the start and end points of the first entry (that is between (1,3) and

(1,6)), but it does lie between the second and third entries (namely (l,l) to

(1,6) and (I,1), to (1,3) respectively). Thus the corresponding network and

edge indices (network 3, edge 2 and network 4 edge 2) are added to the ILIST

4-I.8

v

V

array. After all entries in LISTCP have been examined for a particular

average value, the reference network is added to the array ILIST. Then the
entries in ILIST are resequenced in increasing network and edge index order_

This result is shown in Table 4-I.3.

The sequenced ILIST array is used as a key set for the expanded abutment

data which is contained in the EXP-ABUT dataset. An attempt to read the data

with that particular key set is made. If no data is found, the expanded
abutment data is defined from the reference network edge (network 2 edge 4)

and from the entries in SEQCP which defined the average value (namely (l,l)

and (1,3)). Thus the array IXPAND(I,I) : (2,4,1,I,I,3). The number of edges

in the expanded abutment is set to one and the data is written to the EXP-ABUT
dataset with a key set equal to (24,32,42). (Note that the network and edge
data from ILIST are combined into one index for each network edge by

multiplying the network index by lO and adding the edge index.)

If the expanded abutment description is already found on the database, the

number of edges in the expanded abutment is increased by one and the network

edge and start and end corner point data is added to the existing IXPAND

array. Then the data is written to the database.

This proceeds until all networks and edges have been defined as the
reference edge in a pairwise abutment. At the end of the subroutine ABXPND,
the EXP-ABUT dataset contains the five element sets described in Table 4-I.4

which are addressed by the key set as indicated in the same table. The reader
who desires a full comprehension of these steps is urged to work through the

rest of the problem by setting up the LSTNET, LISTCP, SEQCP and ILIST arrays
for each network edge in this simplified configuration and thus verify Table
4-I.4.

Finally subroutine CONABT reads in the expanded abutment data and from it

defines the abutment description. The last network edge segments description

which is not a plane of symmetry is chosen to establish the start and end

points of the abutment. This is referred to in the code as the reference
network edge. The network, edge, start and stop indices are copied into an

intermediate storage array called TWEBUT and the refenence network index in

the array IXPAND is set to zero so that this edge will not be selected again

in an attempt to define another abutment. Then the subroutine CI3QTR finds
the coordinates of the points one quarter and three quarters along the edge of

the reference segment. This is accomplished by parameterizing the edge
segment (see PAN AIR Theory Document, Section 6 of Appendix F (Reference l)),
and then finding the successive corner points whose parameterizations span
0.25 and 0.75. The coordinates of the point on the line segment between these

points are then computed in an obvious fashion (by interpolation). The
quarter three-quarter point coordinates are used to assure that the start and

end points of each network edge are appropriately mated to the start and end

points of the reference edge.

After these coordinates are defined, each edge segement in the expanded

abutment description other than the reference edge is examined. The distances

between the quarter point of the reference edge and the quarter point of the

segment under examination, between the three quarter point and the quarter
point, between the quarter point and the three quarter point and the quarter

point and finally between the three quarter point and the three quarter point
are computed and compared with a reference distance. The reference distance

4-1.9

is the larger of twice the global tolerance distance and one tenth of the
distance betweenthe quarter point and the three quarter point of the
reference edge. If both the distances between the two quarter points and the
two three-quarter points is less than the reference distance, then the segment
under examination is copied into the TWEBUTarray without interchanging the
start and end points. If the distances between the quarter point of one side
and the three quarter point of the other and vice-versa are less than the"
reference distance then the data is copied into the TWEBUTarray but the start
and end indices are interchanged. If neither condition holds, the edge
segmentunder examination does not form an abutment with the reference edge.
(This occurs in the configuration illustrated in 4-I.3.) After all edge
segments have been considered, the data stored in the TWEBUT array is copied
to the WEABUT array and the abutment description is written to the DQG
database.

In the example discussed above, the reference edge segment in CONABT is

network 4 edge 2 from point (3,1) to (3,3). In this case the other to edge

segments in the expanded abutment lie sufficiently close to the reference edge
that they are included in the final abutment description. Table 4-I.5
contains the abutment descriptions for the configuration as they would appear
at the conclusion of the (3,2) overlay of DQG.

The information presented here covers the basic operations of the
automatic abutment search. Any additional information will be obtained by

examining the code itself. Having understood the discussion in this appendix

the code should be easy to comprehend.

4-I.lO

Table 4-1.1 IABUTArray

Network Edge Start End Network
(Col, Row) (Col,Row)

Edge

l 1 (l,l) (3,1) 4 3
l 2 (3,1) (3,3) 3 2
1 2 (3,1) (3,3) 2 4
1 4 (I,I) (1,3) -I 0
2 4 (l ,3) (l ,6) l 2
2 4 (l ,I) (1,6) 3 2

2 4 (l,l) (1,3) 4 2

3 2 (l,2) (l,3) l 2
3 2 (1,1) (1,3) 2 4
3 2 (l,l) (1,2) 4 2

4 2 (3,1) (3,3) 2 4

4 2 (3,1) (3,3) 3 2
4 3 (3,3) (I,3) 1 1

4 4 (3,1) (l,l) -l 0

_-J 4-1.11

Table. 4-1.2 Generation of Expanded Abutments for network 2 edge 4

LSTNET(I,Ji

I/J l 2

1 .' 1 2
2; 3 2

3' 4 2

LISTCP(I,J)

I/J 1 2 3 4

1 ;I 3 1 b
2 ;I 1 1 6
3 _I 1 1 3

w

SEQCP(I,J)

I/J l 2
1 ; l l

2' l 3
3' l 6

AVERAGE

(I,2)

(I,4)

Table 4-I.3 The ILIST array

ILIST(I,J)

I/J 1 2

l '3 2

2 ;4 2

3;2 4

ILIST(I,J) After Sequencing

I/J l 2
1 : z 4

2 '3 2
3 ;4 2

IXPAND = (2, 4, l, l, l, 3)

V

4-I.12

Table 4-1.4 IXPANDArrays

Element Set Key Set

1 (II,43)

2 (12,24,32)

3 (-io,14)

4 (24,32,42)

5 (-I0,44)

Network

-I
l

-l
4

Edge

4

2
2

0
4

Start

(Col, Row)

(I,I)
(3,3)

(3,1)

(I,3)
(l,2)

(0,0)
(l,l)

(l,l)

(1,1)
(3,1)

(0,0)

(l,3)

(Col

End

, Row)

(3,1)
(I,3)

(3,3)-

l,l)1,3)

(0,0
(l,31

(1,3)

(I,2)
(3,3)

(0,0)

(l,l)

v

4-I.13

Abutment

Table 4-I.5 Final AbutmentDescription

Network
Network Abutments

Edge Start Point
(Col, Row)

EndPoint
(Col, Row)

l l " (l,l) (3,1)
4 3 (1,3) (3,3)

2 4 (6,1) (3,1)
3 2 (I ,3) (I ,2)
I 2 (3,3) (3,1)

2 4 (l,l) (3,1)
3 2 (l,l) (2,1)
4 2 (3,1) (3,3)

l 4 (3,1) (l,l)
-I 0 (0,0) (0,0)

4 4 (3,1) (l,l)
-I 0 (0,0) (O,O)

V

EmptySpaceAbutments

l l 3 (3,3) (I ,3)
2 2 l (l,l) (3,1)
3 2 2 (3,1) (3,6)

4 2 3 (l,6) (3,6)
5 3 l (l,l) (3,1)
6 3 4 (1,3) (l,l)
7 4 l (l,l) (3,1)

f

v

4-1.14

A6

A5 A1

3 E4
E

v Figure 4-1.1-Sample Configuration Illustrating Abutments
4-1.15

V

Figure 4-1.2 - Configuration for Example Discussed in Paragraph 4-I._
4-I. 16

z

A 1

®

A 2

v

Keyset:

IXPAND.

A
1

1 1

1 1
2 3

2 3

! I (1,1) (3,1)
2 3 (5,3) (6,3)
1 1 (6,1) (7,1)
2 3 (1,3) (2,3)

1 1. (1,.1) (3,1) A 2
2 3 (1,3) (2,3)

I I (6,1) (7,1)
2 3 (5,3) (6,3)

_t _-
v

Figure 4-I.3 -A Special Case Treated Correctly by Subroutine CONABT

4-I. 17

V

V

APPENDIX 4-J

ABUTMENT INTERSECTION SEARCH

4-J.l

/
/

//

4-J.l General Discussion.

In the PAN AIR system the continuity of doublet strength accross network

boundaries can be met under those conditions specified in PAN AIR Theory

Document, Section 4 of Appendix F (Reference l). This is achieved through the

introduction of matching boundary conditions. One of the most difficult
problems which had to be solved in DQG was the determination of how to impose
these conditions at abutment intersections.

An abutment (see Appendix 4-I) is a place along which two network edges

meet (see Figure 4-J.l). An abutment intersection is the region where

abutments come together (Figures 4-J.2, 4-J.3 and 4-J.4). The matching
condition at the intersection means the doublet strengths at the two adjacent

corner points on the abutting network edges are equal to one another.

The PAN AIR Theory Document, Appendix F, Section F.5 (Reference l), shows

that if N abutments come together at an intersection and N-I corner points are

assigned to match doublet strength, then this is a necessary and sufficient
condition to assure doublet continuity at the intersection without redundant

equations if the correct N-l corner points are assigned.

The problem faced by DQG is to select the correct N-l corner points

subject to the following conditions: _

(I) Some corner points on design or wake networks are "matching" points,

i.e., they must be chosen for matching boundary conditions.

(2) Some corner points on some networks are "non-matching" points which

must not be used to match doublet strength.

(3) The selection of corner points to receive matching conditions shall

not cause a redundant system of equations.

(4) At collapsed edges of networks, at most one of the two corner points

can be used for matching doublet strength.

(5) Doublet strength must be continuous across a plane of symmetry at

corner points that lie on the plane of s3mmetry and doublet strength at a

corner point lying on an empty space abutment must be matched to zero.

(6) A corner point can be assigned to at most one abutment and each

abutment can receive at most one corner point.

The PAN AIR Theory Document, Appendix F, Section F.5 (Reference I)
introduces a graphical abstractionwhich summarizes the geometrical

situation. Figures 4-J.3 and 4-J.4 provide some additional examples of
certain geometric configurations and Figure 4-J.5 a, b and c provide the
corresponding graphical equivalents. The reduction of the geometrical
configuration to its graphical equivalent and the use of an algorithm from

graph theory yields the solution to the problem. The (3,4) overlay of DQG
performs the operations which result in the solution to the problem.

v

PRECEDING PAGE BI..A_K NOT FILMED
lieGE_-_' INTENIIOrNAELYBLAtdK

4-J.3

4-J.2 Solution to a Problem in Graph Theory,

A graph is a collection of points called nodes connected by a set of lines
called branches. See Figure 4-J.6. An irreducible subgraph is the set of all

nodes which are connected by some set of branches to any other node in the set

(Figure 4-J.7). The problem of graph theory is to find all irreducible

subgraphs of a given graph.

The solution is accomplished in a very ingenious fashion. First all

branches and nodes are assigned an index. See Figure 4-J.8. Then all
connections are enumerated. A connection is a list of a branch and the two

nodes which match its end points. Table 4-J.l lists the connections in Figure
4-J.8. Now the connection list is sorted in the following particular fashion.

A table is constructed which has its columns labeled by connection index
and whose rows are labeled by node index (Table 4-J.2). The leftmost column

is filled with zeroes to initialize the table. For each connection the rows

corresponding to the nodes in the previous connection column are examined.

If both contain zero, the connection defines a new subgraph. New entries
in the connection columns are made with an integer labeling the new subgraph

for the two new nodes. All other nodes' entries are carried over without

change. This occurs for the first four connections in Table 4-J.2.

The first connection in Table 4-J.l has branch 1 connecting node 2 with
node 3. The initial column in the sorting table contains only zero entries

corresponding to node 2 and node 3 (Table 4-J.2), so the next column in the
table (labelled by the index of the first connection, namely l), is the same

as the previous column except that in the row corresponding to node 2 and node
3 there is a l entered. This indicates that nodes 2 and 3 belong to the first

irreducible subgraph. A similar process generates columns labelled 2, 3 and 4
in Table 4-J.2.

When the fifth connecton in Table 4-J.l is examined (branch 9 connecting

node 2 and node 5), it is discovered that there is a non-zero entry already

for node 2. Now something different happens.

If one entry contains zero while the other contains an integer labeling a

subgraph, the Connection extends the existing subgraph. The zero is replaced
by the index of the subgraph and all other indices are copied from the

previous column. In the example of Figure 4-J.8, this situation arises for
connections 5, 6, 7, 8, lO, 12, and 13.

For connection 5 in Table 4-J.2, node 5 has a zero entry in the previous

column while node 2 has an entry equal to I. So in the column for connection

5, node 5 receives an entry equal to 1 and all other indices are copied over

without change.

If both entries contain non-zero but different indices, the two subgraphs

are connected to one another. All entries containing one subgraph index are

changed to the other. For consistency, we always change the larger index.
All other entries are carried over without change. Connection 9 in Table

4-J.l consists of branch 4 connecting nodes lO and II. In Table 4-J.2 the
column labelled 8 has a 3 in row I0 and a 2 in row 11. Thus connection 9

causes subgraph 3 and subgraph 2 to be connected. In column 9 of Table 4-j.2,

4-J.4

v

all "3's" in column 8 are changed to "2's" and the remaining entries are
copied directly. This situation occurs both for connection 9 and connection
14.

If both entries contain the same non-zero subgraph index, a closed loop
has been discovered, i.e., a subgraph which connects to itself. This
situation arises for connection 1].

Connection ll of Table 4-J.1 consists of branch 8 connecting node 3 and
node 4. In the column labelled lO in Table 4-J.2, both row 3 and 4 contain
the same entry "1". Thus connection ll causes a closed loop to be formed in
the irreducible subgraph with index "l". This is noted at the bottom of the
table.

When all connections have been processed, the entries in the final column
define the irreducible subgraphs of the problem. In Table 4-J.2, the last
column has entries with "l" and "2" in them. Thus there are two irreducible

subgraphs in the example (see Figure 4_Jo8). The flrst contains nodes l_n _,
3, 4, 5, 6, 7 and 8 and the second contains noded 9, lO, ll, 12, 13, 14
15. The first subgraph contains a closed loop. Thus we have found through
the use of an algorithm that Figure 4-J.8 contains two irreducible subgraphs,
one of whch has a closed loop, a conclusion which is obvious from examination
of the figure.

4-J.3 Application to Abutment Intersection Problem,

The solution to the problem in graph theory can be applied to the abutment
intersection problem by identifying abutment intersections with irreducible
subgraphs, abutments with nodes, and corner points with branches. The details
of the graphical representation of an abutment intersection are given in
Appendix F, Section F.5.1 of the PAN AIR Theory Document (reference l), and we
shall not discuss it here any further.

4-J.3.1 Data Representations.

In this section we describe the data storage arrays and their meanings.

IABUTS (300) is an array which contains the index of the abutment. This
index is modified if the abutment is an abutment with a plane of symmetry
(IABUTS : 2,000 + abutment index) or _an empty space abutment (IABUTS = 1,000 +
abutment index).

ICPMAP (5,600) contains information about where a corner point at the
start or end of an abutment is located as well as a flag indicating its
special properties:

ICPMAP(I,I) = Network index
ICPMAP(2,1) = Edge index
ICPMAP(3,1) = Coarse grid lattice indices of point (column)

ICPMAP(4,I) = Coarse grid lattice indices of point (row)
ICPMAP(5,1) = +l if matching point

0 normal unspecified point

-l if non-matching point

4-J. 5

ICPMAP(I,J) thus indexes all network corner points in the problem (the

J-index of ICPMAP is a global corner point index) and describes where they are
(the I-index of ICPMAP).

CONNCT (3,600) defines the connection between two corner points by an
abutment.

CONNCT(1,1) = Abutment index

CONNCT(2,I) : Global corner point index of one corner point

CONNCT(3,1) : Global corner point index of other corner point

For an abutment with two network edges, there is only one connection at

the start and one at the end of the abutment. If there are N network edges

and planes of symmetry in the abutment, there are N(N-1)/2 connections. If
one of the edges is a plane of symmetry, this is a special case. The plane of
symmetry corner point index is defined conventionally to be zero. An abutment

with empty space is another special case. It has only one corenr point in its
connection. In this case the single corner point index is listed as both
nodes in the connection.

The connection list is sequenced in a special order. First, all

connections which have one or more corner points which are matching points
appear in the list. Then all connections with empty space abutments appear.

Finally, all remaining connections are sequenced by the greater of the two
"downstream parameters" of the two corner points. (The downstream parameter

is a measure of whether the point is upstream or downstream of the network
interior. It is defined as

A

V • co
D =

V

where to is the compressibility vector and'_is the vector from the corner

point to the diagonally opposite panel-corner point if the corner point is a

network corner point. If the corner point is an extra control point added by
DQG then V is the vector from the corner point to the next interior

panel-corner point on the same column or row. _.......

This sequencing of connections is to assure that connections with matching

corner points will not be the ones that will be found to form a closed loop.
They will tend to create new subgraphs rather than extend existing ones. By

the same token, the more upstream corner points will tend to form additions to
subgraphs which will not form closed loops. This means that more upstream

corner points will be selected to impose matching conditions for the network,
a situation which is empirically preferred for stabiity reasons when solving

design problems. See PAN AIR Theory Document, Appendix F, Section F.4
(Reference 1).

On collapsed edges of a network, special consideration is required.

Collapsed edges do not appear as an abutment. For this reason the procedures

to be described would find for the example in Figure 4-J.9 that abutment AI
corner point C1 did not take part in any abutment intersections, while

abutments A2 and A3 along with corner points C2, C3, and C4 were
part of an intersection. _

4-J.6

V

To allow the addition of abutment A1 to the intersection, the contents
of the array CONNCT are modified. All nodes which are indexed by the global
index of the last corner point on the collapsed edge (in a counter clockwise
sense around the edge) are changed to -1 x the global index of the first
corner point on the collapsed edge. At the same time in array CECPN (600)
(initialized to zero) the entry under the global index of the first point is
set equal to the global index of the last point on the edge.

This will allow the procedure to find A1 connected to A2 and A3 . The
negative value for the node index flags the corner point to indicate that if
the node in the connection is selected for a matching assignment, the
alternate reference (the last point on the edge, obtained from array CECPN) is
the true location for the matching assignment.

CPLST (600) is an array which is used as the table constructed in Section
4-j.2. It is Initialized to zero. At the end of the procedure, each entry in
the array contains an index of the abutment intersection (subgraph) to which
the corner point belongs.

PCCT (3,600) is an integer array which contains information compliment to
CONNECT. PCCT defines the connection between two abutments by a corner point.

PCCT(I,I) = corner point location for Ith corner point. It contains

network number times l,O00,O00 plus column number times

lO00 plus row number of the corner point.

PCCT(2,1) - abutment index for one of the two abutments connected to
the Ith corner point.

PCCT(3,1) " abutment index for the other abutment connected to the
Ith corner point.

ABTSYM(300) is an integer array that contains the abutment tangent symmetry

descriptor. Its value may range from 0 to 3.

ABTSYM(1) = 0
ABTSYM(1) = 1

ABTSYM(1) = 2

ABTSYM(1) = 3

if abutment I lies away from both POS
if abutment I lies in first POS
if abutment I lies in second POS

if abutment I lies in both POS

NETDBT(IO0) contains the network doublet type for each network in the

configuration.

After all abutment intersections are found, the matching assignments must

be made. In the process of performing the assignment, some additional arrays
are used. These arrays contain information concerning a particular abutment

intersection.

v

ABCPCP (3,30) contains all the connections which make up any one abutment

intersection (subgraph). These are stored on the disk keyed by intersection
(subgraph) number. If a connection establishes a closed loop, then the
abutment index in the connection description ABCPCP (l, K) is multiplied by

-l. Thus a negative abutment index in the connection list of an abutment
intersection indicates that the intersection has a closed loop.

4-J.7

CPLIST (60) contains the global corner point index of all corner points in -
the abutment intersection. As corner points are assigned matching conditions,
the value of the location which held the global index of the point is set to
zero. This removes it from consideration in future assignments.

ABLIST (30) contains the modified abutment indices (see description of the
IABUTS array) of all abutments in the intersection.

LNOD(15) CONTAINS THE ABUTMENT TANGENT STATUS EXTRACTED FROM ABTSYM for

the abutments which meet at the abutment intersection.

PNOD(15) contains the abutment indices. These Indicies may be positive or

negative integers. The sign indicates the direction of the abutment. A
positive sign indicates that the abutment points away from the abutment
intersection and a negative sign indicates that the abutment points toward the
abutment intersection.

PQ(2,30) is a list of pairs of abutments. The indices of the two

abutments adjacent to Ith corner point are contained in PQ(I,I) and PQ(2,I).

KSEG(30) is the doublet matching status of corner points.

KSEG(I) = 0

KSEG(I) = l
KSEG(I) = 2

KSEG(I) = 3
KSEG(1) = 4

KSEG(1) = 5

Ith corner point is on a source alone network

not used
doublet network but no control point for matching

reserved for plane of symmetry
regular corner control point

matching corner control point

LSEG(30) indicates whether corner point lies in a plane of symmetry.

LSEG(1) = 0
LSEG(1) = *l

LSEG(1) =¥2

Ith corner point not in any POS

Ith corner point in first POS

Ith corner point in second POS

Positive sign indicates that the network normal is parallel to the POS normal

and negative sign indicates that the normals are anti-parallel.

WSEG(30) contains the upstream downstream parameters of corner points

NFGSEG(30) is set up to help maintenance programmers to diagnose errors.

NEGSEG(I) contains network number times 1,000,000 plus column number times

I000 plus row number of Ith corner point in an abutment intersection.

4-J.3.2 Program Execution.

The assignment of matching conditions at abutment intersections occurs in

two steps. First all abutment intersections are found and written to the data
base (subroutine INTRSC). Then each intersection is assigned matching

conditions (subroutine ASSIGN).

4-J.8

V

4-J.3.2.1 Abutment Intersections.

Figure 4-J.lO illustrates the process which finds all abutment

intersections in the configuration. Subroutine INTRSC reads abutment data and
from it constructs the IABUTS, ICPMAP, CPMAP, PCCT and CONNCT arrays.
Subroutine COLCPT modifies entries in CONNCT if there are collapsed network

edges and generates array CECPN. Then subroutine NTRLST performs an analysis
of entries in CONNCT similar to that presented in Section 4-J.2; and defines
abutment intersections. These are written onto the DQG data base in data set
INTERSECTION.

4-J.3.2.2 Matchin_I Assl_inments,

Figure 4-J.ll illustrates the subroutines and data flow which occur in the

process of assigning matching conditions at abutment intersections.
Subroutine ASSIGN reads the intersection data from the data base and fills

array ABCPCP with it. From this data the arrays ABLIST, CPLIST, LNOD, PNOD,

PQ, KSEG, LSEG, WSEG and NFGSEG are then created. Subroutine ABTINT, which is
a PAN AIR library routine, examines the graph of the abutment intersection and
assigns corner points to abutments for doublet matching. If there are N

abutments in the intersections, N-I corner points must be assigned to insure
doublet matching at the intersection. See PAN AIR Theory Document, Appendix

F, Section F.5 (Reference l) for a discussion of this important point.

The indices of the matching corner points and the indices of the

associated abutments are passed to subroutine ABASGN. ABASGN obtains the
abutment data and checks ICPMAP(I,ICP) (where ICP is the corner point index),

I = I, 3 and 4 for agreement with the network and coarse grid lattice indices

of the start or end point in an edge segment in the abutment. If the point is
found in the Nth network edge in the abutment, the flag in the array DSVMCH
(part of the abutment data) corresponding to doublet corner point matching for

start or end points (DSVMCH(I,2,1) and DSVMCH(I,3,1) respectively) is set
equal to N. Then the abutment data is replaced on the data base, the number

of assignments made is incremented and the routine returns. In this way all

corner points where doublet matching is to occur are label!ed in the abutment
description. Later in the (3,5) overlay, subroutine MATCHPT reads the
abutment data and copies these matching flags into the SPECIAL-POINTS dataset
for use in the (4,0) overlay of DQG where the matching boundary conditions are

actually imposed.

Matching assignments for abutment intersections lying on one or more

planes of symmetry present additional complications. PAN AIR takes the

approach to treat each symmetry condition as a separate problem. Therefore,
whether a matching condition should be assigned at a corner control point

lying on a plane of symmetry depends on the symmetry condition and which plane

of symmetry the control point lies. For corner control points lying on a
plane of symmetry the matching assignments described in the last paragraph are

made for each symmetry condition. The matching pointers for Ith symmetry
condition is stored in DSVMCH(I,2,1) and DSVMCH(I,3,1) for start and end

corner points.

For corner points not lying on a plane of symmetry and for edge interior

control points the matching boundary conditions are independent of symmetry
condition and therefore, matching pointers are needed only for the first
symmetry condition.

4-J.9

4-j.3.3 An Example.

Figure 4-J.12 shows a configuration for which we present a detailed

example of the operations discussed in this section. Tables 4-J.3 and 4-J.4
contain the abutment data. The abutments are labeled in Figure 4-J.13. (The

configuration contains a collapsed edge (network 4), plane of symmetry
abutments, a matching edge, and a non-matching edge. This example will

illustrate nearly all features of the program.)

From the data in Tables 4-J.3 and 4-J.4 we construct the IABUTS arrays and

the ICPMAP arrays shown in Table 4-J.5 and 4-J.6. Note that the empty space

abutments' entry in the IABUT array is the empty space abutment index plus

1,000. Also note the offset of 2,000 added to the plane of symmetry abutments.

Figure 4-J.14 shows the index assigned to each corner point and abutment.
These indices correspond to the columns labelled index in Table 4-J.6 and

4-J.5 respectively.

Table 4-J.l contains the connection description. Note that first in the

connection list appears the connections with matching corner points. The
entry (0 0 O) in the connection array separates the matching connections from

the empty space connections (connection index 3), and the empty space
connections from all the other connections (connection index 20). The

connections at the end of the list are sequenced by downstream parameter.

Then subroutine COLCPT finds that edge 3 of network 4 collapsed. Thus

connection number 18 is changed from (14, 20, 20) to (14,-lO,-lO). The

reference to corner point number 20 appears in array CECPN.

_ The search procedure begins in NTRLST. Table4-J,8 describes the

transition of the array CPLST as the connections are examined for subgraph
formations. This data is similar to Table 4-J.2 discussed in section 4-J.2.

Table 4-J.9 contains the resulting intersection data. Note that a closed loop
is discovered at connections numbers 23 and 29 for the first intersection and

at connection number 33 for the eighth intersection. Note also that several

intersections (13, 12, I0, and 6) are discovered to be connected to another
intersection (l, I0, 8, and 3 respectively) as the intersection search

proceeds.

At the conclusion of the search, the DQG data set INTERSECTION contains

the same data as Table 4-,].9. Thus there are ten abutment intersections is

the example of Figure 4-J.12. One of them has two closed loops (intersection

I) formed by abutments 3 and 4, and another has one closed loop (intersection

8) formed by abutment 3.

After the intersections are defined, doublet matching assignments are
made. Subroutine ASSIGN is called. This subroutine reads the intersection

data and sets up the data which describe the directed graph corresponding to
the abutment intersection. Subroutine ABTINT is called to make the matching

assignments for each abutment intersection. ABTINT returns the array NODSEG.
If the Ith element of NODSEG is less than or equal _ozero then the Ith corner

point in CPLIST is not used for matching. However, if the Ith element of
NODSEG is a positive integer P then the Ith corner point in CPLIST is used to
match doublet across Pth abutment in PNOD. Each pair of matching corner point

and the corresponding abutment is passed to subroutine ABASGN Which updates

the matching assignment on the DQG database.

4-J.lO

V

In this discussion we will only examine the assignment process for the

first intersection. The arrays PNOD, CPLIST and PQ for this intersection are

shown in Tables 4-J.lO and 4-J.ll, together with the associated network
numbers. The direction of the abutments are shown by arrows in Figure 4-J.15.

The array NODSEG as outputed by subroutine ABTINT is given in Table

4-J.12. The first element contains 3. Therefore, the first corner point in

CPLIST, corner point number lO, is selected to match across the abutment
contained in the third element of PNOD or abutment number 14. The abutment

index is then used by ABASGN to read the abutment data. The corner point

index is used along with the array ICPMAP to determine whether the matching
corner point is the start point or the end point of the abutment. In this

case the lattice indices of corner point number lO does not correspond to the
lattice indices of either the start point or the end point. But corner point
number lO is on a collapsed edge (as indicated by a negative sign in abutment

intersection data and array PCCT). Therefore, array CECPM contains an

alternate corner point number which is 20. Corner point number 20 turns out

to be the end point of abutment number 14. The matching pointer is then set

to the appropriate control point and the abutment data is updated on the
database.

This process continues until all matching pointers are set. Notice that
the fourth element of NODSEG contains a zero. This means that the fourth

corner point in CPLIST, corner point number 12, does not have a matching

boundary condition. Processing of this abutment intersection is therefore

skipped to the fifth element in NODSEG.

Figure 4-J.15 shows the doublet matching assignments after all

intersections have been processed. Note that no assignment is made for points
II and 16 since they are "no matching" points. Also no matching assignment is

made for point 12 since if it were assigned to either abutment 3 or 4, it
would produce a redundant set of equations for matching at the first
intersection.

Thus all abutment intersections have been identified and matching

assignments have been made without producing a redundent set of constraints
and without missing an assignment. Later in the third overlay in subroutine

MATCHPT of the (3,6) overlay, the matching flags are read from the abutment
data and transferred to the SPECIAL-POINTS dataset. This dataset is read by

the (4,0) overlay of DQG where the presence of a matching flag produces a DQG

generated boundary condition of doublet matching. The (4,0) overlay then
selects from among the user-defined boundary conditions and the DQG-defined
boundary conditions to determine what constraints are actually imposed at the

control points (see Appendix 4-M).

4-J.l I

Table 4-J. 1

Cumulative Index

Connections in the graphs of Figure 4-J.8 (see
Section 4-J.2)

Branch Node Node

l l 2 3

2 3 13]4
3 5 9 lO

4 12 7 8
5 9 2 5

6 II 14 15
7 lO 12 13

8 13 II 12

9 4 lO II

lO 7 4 5
II 8 4 3

12 6 7 6
13 14 1 2

14 2 5 6

V

4-J.l 2

Table 4-J.2 Sorting table whose generation determines the number

of irreducible subgraphs in a graph (see Section 4-J.2).

Connnection Index

Node 0 l £ 3 4 5 6 7 8 9 l0 Il 12 13 14

l 0 0 0 0 0 0 0 0 0 0 0 0 0 l l

2 0 l l l l l l l l l l l l l l

3 O. l l l l l l l l l l l l l l

4 0 0 0 0 0 0 0 0 0 0 l l l l l

5 0 0 0 0 0 l l l l l l l l l l

6 0 0 0 0 0 0 0 0 0 0 0 0 4 4 l

7 0 0 0 0 4 4 4 4 4 4 4 4 4 4 l

8 0 0 0 0 4 4 4 4 4 4 4 4 4 4 l

9 0 0 0 3 3 3 3 3 3 2 2 2 2 2 2

lO 0 0 0 3 3 3 3 3 3 2 2 2 2 2 2

II 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2

12 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

13 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2

14 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2

15 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2

C
l

0

S

e

d

L

0

0

P

4-J.l 3

Table 4-J. 3

Network Edge Abutments for the example in Figure 4-J.12.
This example is discussed in Section 4-J.3.3.

V

Network Edge Start End
l 2 (3,1) (3,3)

2 4 (l,l) (1,3)

Network Edge Start End
2 1 (1,1) (3,1)
3 3 (I,3) (3,3)

Network Edge Start End
3 4 (l,l) (1,3)
4 2 (3,1) (3,3)

S 2 (3,1) (3,3)

Network Edge Start End
5 3 (l ,3) (3,3)
1 1 (1,1) (3,1)

Network Edge Start End
1 4 (1,3) (l,l)
-I 0

Network Edge Start End
5 4 (1,3) (l,l)

-l 0
V

4-,I.14

¥

Empty

Tabl e 4-J. 4

Space Abutments for the example in Figure 4-J.13.
The example is discussed in section 4-J.3.3.

Empty Space
Abutment
Index Network

l l

2 2

3 2

4 3

5 3

6 5

7 4

8 4

Edge Start End

3 (3,3) (l,3)

3 (3,3) (l ,3)

2 (l,3) (3,3)

2 (l,3) (3,3)

1 (1,1) (3,1)

1 (1,1) (3,1)

1 (1,1) (3,1)

4 (1,3) (l,1)

4-J.l 5

Index

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Table 4-0.5
IABUTS Array for the example of Figure 4-0.12 and 4-J.13.

The example ts discussed in Section 4-J.3.3.

Array

1

2

3

4

2005

2006

1001

1002

1003

1004

1005

1006

1007

1008

4-J.16

v

y
Table 4-J, 6

ICPMAP array for the example in Figure
The example is discussed in Secton

Start/stop

Index Network Edge Point
(Col, Row)

l I 2 (3,1)

2 1 2 (3,3)

3 2 4 (1,I).

4 2 4 (l,3)

5 2 l (3,1)

6 3 3 (1,3)

7 3 3 (3,3)

8 3 4 (l,l)

9 4 2 (3,1)

lO 4 2 (3,3)

II 5 2 (3,1)

12 5 2 (3,3)

13 5 3 (I ,3)

14 1 1 (I,I)

15 l 4 (1,3)

16 5 4 (l,l)

17 2 3 (3,3)

18 3 2 (3,1)

Ig 4 l (l,l)

20 4 4 (l,3)

4-J.12 and 4-J.13.

4-J.3.3.

Matching Flag

0

0

0

0

0

l

l

0

0

0

-I

0

0

0

0

-I

0

0

0

0

CPMAP

0.51

-0.51

-0.70

0.71

0.72

-0.66

-0.66

0.65

0.56

-0.88

0.42

-0.46

-0.44

0.51

-0.51

0.42

-0.70

0.65

0.57

-0.88

4-J.l 7

Table 4-J.7 The list of Connections for the example of Figure 4-J.12

The example is discussed in Section 4-,I.3.3.

Connection CONNCT Array CONNCT Array

Index (Initial) (After Sequencing)

CONNCT Array
(After COLCPT Execution)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

A Cp Cp A Cp Cp A Cp
2 3 6 2 3 6 2 3
257 2 5 7 2 5

0 0 0 0 0 0 0 0
7 2 2 7 2 2 7 2

7 15 15 7 15 15 7 15
8 17 17 8 17 17 8 17

844 8 4 4 8 4
9 5 5 9 5 5 9 5

9 17 17 9 17 17 9 17
10 7 7 10 7 7 10 7
10 18 18 10 18 18 10 18
11 8 8 11 8 8 11 8
11 18 18 11 18 18 11 18
12 16 16 12 16 16 12 16
12 11 11 12 11 11 12 11
13 19 19 13 19 19 13 19
13 9 9 13 9 g 13 9
14 20 20 14 20 20 14 -lO
14 19 19 14 19 19 14 19

0 0 0 0 0 0 0 0
l l 3 3 6 lO 3 6
l 2 4 3 6 12 3 6

3 8 g 3 10 12 3 10
3 8 11 6 13 13 6 13

3 6 10 6 16 16 6 16

3 612 l I 3 l l

3 9 II 4 13 14 4 13

3 lO 12 5 15 15 5 15
4 13 14 4 12 l 4 12
4 12 1 5 14 14 5 14
51515 3 g II 3 g
5 14 14 3 8 g 3 8
61313 3 8 II 3 8

61616 l 2 4 l 2

Cp
6

7
0

2
15

17
4

S
17

7

18

8
18

16
II

19
9

-I0
19

0
lO

12
12

13

16

3
14

15
l

14

II
g

II

4

V

CECPN Array

CECPN(1) = 0
CECPN(IO) = 20

I P I0 I = 1,20

4-J.18

0
L'O

u'% u'_

C U

.e..,.

fJ
_.. u'l

._,-

C "

.f...
_ X

m _
l. e"

4-J •
e- ¢'_

r"_ 4-J _"t I

I e"

¢0 _ l-CJ

C "_"
•r-U_ e-

L •e.-

X

I- 0

Om
._J

e-_."
01--

•_"" Z

e-

lm

X

C

0

U

0

0

r_

,d"

0

%

0_0___

_0__ __

_0

OJ,-_

,-4,-.4

____0 _ _ _0 0 _

0_ __

0 __

f..
Q; a-: _
e- _ Qj

O0 _
(.J _.. ,--,

___ _0__ _ _

4-J. 19

Tabl e 4-J. 9
Abutment Intersections in example of Figure 4-J.12.

The example is discussed in Section 4-J,3.3

V

Intersection Connections
Index
l 2 3 6

3 0 10

14 -10 -10
3 6 12

-3 lO 12
l l 3

-4 12 l

2 5 7
lO 7 7

9 5 5

7 2 2
8 4 4
1 2 4

4

6

7

7 15 15

5 15 15

8 17 17

9 17 17

Appended to 3

lO 18 18

II 18 18

Intersection Connections

Index

8 II 8 8
3 8 9

12 II II

3 9 II
13 9 9

-3 8 II

9

lO

II

12

13

12 16 16

6 16 16

Appended to 8

13 19 19

14 19 19

Appended to lO

Appended to l

14 6 13 13
4 13 14

5 14 14

V

4-J. 20

Table 4-JolO PNOD Array for First Intersection

INDEX PNOD(INDEX)

1 -2

2 -3
3 14

4 -I

5 4

Table 4-J.11 Corner Point and Abutment Arrays for First Intersections

After Sequencing by
Downstream Parameter

Index CPLIST(INDEX) PQ(I,INDEX) PQ(2,1NDEX) NFGSEG(INDEX)

l I0 -3 14 4003003

2 3 -2 -l 2001001

3 6 -2 -3 3001003
4 12 4 -3 5003003
5 l -I 4 I003001

Table 4-J.12 NODSEG Array for First Intersection

INDEX NODSEG(INDEX)

1 3
2 1
3 2
4 0
5 4

4-j.21

L _

Network

Network

Abutment

W

Figure 4-J.1

4-J.22

Example of an Abutment Between Two Network Edges

V

l •

A2

<

<

A 1

N2

C

N3

N1

A4

C4

N4

3

N - Network
A - Abutment
C - Corner Point

at Abutment Intersection

Figure 4-J.2 Example of an Abutment Intersection

4-J.23

A

n I

A
I

A

n3.

7

A5

A4

5

A 6

6

A 3

V

Figure 4-0.3

t

An Abutment Intersection with 6 Abutments

A I

N2 4

A 2 A3

Figure 44.4 Another Abutment Intersection with 4 Abutments

4-J.24

a •

bo

A _ C2 AI

A 3 - A4
C4

c7 .
C3 "'//A 2

G5 A3

Paths

in

y

discusseC

the Text

Cu

Figure 4-J . 5 Line Segment and Point Diagrams

Three Abutment Intersections

Corresponding to

4-J.25

W

anch

ode

Ffgure 4-.J.6 An Example of a Graph V

I II

Figure 4-J.7

4-J .26

Illustration of Irreducible Subgraphs

- j

a) The Unlabeled Graph

6

_5

II_10

b) Labeling of Nodes

c) Labeling of Branches

Figure 4-J.8 Assignment of an Index to All Branches and Nodes of a Graph

4-J.27

cz'c2,,_ A;)

C4

C3

A2
V

Figure 4-J.9 Abutment Intersections at Collapsed Edges of Networks. Without
special processing the intersection of abutments AI with A2 and

A3 would be missed. The special processing is described in

4-J.28 Section 4-J.3

NTRLST

DQG: "_

ABUTMENT-SPEC I
EMPTY-SPACE /

-ABUT)

If-NETWK-SPEC

INTERSECTION

,, /MATCHO/

IABUTS_

ICPNAP--

CPHAP --

CoNNCT--

,,CECPM --

CPLST -----

dip

wQ

Figure 4-J.I0 Data Flow and Program Operation for

Intersection Construction
4-J.29

INTERSECTION

IABUTMENT-SPEC I

/ EMPTY-SPACE /
• -ABUT J

' ASS

INDXABI "_ "-

ABTINT I

"i
-- "IABUTS _ J

ICPMAP _CPHAP

__ CECPM

ABCPCP_

ABLIST

CPLIST

ABASGN

DQG:

ABUTMENT-SPEC
EMPTY-SPACE

-ABUT

4-J. 30

Figure 4_ .11 Data Flow and Program Operation for

Matching Assignment

/
Flow Direction

Plane of /

Figure 4-J .12 Conflguratlon for Example of
Abutment Intersection Search

4-J. 31

W

A6

A5

E I

V

A
3

4-J. 32

Ftgure.4-J .13 Abutments in Example Configuration

®

/

v

Figure 4-J .'14 Abutment and Corner Point Indexing

4-a. 33

V

16

15

I

4

17

5

V

18

Figure 4'0'15

4-J.34

Doublet Matching Assignments at the _onciusion of the Abutment

Intersection Analysis at the End of the (3,4) Overlay of DQG.
V

APPENDIX4-K

OUTERSPLINECONSTRUCTION

V

4-K.l

_J
_J

J

V

4-K.O Introduction

The fifth overlay of DQG computes the [SP] vectors (see PAN AIR Theory

Document, Appendix I (Reference l)) at every corner point, center point and

edge mid-point in all of the networks of the configuration. These vectors
define source and doublet strength at the nine defining points of any

particular panel in a network in terms of the singularity parameters located
in that network, or, (in the case of a smooth abutment) in terms of

singularity parameters located in an adjacent network. In the sixth overlay

of DQG these spline vectors are

used to assemble the spline matrices ([BS] and [BD] matrices). For source

analysis networks the [BS] matrix is computed separately. It does not use a

unique [SP] vector for each grid point and therefore does not impose source
continuity across panel boundaries. Also in the

sixth overlay the subpanel spline matrices ([SPSPLS] and [SPsPLD]) are

computed from the panel geometry.

Source and doublet strengths over the surface of a network are defined by

a complicated series of spline operations which are discussed from a
theoretical point of view in the PAN AIR Theory Document, Appendix I
(Reference l). The fifth and part of the sixth overlays of DQG compute the

splines in several steps.

This appendix discusses mainly the calculation of the outer spline vectors

[SPS] and [spD]. Section 4-K.l also discusses, however, how the outer spline

vectors are assembled to form the spline matrix for a panel. The coding of

the subpanel spline construction is straightforward and its implementation is
not discussed.

Appendix 4-K.I discusses some general concepts and also discusses how the

outer spline vectors [SP] are assembled_nto the spline matrix for a panel.

Appendix 4-K.2 discusses the computation of doublet splines on network edges.
Appendix 4-K.3 discusses the computation of doublet splines in network
interiors. Appendix 4-K,4 discusses the construction of source spline vectors.

The concepts presented in this appendix are difficult. The readers are

encouraged to study the PAN AIR Theory Document, Appendix I (Reference l),
where a more detailed discussion is given, in order to gain a more complete

understanding of this appendix.

PRECEDING PAGE BLN';K NOT FILMED

4-K.3

lineal NTENTtO,.NAt:LY BI..AU

4-K.1 General Concepts

Before discussing the spltning operations further, it is useful to
introduce some definitions of items which will be referred to throughout the
succeedi ng sections.

A spline vector is an one dimensional array with a dimension between one
to twenty possible components. Its inner product with a vector consisting of
values of singularity parameters in the vicinity of a point gives the value of
singularity strength at that point, Associated with a spltne vector is an
index vector with the same dimension whose components are the singularity
parameter indices (see Appendix 4-H) of the surrounding points.

A unit spline vector is usually defined for each point where a singularity
parameter is located. It is a vector of dimension one with its component
equal to unity and with its associated index vector equal to the index of the
singularity parameter located at the point.

The splintng process takes values of source or doublet strength at
discrete surrounding points and defines the source or doublet strength at the
point whose singularity strength is required as a linear combination of the
strengths at the surrounding points. The coefficients of the linear
combination are determined from a least squares fit (see PAN AIR Theory
Document, Appehdix I, (Reference l)). Spltnes are sometimes computed to
surrounding points whose doublet strength is not due to one singularity
parameter but is itself another spline vector, The process of computing the
spline vector which includes this more general case is called accumulatln_ the

spl ine vector.

Subroutine VECUNV performs the accumulation of the spline vectors. The
input to the subroutine includes the number of surrounding points to which the
spline is being performed, a spline vector for each of the surrounding points
(usually of dimension one), an index vector for each singularity parameter
(discussed below), the dimension of each spltne vector and the set of
coefficients from the least squares fit. The output consists, of a spline
vector, its dimension and an index vector for the spltne vector. The index
vector associated with a particular spline vector tells which singularity
parameter to use to determine the value of singularity strength at the point.
An example should clarify this concept.

Suppose that we have a spline vector [SP] = (0.3, 0.25, 0.8) with an index
vector [ISP1 = (23, 45, 21). The index vector means that the value of
singularity strength at the point which the spline vector refers to is 0.3
multiplied by the value of singularity parameter number 23 plus 0.25 times the
value of singularity parameter 45 plus 0.8 times the value of singularity
parameter 21. Of course the values of the singularity parameters are not
known until the AIC matrix has been inverted and applied to the right hand
side in module RHS. Thus, it is necessary to maintain the list of index
vectors to keep track of which singularity values to use to evaluate the
singularity strength at an arbitrary point.

The problem to be solved in the abstract is the determination of the union
of a set of vectors lying in separate but possibly overlapping subspaces. For

example, if we have the three vectors:

4-K.4

V

k,._j

LXZj = (1, O, 2)

Instead of the above representation each vector is separated into two

vectors. One contains the non-zero components of the original vector; the
other indicates which components are non-zero. Therefore, the above vectors
are represented by:

Lxj - (2) LIXJ = ("X")

LXYj = (1, 4) LIXYj = ("x", "y")

= (I, 2) LIXZj = ("x", "z")

where "X", "Y", or "Z" indicates the corresponding component is non-zero.

The construction of the union vector [R] consists of the linear
combination:

LRj = ClLXJ + C2_XYj + C3LXZj

This is called the accumulation of the vectors. This union vector is

constructed by examining the index of each component of each input spline

vector in order to see if it already exists in the union vector. If it
already exists in the union vector then the coefficient associated with the

input vector is multiplied by the component of the vector and the result is
added to the existing component of the union vector. If it does not exist in
the union vector, a new component is added to the union vector and the

coefficient times the component is added to the new component of the union

vector. In the example discussed above the union vector [R] initially looks
like:

LRj = (2Cl) with LIRj = ("x")

After processing the vector LXYj the union vector LRj looks like:

LRj = (2C1 + C2, 4C2) with LIRj = ("x", "y")

Finally after the third vector is processed the union vector looks like:

LRj = (2CI + C2 + C3, 4C2, 2C3) with LIRj = ("x", "y", "z")

Thus the union vector is as we would have expected if we had kept all the

components of the vectors LXj, LXYJ and LXZj and simply performed vector
addition.

The construction of the spline matrix ([BS] and [BD]) from the spline

vectors (LSpSj and LspDj) in subroutine VECUNM is similar to the process of

accumulating spline vectors except that the separate entries do not get added

together, but rather are used to define a separate row of a matrix. An entry
whose index does not appear in the matrix causes a new column to be added to

the matrix. By special convention the last row of the matrix is used to

4-K.5

define the indices of the singularity parameters. Using the data in the
previous example, the spline matrix [B] constructed from the LXj, _XY_and
LXZj vectors is defined in the following steps. First, after processlng the
first vector LXj, the matrix is a 1 x 1 matrix of the form:

zB]--P]
Ilxll

Then after processing vector _XYj, the matrix gets an additional column:

[B]

"x" "y"

Finally after the _XZj vector is processed, the matrix becomes:

0[B] = I 4

I 0

"X" "y" " "Z"

Note that zeroes fill out columns of previous rows when a new column is

created. The process is accomplished by subroutine VECUNM in the (6,0)

overlay of DQG.

4-K.I.I Local Coordinate Tranformations for Splining

The s-plinecompu£at_ons_define Variation _-_-_u-_c_ Or:douBletstreng th
over a two dimensional surface. Networks and panels do not have to be flat,

however. One needs to define a coordinate transformation from the three

dimensional space to the two dimensional surface on which subpanels are
defined. Since the value of a spline vector at a point depends........on the

distances to the surrounding singularity parameters it is essential to define
the coordinate transformation in a manner that approximately preserves the

distance between two points.

This kind of coordinate transformation is required for all spline

calculations at interior points of networks and on the coarse edge of smooth
abutments. This is done in subroutines XIETAV, SPLTRN and LOC2D in the fifth

overlay of DQG.

The relative two dimensional coordinate variation is defined in two

stages. First a local coordinate system is defined with its origin at the

point whose spline vector is required. The coordinate axes are defined in a
manner to be described. They consist in general of a skewed set of two
dimensional coordinates that lie in some local average plane of the network

and a third component which is prependicular to the local plane. Subroutine
XIETAV computes these vectors for most doublet splines and for all source

splines. Subroutine LOC2D computes these vectors for smooth abutment doublet

splines.

4-K.6

V

V

Having defined the local coordinate system, the three dimensional

coordinates of the singularity parameter are transformed into two dimensional

coordinates by transforming to the local plane coordinate system, truncating
the coordinate normal to the local plane, and scaling the remaining two
coordinates so that if a point lies a certain three dimensional distance from

the origin, the two dimensional distance computed from the scaled two
dimensional coordinates is the same as the three dimensional distance. This
is done in subroutine SPLTRN.

The skewed axes of the local coordinate system are defined by defining two

vectors from the four fine grid points adjacent to the point at which the
spline vector is required. If the fine grid lattice indices of the point are

(I,3), a vector XI is defined from point (I-1,J) to (I+1,J) and a vector ETA
is defined from point (I,J-1) to (I,J÷l). If the I+1 or Jr1 points do not lie
on the network, the lattice index I or 3 is used instead. These two vectors

are not normalized to unit magnitude. A vector along the third coordinate
axis,-'_rETA,is defined by the cross product of XI and ETA. The vector ZETA is
defined as

{ZETA} =
{XI} X {ETA}

SQRT (ABS ({XI} X [ETA})**3/2)

The coordinate transformation of a point P, is then defined as described

in the PAN AIR Theory Document, Appendix I, Section 1.1.2.3 (Reference 1).

4.K.1.2 Spline Computations

The computation of the spline involves three steps. The first is the

selection of surrounding points to which the spline is performed. The second
is the computation of a least squares fit to the surrounding points using a

particular function. The final step is the accumulation of terms to define

the spline vector at the required point. This first step is discussed in
sections 4-K.2 and 4-K.3. The last step has been discussed in the previous

section. The computation of the least squares fit is straight forward in most

respects. This section discusses these straightforward concepts.

The particular funciton Which is used in the fit depends on the

singularity type of the spline. For example, a bilinear function of the form

S = a + bx + cy + dxy

is used for source splines. For doublets, a quadratic function

D = a + bx + cy + (1/2)dx*'2 + exy + (1/2)fy*'2

is used. The number of points to be fit, the x and y coordinates of the

points to be fit, a weight for each point to be fit and the information about
what functional form to use are provided as inpout to subroutine CQLSF of

PALIB, the PAN AIR Library (see Section 12 of this Manual). The weighting of
each point is determined as discussed in the PAN AIR Theory Document Appendix
I(Reference 1). Certain points are assigned to be fit exactly. By

convention, any point with a weight greater than I. is fit exactly. The

operations of CQLSF are discussed fully in Section 12 of this document.

4-K.7

4-K.2 Doublet Edge Spline s :....

With regard to doublet splines there are four types of edges in PAN AIR:
smooth edges, analysis edges, design edges and wake edges. Smooth edges
define doublet distributions which have continuous derivatives across network
boundaries. They are discussed tn Section 4-K.2.1. Analysis edges are
discussed in Section 4-K.2.2 and design edges in 4-K.2.3. These edges differ
in the locations of their singularity parameters. There are two types of wake
edges. The first, Wake I, is identical to analysis edges. Wake II edges are
simply a constant distribution of doublet strength all along the edge. Wake
II edges are discussed in Section 4-K.2.4.

V

4-K.2.1 Smooth Edge Spllnes

Smooth edge splines achieve approximate continuity of doublet derivative
across network edges by defining spline vectors at points on the network edges
which depend on doublet parameters in both networks. Only doublet analysis
networks are permitted to take part in smooth abutments. All of the
singularity parameters at edge midpoints on the two network edges are declared
"null" and are not used in computing the smooth edge spltnes. Only
singularities located at the panel centers (and at the corner points on the
edges which mark the start and end of the smooth abutment) are used for
defining spline vectors.

Figure 4-K.1 illustrates the situation at a typical smooth edge. One of
the two network edges is declared the coarse edge. t.e.. the one with fewest
panels. Spline vectors for the panel corner points along the network edge and
for the edge midpoints along the network edge are computed for the coarse edge
in terms of singularity parameters located at center points in both networks.
The other edge (the fine edge) then has spltne vectors defined for it at each
of its corner points and edge midpoints in terms of the spline vectors already
computed at three adjacent points on the coarse edge.

V

Section 4-K.2.1.1 discusses some data structures used in performing the
calculations. Section 4-K.2.1.2 describes how the spline vectors on the
coarse edge are computed and Section 4-K.2.1.3 discusses how the spline
vectors for the finer edge are computed.

4-K.2.1.1 Data Storage for Smooth Abutment Splines

Program SAEDGS, the (5,1) overlay of DQG, controls the computation of

smooth edge splines. The first operation it performs is the storage of
coordinates of corner point on and near the edges of the smooth abutment.

These are stored in array CORPT (I,J,K). For K = i to 3, thls arraY contains
the coordinates of the first three rows (or columns) of corner points adjacent

and parallel to the coarse edge. For K = 4 and 5, it contains the corner

points on and adjacent to the fine edge (see Figure 4-K.2).

The second operation is performed by SNGFIL. This subroutine stores the

singularity indices of the center points required for the fitting procedures.
SINGDX(I,I) and SINGDX(I,2) contain the singularity indices of the two center

point rows adjacent to the coarse edge. SINGDX(I,3) contains the indices of

singularities adjacent to the fine edge. See Figure 4-K.2,

After storing thls data, SAEDGS cal Is subroutlne PARMSA. This subroutine W_

4-K.8

parameterizes both edges in the abutments. See PAN AIR Theory Documents,

Appendix F, Section F.6 (Reference l).

4-K.2.1.2 Coarse Edge Splines

The coarse edge spline is controlled by subroutine COARSP. First COARSP

defines unit spline vectors (see section 4-K.l) at the start and end points.

Then it computes spline vectors for all corner points on the coarse edge

(except the start and end points). Figure 4-K.3 illustrates the surrounding
points which are used in the spline calculations. If one of the required

points run beyond the start or end point of the abutment, then the start or
end corner point is used in its place. The points in the other network which
are used in the fit are the two center points adjacent to the corner point on

the fine edge which is closest to the point whose spline vector is required

(see Figure 4-K.3). Four points are fit exactly: the two points on the finer
network and the two closest center points on the coarse edge.

After the corner point splines are computed, the splines for the edge-

midpoints are computed. Figure 4-K.4 shows the points selected for fitting on

edge midpoint. To find the points on the finer edge, for each adjacent corner
point on the coarse edge the closest corner point on the fine edge is found.
Then for each center point adjacent to the corner point on the fine edge, the
one most distant from the edge midpoint is used for the fit. Three points are

fit exactly. For the first and last edge midpoint, the point selection runs
outside of the start or end of the smooth abutment. In place of the point in

the first row, the start or end point of the abutment is used. The point in

the second row is simply omitted from the fit.

Subroutines SALSQC and SALSQE select the surrounding points for the corner

points and edge midpoints. The process of selection means that the spline
vector at that point (in this case all unit spline vectors) is stored in the

array BSPL and INDX (coefficient and singularity index), the coordinate of the

point is stored in COORD, a local two dimensional coordination system is
defined by LOC2D and the coordinates of the selected points are transformed
into the local coordinate system. Finally an upstream weighing factor is

defined for those points which are part of the least squares fit. This
information is stored in common block /LSQ/.

A library subroutine CQLSF is used to compute the solution: the

coefficient corresponding to each point which is fit (see Section 4-K.1.5).

Then subroutine VECUNV multiplies each spline vector by its coefficient and

accumulates the product into array BSPLIN. After the spline vector is
accumulated by VECUNV, it is written to the DQG data base with a key set

consisting of the network index of the coarse network and the fine grid
lattice indices of the point which has been splined (see Section 4-H.2).

In addition, a second data set is written to the DQG data base. This

contains an alternate spline vector for use when computing spline vectors for

interior points close to the smooth edge. Figure 4-K.5 illustrates points
which would use one of the corner points or edge midpoints on a smooth edge
for the calculation of its spline vector. If the spline vector for the point
on the smooth edge were used, panels in the vicinity of the interior point

would depend on too many doublet parameters. (The Partitioned Random Column
Method employed in module MAG for the Influence Coefficient matrix

construction assumes that panels depend on at most thirty-one singularity

4-K.g

parameters. See Section 5 of this document.) The alternate spline vector for
the point on the smooth edge is the spltne vector of the closer of the two
center points in the fine network which were used to define the original
spltne vector for the point on the edge. The alternate spline vector data set
includes the coordinates of the center point on the fine edge. Section 4-K.3
describes the splining procedures on the network interior.

4-K.2.1.3 Fine Edge Splines

After all spline vectors on the coarse edge have been computed, subroutine
FINESP computes spltne vectors for points on the fine edge in terms of those
on the coarse edge. For each point on the fine edge, two adjacent corner
points on the coarse edge are found whose parameterizations span the
parameterizatton of the point on the fine edge (Figure 4-K.6). The spltne
vectors of these two points and of the edge midpoint between them are used to
construct the spline vector for the point on the fine edge. A one dimensional
quadratic fit is made to the three points on the edge by subroutine Q1DFIT.
This ytelds a set of three solutton coefficients which are used to scale the
spline vectors for the three points on the coarse edge. The result is
accumulated by VECUNV to form the spllne vector for the point.

An alternate spline vector (see Section 4-K.2.1.2) is written for each

point on the fine edge. The alternate point is the center point of the panel

on the coarse edge whose points were used to define the spline vector lot the

fine edge point (see Figure 4-K.6).

4-K.2.2 Analysis Edge Splines

Analysis edges have a singularity parameter located at edge midpoints of

network edge segments and at the start and end points of the edge segment.
(An edge segment is that portion of a network edge which takes part in a

single abutment. It can be as small as one panel (two corner points) or as
large as the whole network edge.) See Figure 4-K.7.

The spline procedure is relatively slmple. A unit spline vector is
written for the start and end corner points of the segment. Then a spline
vector is constructed for each other corner point in the segment. This spline

vector is constructed from the singularity parameters located at the two

adjoining edge midpoints. If dl and d2 are the distances to the two edge
midpoints (Figure 4-K.8), the spline vector and its index vector are:

B = (d2 , dl)

I = (II, 12)

(I1 and 12 are the singularity indices of the edge midpoints.)

After spline vectors are written for all the corner points on the edge

segment, the edge midpoint spline vectors are constructed. The spline vectors
for the two corner points adjacent to the edge midpoint are read from the data

base and a unit spline vector is defined for the singularity parameter located

at the edge midpoint. The three spline vectors are accumulated with
coefficients of I/4, I/4, and I/2 for the two corner points and the edge +

midpoint respectively. This defines the spline vector for the edge midpoint.

Thus the spline vectors at corner points depend on two singularity parameters

4-K.lO

W#

V

v
and the spllne vectors at edge midpoints depend on three singularity
parameters (see Figure 4-K.8).

If a network edge collapses to a point, an alternate procedure is

employed. The unit spline vector for the first corner point on the collapsed
edge (in a counterclockwise sense) is read from the data base and is written

as the spline vector for every point on the collapsed edge. Figure 4-K.9

illustrates which point is used for the unit spline vector.

There is one subtle matter regarding analysis edge splines. This has to

do with the relationship between the lattice index system of labeling points

and the sequential, counterclockwise sense, manner of numbering points on the

edge. The edge segment is described by the coarse grid lattice indices of its
start and end points. These may be in an increasing lattice index direction
or a decreasing lattice index directon from start to end. The coordinates of
the corner points on the edge are stored in counterclockwise sense sequential

order. Thus both the fine grid lattice index of the corner point and the

counterclockwise sequential index of the point are passed to subroutine CPANAL.

Within CPANAL is an array IADJEM which, when added to the lattice indices

for the corner point, gives the lattice indices of the edge midpoint next to

the corner point in a clockwise sense. The first edge midpoint coordinates in
the distance calculation are those for the edge midpoint Just before the

corner point, i.e., the point next to the corner point in a clockwise sense.

Thus the point selection proceeds in a counterclockwise direction starting

with the most clockwise point. This procedure is necessary so that the

singularity indices for the edge midpoint are assigned to the right component
of the spline vector.

Figure 4-K.IO illustrates the order in which the edge midpoint singularity
indices are obtained for points on the four edges.

4-K.2.3 Design Edge Splines

Design edges have a singularity parameter located at every corner point on

the edge segment (Figure 4-K.ll). The spiine procedure for design edges is a
bit more involved than that for analysis edges. This is necessary for reasons

of stability (see PAN AIR Theory Document, Appendix I (Reference I)).

Unit spline vectors are defined for the start and end points of the

segment. Then the edge segment is parameterized (see PAN AIR Theory Document,
Section 6 of Appendix F.6 (Reference l)). Then an intermediate spline vector

is computed for each edge midpoint in the segment. The intermediate spline
vector is called the gamma vector (see PAN AIR Theory Document, Section 1.4 of

Appendix I (Reference I)). It is computed by performing a one dimensional
quadratic fit to the four singularity parameters located at the four adjacent
corner points on the edge (see Figure 4-K.12). If an edge midpoint is too
close to the start or end point of the segment, then only three parameters are

used in the fit. The two closest points to the edge midpoint are fix

exactly. The end points (when they exist) are fit in a least squares sense.
The weights defined for the extreme points are from the same upstream weighing

algorithm described in the PAN AiRTheory Document, Section 1.2.4 of Appendix
I (Reference l), with the origin defined to be the coordinate of the edge

midpoint.

4-K.l I

After the intermediate spline vectors have been written to the data base,
spline vectors for corner points are defined in a manner similar to the
definition for analysis edges except that instead of using singularity

parameters at edge midpoints in the spline, the intermediate spline vectors at

the edge midpoints are used. Finally, after all corner point spline vectors
have been written to the data base, the intermediate spline vectors at each

edge midpoint is replaced by the "true" edge midpoint sp]ine vector which is
calculated in a fashion similar to the analysis edge spline. It is the

accumulation of I/4 times the spline vector for each adjacent corner point and

I/2 times the intermediate spline vector at the edge midpoint.

V

This design edge spline has not been proven to be stable (see PAN AIR

Theory Document, Appendix I (Reference I)). For this reason an alternate

splining technique has been defined within DQG by means of the DEFINE option
of UPDATE (see Section 4-E). If a *DEFINE RESERV is inserted in an UPDATE and
compilation of DOG, subroutines NTEDGD and CPDSGN will be modified so that the

intermediate edge midpoint spline vector will become the final spline vector
and unit spline vectors will be written for each corner point on the edge.

If this version of design splines is used, it should ony be employed for
problems where any network edge which meets a design edge has the same

paneling density.

4-K.2.4 Wake Edge Splines

There are two types of wake networks in PAN AIR. The first, WAKE I, has

singularity parameters located on one edge called the matching edge. The

locations of the singularity parameters is the same as for an analysis edge.
The construction of spline vectors for this edge proceeds in the same fashion

as in Section 4-K.2.2. The second kind of wake network, WAKE II, has a single
singularity parameter located at one of the four network corner points. The

edge for which that point is the first corner point in a counterclockwise
sense is called a matching edge. A unit spline vector is defined for the

corner point with the singularity parameter and the same unit spline vector is

written for each corner point and edge midpoint on the matching edge. This
defines a constant doublet strength along the edge.

V

4-K.3 Doublet Splines for Network Interiors

4-K.3.1 Analysis and Design Network

Figures 4-K.13 to 4-K.18 illustrate the general pattern of point selection

for the interior of analysis and design networks. Figures 4-K.19 to 4-K.24
illustrate how the point selection proceeds if the required point is not on

the network, that is, if skipping the required number of steps in the column
and row index directions moves a point on or over the edge of the network.

A slngle procedure was developed to handle the point selection for all of
these cases. It makes use of the fine grid lattice indices of points in the
network (see Section 4-H). The different cases are handled by passing to the

subroutine DATANL different values of arguments.

The arguments are: ISH(2), a set of "shift" lattice indices; LIMXY(2), a

pair of limits in the X and Y lattice directions; OVF(2), a set of pointers to
be used in the case that the lattice indices overflow or underflow; MAXXY(2), V

4-K.12

the limits of the fine grid lattice indices for the network; and LATXY(2), the
fine grid lattice indices of the point whosespline vector is required.

A reference point lattice index is defined as the vector sum of the

lattice indices of the point whose spline is required with the array ISH. (It
does not matter if this point is off the network.) See Figure 4-K.25. A loop

on I and J is set up from l to LIMXY(1) and from l to LIMXY(2) respectively.
Lattice indices of the surrounding point are defined as:

LATX - IREF(1) + 2*(I-l)

LATY - IREF(2) + 2*(J-l)

If the loop indices are l or LIMXY(1) (for I), or l or LIMXY(2) (for J),

the point is skipped. No spline data is defined for it. Otherwise, the LATX

and LATY variables are passed to LSQDAT which generates the spline vector at
that point, its index vector and the coordinate of the point.

If the variables LATX and LATY are less than one (underflow) or greater
than MAXXY(I) or MAXXY(2) respectively (overflow), they are set to either I or

MAXXY(1) or MAXXY(2). The overflow (OVF(1) or OVF(2)) is added to the lattice

indices. In some cases, if a point overflows it is omitted from the fit.

This is indicated in Figures 4-K.14 to 4-K.24. If both loop indices are not

equal to l and not equal to LIMXY, the point is defined to be fit exactly.

Table 4-K.I defines the correct values for the arrays ISH, OVF and LIMXY

in the six cases. The reader is urged to verify that the values yield the
required set of points in the various situations.

Several exceptions are introduced to the procedure for handling some

special cases.

If an edge of a design network collapses, the splines for center points in

the column or row adjacent to the collapsed edge will be singular since two
identical points are fit exactly. For this reason, if a point is the second

point on a collapsed edge, no exact constraint is defined for this point.

(Identical points may appear in the least squares portion of the fit without
difficulty.)

If the fitting procedure were followed for one column or one row network.
the spline would also be singular for simple geometries since all points wouid

lie on two straight lines. Additional points are added to the spline to

prevent this (see Figure 4-K.26).

If a point on the network edge which is selected as one of the surrounding

points and that point is part of a smooth abutment, then alternate spline
vector data are read from the data base. These alternate data defines a

spline vector and coordinate of a point on the other network with which the

smooth abutment is formed (see Section 4-K.2.1.3). If this procedure were not
followed, panels near the smooth edge would depend upon too many singularity
parameters (i 31) for the Partitioned Random Column method in the MAG module
to function.

4-K.3.2 Wake Networks

Wake networks have constant doublet strength in a direction perpendicular

to the matching edge. Thus for each point on the matching edge, the spline

4-K.13

vector is read frm the DQG data base. Then for every point in the column

(row) perpendicular to the matching edge row (column), the spline vector for
the edge point is written with a key set containing the fine grid lattice
indices (see Appendix 4-H) of the interior point.

4-K.4 Source Spline Point Selection

Selection of points for source splines is much simpler than the doublet
procedures. Figure 4-K.27 illustrates the points selected for source analysts
network splines. Point selection is similar to that in Section 4-K.3. A
reference point is defined by shifting the lattlce indices of the point whose
spline is required. Then spline vectors for the four surrounding points are
obtained for the fit. Note that if any of the points overflow or underflow,
the reference point is shifted so that all of the points are on the network.
Spline vectors for source analysis networks are defined for corner points and
center points.

One panel column or one panel row networks are a special case. Splines
are constructed from the two nearest center points. In this case the source

strength is a linear instead of bilinear function. See Figure 4-K.28. Source
design I networks have singularity parameters located at every corner point.
Unit spline vectors are written for every corner point. Spline vectors for

center points are defined to be of length four with equal amplitudes of I/4,
and index vector consisting of the four singularity parameter indices at each

corner of the panel.

Source design II networks have singularity parameters located at panel

edge midpoints. One panel column or one panel row networks are not allowed as
Source design II networks. Spline vectors for center points are of length two

and each component has an amplitude of I/2. The spline vectors for edge
midpoints located on panel edges transverse to the matching edge are defined

by the four surrounding singularity parameters. Figure 4.K-29 shows the
pattern of point selection for the spline vectors of a source design II
network.

V

V

4-K.14

ISH

LIMXY

OVF

Table 4-K.l Values for arrays ISH, LIMXYand OVF.
Theseare used to select surrounding singularity parameters for
design and analysis networks and for the varouts types of points

for which splines are computed.

............ Analysis Design

Column Row Column Row

Corner Edge Edge Center Edge Edge

Midpt Midpt Midpt Midpt

(-3, -3) (-2, -3) (-3, -2) (-3, -3) (-3, -2) (-2, -3)

(4, 4) (3, 4) (4, 3) (4, 4) (4, 3) (3, 4}

(I, l) (0, l) (I, O) (0, O) (0, O) (0, O)

_N,,..._r/

4-K.I 5

V

Start Points _'

of Abutment

i

i

,,,,!

XStop Points

of Abutment

Figure 4-K.I Singularity Parameters Used

for Smooth Abutment Spllne Calculations

4-K.16

Coarse Edge Network

K=3

K=2

K=I

I-)"

L

F

SINGDX(I,2)

SINGDX(I,I)

K=4

K=5

L .L •

I

• i • • • • J •

I

• "| m ' •

I

I

i) (l , i

SINGDX(I,3)

Fine Edge Network

• Singularity Parameter Stored in Array SINGDX(I,J)

o Corner Points Stored in Array CORPT(I,J,I()

Figure 4-K.2 Storage at Corner Point Coordinates

and Singularity Parameter Indices

4-K. 17

V

Q

®

-I-

®

r
1

f

®

6B ® •

Closest Corner Point on Ffne Edge
,n

Q Potnt for Exact Fit

0 Potnt for Lease Squares Fit

x Point for whtch Spltne is to be Computed

V

Flgur_e 4-K.3 Surrounding Singularities ?or Corner Point Spllne

Computation on Smooth Edge

4-K.18 V

V

Adjacent Corner Potnt_

• ®_ ® •

Closest Corner Point to Adjacent Corner Point

" 1"1) '
• • • • • _ • • u

I/ "

Most Distant Center Points Adjacent to Closest Corner Point

Q Point for Exact Fit

0 Point for Least Squares Fit

Point for which Spline Vector is to be Computed

Figure 4-K.4 Surrounding Singularities for Edge

Midpoint Spllne Computation on Smooth Edge

_v

4-K.Ig

V

• I •

[....

V

0 Interior Point which Uses Alternate Spline Vector

0 Point Chosen for Spline if Edge is Not Smooth

Q Location of Point Used as Alternate Spllne Vector

Figure 4-K.5 Alternate Spline Vector Selection

4-K.20

' g

,i

. J

r

q

;s

r

I

• ° , 1_ • _] •
1

I
I

)
i

I

® Point for which Spltne Vector is Requfred

0 Point Used for Quadratic Fit

0 Point Used for Alternate Spltne Vector

Figure 4-K.6 Point Selection for Alternate Spline Vectors

4-K.21

Start
, End

V

Figure 4-_7 Location of Doublet Parameters on an Analysis Edge

V

Figure 4-K.8 Dependence of Spline Vectors_for Analysis Edges

on Surrounding Singu]arity Parameters

4-K.22
V

_J

Corner Point ,
if Edge 4 ''_

Collapses

Edge 4

i

\

Edge 3

Corner Point

if Edge 1

Col Iapses

Edge 1

Corner Point

If Edge 3

Collapse:/

Edge 2

Corner Point

if Edge 2

_J_CCollapses

Figure 4-K.g Unlt Spllne Point for Collapsed Network Edge

4-K.23

Edge 4

Edge 3

2

l
1

Edge 2

V

Edge I

't
X

Increasing lattice index direction

Figure 4-K.I0 Sequence of Edge Midpoint Selection

for Spllnlng Corner Points on Analysis Edges

4-K.24

V

Figure 4-K. II Singularity Parameter Locations

for Design Edges of Networks

Figure 4-K.12 Singularity Parameters for Intermediate

Spline Vector Construction

4-K.25

V

Column

V

• Point where spltne vector is required

• Point for exact fit

x Point for least squares fit

Figure 4-K.13

4-K.26

Surrounding Point Locations for Corner Splines

for Doublet Analysis Network

m

x

Row l

Col U_

• Point where spline vector is required

• Point for exact fit

x Point for least squares fit

Figure 4-K.14
Surrounding Point Locations for Column Edge Midpoint

Splines of Doublet Analysis Network

4-K.27

v

Row [

Col train

V

• Point where spllne vector is required

® Point for exact fit

x Point for least squares fit

Figure 4-K. 15

4-K.28

Surrounding Point Locations for Row Edge Midpoint Splines

for Doublet Analysis Network

¢ :

v

ROW T ----.--

Coiunto

• Point where spltne vector is required

® Point for exact fit

x Point for least squares fit

Figure 4-K.16 Surrounding Point Locations for Corner Point Splines

for Doublet Design I Networks

4-K.29

v

Row l

Column

V

• Point where spllne vector is required

® Point fit exactly

Point fit in least squares sense

Figure 4-K.17 Surrounding Point Locations for Row Edge Midpoint Spl4nes

for Doublet Design I Networks
4-K.30

CO1ulnn

•Potnt where spline vector is required

• Point fit exactly

x Point Fit in least squares sense

Figure 4-K.18 Surrounding Point Locations for Column Edge

Midpoint Splines for Doublet Design I Networks

4-K.31

I
I

I

I

I

I
I
I

1 1 l_l l

I

I
I
I
I

Omit

X

.....i---7

X

®

®

X

®

l X

l
I
'[

I

.[...... ___
I I
I I
I l

Co1umn

®

X

Omit

Figure

4-K.32

4-K.Ig Point Selection for Corner

:Ana_l_s is Re,twQrk. Omi_t

Point Near Edge,

|
I

ll l.m

I
!

I
I
!
!

I
I

I

!

I

I

I
#
I

Qllml_m 1 i !

I
I
I
I

I
I
I
I

x

X

X

®

X

Omit

X

II T ml _oQ

(

I

Col umn

z
v

Figure 4-K.20 Point Selection for Row Edge
Analysis Network

Midpoint Near Edge,

4-K.33

V

!
I

I_ameL _I me.

I
I

I
I
I
I

I im IB 91 _ I _lle .rap ml !

I Omit
I
! x

I

I

......
I
| X

I

I
I
I

X

®

®

I
..... -t..... I-......

I U

I I
I I

I Col umn .---,.

!
I

Figure 4-K.21 Point Selection
Analysis

4-K.34

for Column
Network

Edge Midpoint Near Edge,

J

|
I

illllL ,=I1 IO 4

I
I
I
I
I
I

I Iiiil_Ii i,iI i_

!
I.
I

...... _,.)
I

I ,

...... ±--__!.:_
Ro_| "I

! I i
I I
I I

I Col umn-.--_

- iL- 3" -"-_ lll # i I 1 1 1 ! i I I Jl

I
I
I I

Figure 4-K.22 Point Selectlon for Center Polnt Near Edge,
Design Network

_J

4-K.35

|
I

m llm_ m _L _ m_q

I
I
I
I
I
I

_ mmmm m_m41Dmm em [

I
!
I
I

emm_ qD _ _mem" "_ iW

I

I
I
I

ml .a m m_ _

,II!
I
!
!

I Colunto

m I 1D m llPllD imlgr gill Iolm

I

I

Figure 4-K.23 Point Selection for Row Edge Midpoint. Near Edge,
Design Network

4-K.36

I
I

Ol_ i 4iD_ ,ira Im qni. ID

I
!

I
!
I
I
I

!
I.
I

I

I
I

I

I
I
I
I

..... "I..... I"......
I I
I I
I I

I Column -_

I

l

....... .I_ m
I
I I
I I

Figure 4-K.24 Point Selec%ton

Design
for Column Edge Midpoint Near Edge,
Network

4-K.37

V

//Jfl

/

/

/
I

X

/

/
1
#

f_

/

/ Point

/////

////

X

X

/ / / './t

X

";/>-7/
/
/
/
/
/

/
/
/
/
/
/
/
/
/
/
/
/

//////

!
x

/////

X

_/y//

CO1Ull_

V

Figure 4- K. 25

4-K. 38

IIIustration of Operation of Algorithm which Selects

Surrounding Points for Spline Computations

V

x

x

x

x

x

Omit

x Omit

x

_) Extra Points for One Column/One Row Network Spline

Figure 4-K.26 Surrounding Point Locations for One Row Network

4-K.39

V

T,

X

Column

Figure 4-K. 27 Surrounding Points for

Source Analysis Spllne Computation

4-K.40

/
X

\ X

I Source constant in this direction

Figure 4-K.28 Source $pline Point Selected for
One Column/Row Networks

4-K.41

RowT

Matching edge

M

N

v

Column-_-_

4-K.42 +

Figure 4-K.29 Surround-ing Points+for

Spllne Computation

Source Design II

V

APPENDIX 4-L

GAP FILLING PANELS

4-L.l

V

/-
,o

I

j"

.¢

V

V

4-L.O Introduction

Gap filling panels are automatically added at any abutment where the

distance between network edges in the abutment exceeds the user specified

tolerance distance (unless the user indicates that they are not to be used as
discussed in the PAN AIR User's Manual, Section 7 (Reference 2)). Figure
4-L.l illustrates the situation. A theoretical discussion of gap filling

anels occurs in the PAN AIR Theory Document, Appendix F, Section F.6
Reference l).

4-L.1 Gap Panel Construction

Construction of gap filling panels begins with the identification of one

network edge as the most densely paneled. This is the reference edge. This
edge is then parameterized (see PAN AIR Theory Document, Appendix F, Section
F.6 (Reference l)). Next a loop is set up over all other network edges in the

abutment. The other edge is parameterized and the two parameterizations are

merged and sequenced in ascending order.

For example, one sequence of parameterizations might be

O, O.l, 0.2, 0.3, 0.4, 0.8, 1.0

and the other might be

0., 0.15, 0.23, 0.3, 0.41, 0.8, 0.9, l.O

After merging and sequencing the new sequence becomes

0., 0., O.l, 0.15, 0.2, 0.23, 0.3, 0.3, 0.4, 0.41, 0.8, 0.8, 0.9, l.O, 1.0

The merged sequenced array of parameterizations is used to generate the

gap filling panels. Each successive pair of entries in the array are used to

define two coordinates on each of the two edges.

For example, for parameterizations 0.4 and 0.41 in the example above, the

coordinates of a point 0.4 along the length of the first segment iS computed
and another 0.41 along the way of the first segment. This is also done for

the other network edge. These four points become the four corner points of
the gap filling panel.

The edge lengths of the panel edges are computed. If all edges are larger

than the tolerance distance, the remaining gap panel data is computed (see
below). If only one edge is short, the corner points of the short edge are

redefined so that they are exactly the same point and a flag is set indicating

the panel is triangular.

If more than one edge is short, the panel is omitted from the problem: no
"GAP-PANEL" data set is written to the DQG data base.

"_v

A gap filling panel fs assigned to a panel on each network edge other than

the reference edge if the network edge contains two corner points of the gap
filling panel.

4-L.3

PRECEDING PAGE BLANK NO'I _ FILMED I_ E._L.__.I NI_NTtO_A_Ly BLANg

Some care must be taken in the definition of gap filling panel to assure that
its normal points in the same general direction as the panels along the
network edge.

The data provided for gap filling panels are the corner points, edge
midpoints, and center point coordinates of the gap filling panel, the network
and panel to which it is assigned, the parameterizations of the two corner
points and edge midpoints of both the gap filling panel and the network panel
to which the gap panel belongs, and a flag indicating whether a panel is
triangular.

For abutments with a plane of symmetry, a different construction procedure

is used. The corner points of the gap filling panel are defined as the two

corner points of the panel on the network edge and the orthogonal projection

of the two points to the plane of s_nnmetry.

The spline vectors for the gap filling panel are defined from the spline

vectors at the corner point and edge midpoint of the panel to which the gap

filling panel is assigned. A quadratic function along the panel edge is

defined which fits the parameterizations of its corner points and edge
midpoints. This function is evaluated at the parameterizations of three gap
filling panel points (that is, the two corner points and the edge midpoint
between them). The coefficients from this evaluation are used to accumulate a

spline vector (see Section 4-K.l) for each of the three gap filling panel
points on the edge. The same spline vectors are written for the two

additional points perpendicular to the edge of the panel to which the gap

panel belongs. See Figure 4-L.2.

The gap filling panel data set is keyed by a cumulative index counting the

number of gap filling panels. The spline vectors are keyed by a dummy network
index which is the cumulative gap filling panel index, and by dummy lattice

indices (see Figure 4-L.2). The effect is as though the gap panel were a one

panel network. When panel data is computed for the gap filling panels, the
data is written with a keyset of zero for the network index, and the

cumulative gap panel index and the number one for the panel lattice indices.

A dummy "NETWORK-SPEC" data set is also written for gap filling panels. It
treats them as a single l X N panel network where N is the number of gap

filling panels.

One special feature concerning triangular gap filling panels should be

noted. If the collapsed edge of a gap filling panel is on the edge opposite

the network to which the gap panel belongs, the spline vector generation will

in general produce a multiple valued doublet strength at the collapsed edge.
To avoid this disastrous situation, if any gap filling panels have this

property, they are ignored, that is they are discarded as if they had more
than two short edges. The effect on the doublet strength of this action has

not been investigated. See Figure 4-L.3.

V

v

4-L.4

/
Gap Filling
Panels

Network 2

do gap filling panels are added here because the panels have two

edges which are shorter than the tolerance distance.

Figure 4-L.1 Addition of Gap Filling Panels to an Abutment

4-L.5

V

i

J
I

(2,2)
0

1,2)

• Panel Points which generate spline for gap ill

O[$pline vectors for gap panel points
oj

Network I

Lattice IpdJces

of Gap Panel Points

for Spline Vector

Keys

Filling Panel

Network 2

ing panel

Figure 4-L.2

4-L.6

Indexing of points in a gap filling panel for use

defining gap filling panel spline vectors
V

Network 1

.1
,,.4

'Z

|

Network 2

In General

M 1 * M2

M2 # M 3
M I _ M 3

Figure 4-L.3 Excluded Special Case of Multiple Valued Doublet Strength

for Gap Filling Panel

Doublet strength is constant along lines between networks. Thus if doublet

doublet strength at the three points on network 2 are not equal, they give
rise to an infinite derivative of doublet strength at the intersection

point on network 1. In general the strength at the points on network 2

are equal. 4-L.7

i

_'

V

JV

APPENDIX 4-M

SELECTION_OF BOUNDARY CONDITIONS

"_......._

"V

4-M.l

f
i

J
f

11

v

V

4-M.O Introduction

The fourth overlay of DQG selects the appropriate boundary conditions to

be imposed at each control point. The control points fall into three

categories. Center control points are control points which lie at panel
centers. Edge interior control points (refered to as edge control points) are

those network edge control points which also lie on panel edge midpoints. The
remaining control points are refered to as corner control points. They
include network corner control points and the additional control points added

by DQG to impose doublet matching at certain abutment intersections.

The algorithm used to assign boundary conditions depends on the control

point type. Sections 4-M.l, 4-M.2 and 4-M.3 discuss the boundary condition

assignments for center, edge and corner control points respectively. The

boundary conditions may be subdivided into three groups: user specified,
degenerate and DQG assigned. It is assumed here that the reader is familiar
with the discussion of the formulation of the different boundary conditions

found in Appendix H of the PAN AiR Theory Document (Reference l). The

assignment of user specified boundary conditions depends on a hierarchy. The
implementation of the user specified boundary condition hierarchy will be
discussed in section 4-M.4.

Before any boundary condition is assigned the number of boundary

conditions that need to be imposed at each type of control point is
determined. Program BNDYDF first counts the number of null boundary

conditions at a control point. Boundary conditions will need to be imposed to
bring the total number (including null boundary conditions) to at least two.

4-M.l Selection of Boundary Conditions at Center Control Points

The selection of boundary conditions of center control points is made in a

straight-forward manner in subroutine CNCPBC. User specified boundary

conditions are assigned for each control point first. If the network lies in
a plane of symmetry then degenerate boundary conditions replace the user
specified boundary conditions. An antisymmetric boundary condition is

replaced by a degenerate doublet boundary condition and a degenerate source
replaces a symmetric boundary condition,

v

4-M.2 Selection of Boundary Conditions at Edge Interior Control Points

The boundary condition selection at edge control points is considerably

more complicated than at center control points. The complications arise

because a network edge may be in a plane of symmetry, on a plane of symmetry,
on both planes of symmetry, or--on neither planes of s_try. The various

_-6ss-TBT1itesare explained in Ap-_endix H of the PAN AIR Theory Document

(Reference l). A sequence of subroutines !s used to assign boundary
conditions at edge points. Subroutine EDGECP reads the input boundary

condition data, obtains the geometric data, initializes the output arrays and
then calls subroutine ASGNBC. This subroutine prepares the user specified,

matching and degenerate boundary conditions. DEGOUT determines if the
assigned boundary conditions in the output array has the appropriate symmetry

type. If it is not appropriate then it is replaced by a degenerate boundary
condition.

4-M.3

PRECEDING PAGE BLANK NOT FILMED
Ikl_E"__, _ INTENTIO_IAEL¥BLANI

For network edge and corner control points only one boundary conditon is

normally required. The symmetry type of this boundary cOn_ti6h Ts_etermlned
by the network singularity type. It may happen that the first boundary

condition specified by the user has a different symmetry type. In this case
DEGOUT swaps the order of the user specified boundary condition in order to

assign the boundary condition with the same symmetry type as the needed

boundary condition.

4-M.3 Processing of Boundarj/ Conditions at Corner Control Points

The most complex aspect of the corner point boundar3 condition assignment
is the assignment of boundary conditions to insure doublet matching. The
matching assignments are made in subroutines ASSIGN and ABTINT in the third
overlay of DQG. At the end of the third overlay the matching information is
written to the SPECIAL-POINTS data set in subroutine MTCHPT. The fourth
overlay reads SPECIAL-POINTS data and interprets the matching data, assigns
matching conditions and then writes out BNDRY-CONDN-SPEC data. This section
describes how the matching data in the SPECIAL-POINTS data set is used to
generate matching boundary conditions.

Arrays MCHCRP(20:4:2) and KSPPOS(20) in the SPECIAL-POINTS data set

contain the information needed to assign matching conditions. The array
KSPPOS(1) contains a value between 0 and 3. The value 0 indicates that the
Ith special point is not on any plane of symmetry. Values of l, 2 and 3

indicates that the special point is on the first, second and both plane(s) of

symmetry respectively. The first index of MCHCRP refers to the special

point. The second index refers to the symmetry condition. The third index
refers to singularity type, l implying doublet and 2 implying source, although
source matching cannot occur at corner points in PAN AIR. (Vorticity matching
is also not imposed at corner points in PAN AIR.) Pointer spaces are provided
to facilitate future modifications. If MCHCRP(I,J,I) contains l it means that

the Ith special point of an edge E is to be used for doublet matchingaCPoss
the abutment in which edge E takes part. Furthermore if KSPPOS(I) is nonzero

then the matching condition is assigned only for the Jth symmetry condition.
However if KSPPOS(I) were zero (the Ith corner point is not on any plane of

symmetry) then the assignment of the boundary conbdition would be independant

of symmetry condition and if MCHCRP(I,I,I) contains l then the matching
condition would be assigned to all symmetry conditions. The SPECIAL-POINTS

dataset is keyed on network edges. A network corner point is defined by two

edges. Therefore the matching condition at a corner point may be used to
match doublet strength across either edge. In the fourth overlay of DQG
subroutine EDGECP inspects the SPECIAL-POINTS data from the two adjacent edges

and combines the matching flags to define a single matching flag, IMTCH. Then
whenever IMTCH is not zero a matching boundary condition is assigned instead

of a user specified boundary condition.

4-M.4 User Specified Boundary Conditions

The general form of the boundary condition equation as stated in the PAN

AIR Theory Document, Appendix H (Reference l) includes perturbation terms of
average normal mass flux, average potential, tangential average velocity,
difference normal mass flux (source), difference potential (doublet), and

tangential difference velocity (doublet gradient). The coefficients of most

4-M.4

of these terms vanish for the typical case.

For most problems the user specifies two boundary conditions for every
center control point. They may be specified in any order. Points on the
network edge usually receive only one boundary condition. For simplicity, the
user may specify the same two boundary conditions for the edge points as for
the center points. DQG must select one of the boundary conditions to impose
at the edge points.

Although the boundary conditions can be specified in any order, DQG must
assign them according to a particular hierarchy. This hierarchy is:

•

2.
3.
4.
5,
6.
7.

difference potential (doublet)
average potential
average normal mass flux
tangential average velocity
tangential difference velocity (doublet gradient)
difference normal mass flux (source)
anything el se

The procedure DQG uses to determine where the boundary conditions fit in
the h_erarchy merits some discussion. There are ten possible coefficients in
the general boundary condition equation. A vector of length ten is defined
(selection vector, SELVEC). Each component corresponds to one of the
coefficients in the general BC equation. The vector is Initialized to zero•
For each coefficient which does not vanish the corresponding component of the
vector is set to unity. The correspondence between the components of SELVEC
and the boundary condition coefficient is listed below:

component

1
2
3
4
5
6
7
8
g

10

coefficient of average normal mass flux
coefficient of average potential
x component of tangent vector for average velocity
y component of tangent vector for average velocity
z component of tangent vector for average velocity
coefficient of difference normal mass flux (source)
coefficient of difference potential (doublet)
x component of tangent vector for difference velocity (doublet gradient)
y component of tangent vector for difference velocity (doublet gradient)
z component of tangent vector for difference velocity (doublet gradient)

An array of projection vectors SVP(IO,2,6) is defined. The first index

varies over the components of the selection vector. The last index is over
the six hierarchical categories. The middle index defines two complementary

vectors. For example, SVP(I,I,I) = (0,0,0,0,0,0,I,0,0,0)
SVP(I,2,I) = (1,1,1,1,1,1,0,1,1,1)

This indicates (SVP(I,I,I)) that the seventh coefficient of difference

potential (doublet) does not vanish and (SVP(I,2,1)) all other coefficients
vanish.

4-M. 5

Note that a boundary condition specifying doublet gives

SVP(l,l,l) • SELVEC(1) = l

and

SVP(I,2,1) • SELVEC(1) = 0

The other five vectors SVP are defined in a similar fashion to allow

specification of the hierarchical position of the boundary condition.

If the user boundary conditions do not fit in the six categories, they are

used in the order the user has defined.

V

-- i

V

4-M.6

_j

5.0 MAG MODULE

The primary function of the MAG module is to generate the MAK database

which contains in particular the following three datasets.

(i) The AIC-MATRIX dataset giving the aerodynamic influence coefficient matrix

[AIC] for each symmetry condition required by the user's problem
formul ation.

(2) The IC-MATRICES dataset containing the influence coefficients that

describe the dependence of #, v or w'n at selected control points upon
the configuration's global singularity parameters.

(3) The MAG-PANEL-DATA dataset containing the essential panel data needed by
the FDP module of PAN AIR.

These three datasets constitute the principal outputs from MAG. We begin
this maintenance document for MAG by presenting a complete table of contents,

listing the topics discussed.

v

5.1

TABLE OF CONTENTS

5.2

5.3

MAG Module

Introduction

5.1.1

5.1.2
5.1.3

Formulation

Formulation
Definitions

1, Morino's Method

2, Hess' Method
of Influence Coefficients

HAG Overview

5.2.1

5.2.2

5.2.3

Purpose of HAG

5.2.1.1 The Principal
IC-HATRICES

The Principal

The Auxiliary
and SYMMETRY

Datasets, AIC-MATRIX and

Dataset HAG-PANEL-DATA
Datasets DATA-BASE-HEADER

5.2.1.4 The Auxiliary Datasets COLHAP, COLMAP-
INVERSE and COLHAP-BULK

5.2.1.5 The Auxiliary Datasets ROWMAP, ROWMAP-
INVERSE and ROWMAP-BULK

5.2.1.6 The Matching Condition Datasets
5.2.1.7 The PANEL-GROUP Dataset

MAG Input/Output Data
Data Base Interfaces

Module Descriptions

5.3.1 Overall Structure

5.3.2 Overlay Descriptions
5.3.2.1 MAGIO, Overlay (1,0)

5.3.2.2 HAG20, Overlay (2,0)
5.3.3 HAG Databases

5.3.3.1 PANDTA Database: Random Access to Minimal
Panel Data

5.3.3.2 FPDQ Database: Sequential Access to
Minimal Panel Data

5.3.3.3 ICTP Database: Sequential File Storage of
the Influence Coefficients for a Control

Point Block

5.3.4 Data Flow

5.4 Lower Level Functions

5.4.1 Functional Decomposition

5.4.2 Functional Decomposition
5.4.3 Subroutine Descriptions

for the PIVC Subassembly

5.4
5.7

5.9

5.13

5.13

5.13

5.18

5.18

5.18

5.19

5.19
5.20
5.21

5.22

5.23

5.23

5.23
5.23

5.25
5.26

5.27

5.28

5.28

5.31

5.32

5.32

5.36
5.37

V

5.2

TABLE OF CONTENTS (cont.)

5.5 Figures

5.1

5.2

5.3
5.4

5.5

Appendices

Data Base Relationships

Overall Program Structure Diagram, Including PIVC
Subassembly

Sublibraries Used by MAG

Data Flow Diagram for MAG Giving Data Activity by Map
Name

List of All Map and File Names

5-A Programming Aids: Extraction Programs for MAG

5-A.I

5-A.2

5-A,3

FDPRNT: Extract Subroutine Functional

Decompositions
SDPRNT: Extract Subroutine Descriptions

MDPRNT: Generate an Indexed Listing of a Master
Definition

5-B Data Base Communications Charts

5-C Dynamic Memory Management and Program Limit Parameters

5-D The PIVC Subassembly

5-E Panel Defining Quantities in MAG

5-F Printed Output and Programming Aids

Print Flag Controlled Output

Error Conditions Detected by MAG

5-G Handling Closure Boundary Conditions in MAG

5-H Alternative Problem Formulations

5-H.I

5-H,2
5-H.3

Formulation 3, The Modified Morino Method

Formulation 4, The Direct Velocity Formulation
Summary of the Four Formulations

5.39

5.39

5.40
5.41

5.42
5.43

5-A.I

5-A.2
5-A.6

5-A.10

5-B.1

5-C.1

5-D.1

5-E.1

5-F.1

5-F.1
5-F.4

5-G.1

5-H.1

5-H.I

5-H .3
5-H.5

5.3

5.1 INTRODUCTION

Within the general context of numerical methods for the solution of
partial differential equations, the method which PAN AIR uses to solve the
potential flow equation is the method of collocation applied to a boundary

integral equation. In order to understand how HAG fits in to this general

scheme, it is useful to consider the formulation of a specific problem.

Consider the figure below which summarizes the essential aspects of the
problem of incompressible potential flow about a sphere, B. We will consider

A / "P"_, p+

_ U_

S =aB

Total Velodty - V -Um+ v - Uoo+v ¢

Perturbation Velocity - v -v_

Continuity: v. v - v 2 _ - 0

Impermeable Surface: V. _ -. (U_+ v 1. _ " 0

two different methods of fomulattng this problem as a boundary integral
equation. The principle difference between these two Formulations Is the way
tn which they define _ interior to the sphere. Since # in the interior of the
sphere is of no interest anyway, each Formulation can be regarded as being
equally legitimate, at least from a theoretical point of view.

5.1.1 Fomulatlon I, Morlno's Method [_ . 0 inside B]

Here we set W(_) , 0 for p_B. Consequently, by the uniqueness theorem
For the solution of Laplace's equation, VJ . 0 for all _¢B, and in

particular, (a_/an)_ = O. (7. is a point on the boundary of B, just inside

B). It is also true, obviously, that _(__) . O. In view of the definitions
of source o and doublet ,,

o' . (a#/an)._.+- (a#lan)_,,

.. -
we flnd that

(5.1.1)

(5.Z.2)

o . (a_lan)_÷ (5.1.3)

. (_p+ (5.1.4)

The value of (aW/an)_+ can be obtained directly from the impermeable surface

boundary condition, (_._)_+ . O:

V

5.4

_J

-..w.A _ A ._,,.̂ .-.IW ^)__,0 = (V.n)_.+ = Uoo .n + (v.n)-_ = Uoo.n + (a_/anP+ +

Thus,

--I. A

= -U_ .n
o = (a_/an)_+ (5.1.5)

and o is determined.

At this point we need to invoke the integral representation formula for

(cf. theory document, eqn. (3.2.7) with @= l/R)._, Green's third _dentit_
Evaluating it at p+ and p_, we get

(,) = [_ _ IIo(_),(_,_)dSq + _ II_(q)(a @/anq)dSq] (5.1.6)

@B BB P*

Averaging these two expressions, we obtain a representation formula for _avg:

1[,(_+) + _(_)] [_.ylo @dSq +_.fl _ ,n dSq] (5.1.7,
" = - avg

BB @B

Now #(_.) = 0 and _(_+) = u. Using these facts in (5.1.7) andrearranging, we

obtain the Fredholm integral equation of the second kind for u:

i (_)(_j'y_ @n dSq)avg = (5.1.8)

BB BB

We put the integral involving o on the right hand side because a is known
from the boundary Condition data (cf. eqn. (5.1.5)).

The numerical solution of (5.1.8) by the method of collocation requires

the evaluation of the source potential _s and the doublet potential _D'

(-;, sSo(.
BB avg

<)_D(_) = _ S/_(_)(a@ /anq) dSq avg
" aB

where the singularity distributions a and u are assumed to have finite
dimensional representations of the form

N

o(_) = Z s I (_) xI (5.1.11a)
I=1

N

u(_) = _ mI (_) xI
I=1

(5.1.11b)

5.5

The basis functions s I, mI are independent of the solution and, in PAN

AIR, are defined by the module DQG. The global singularity parameters k I

are either of "source type" or "doublet type". This fact is expressed
formally by the implications:

s I is not the zero function ÷ mI = 0

mI is not the zero function ÷ s I = 0

(5.1.12a)

(5.1.12b)

In the current problem, the source parameters will all be known (since _ is
known) and the doublet parameters will all be unknown until they are

determined by the application of the collocation conditions.

if we agree that the N_ unknown doublet parameters appear first in

(xl } , followed by the Na known source parameters, then we observe that

N_ equations in the N_ unknown values of _I can be obtained by

evaluating equation (5.1.8) at Np points, called control points and denoted

by Pl, I = 1,...,Nu. Performing this evaluation, one obtains the

collocation conditions,

N

_ _j = bI
J=1 AIJ

where

(osq)AIj = _ mj (_i) - _[,f.rmj (_) _ * (7, _i)

aB anq avg

(5.1.13)

(5.1.14) V

N +N

Z

bI J=N +i avg
p aB : : : =

The evaluation of the integrals appearing in (5.1.14-15) is discussed in

appendix J of the Theory Document. In particular, the procedures necessary to
obtain the average value integrals are discussed in appendix J.8.

We note in passing that the matrix elements AIj are called aerodynamic

influence coefficients, or AIC's for short. In actual practice, some of the

equations in (5.1.13) are replaced by doublet matching conditions of the form:

k=l

where _ is a doublet matching point and the numbers sk take on the values
,1. For a detailed discussion of doublet matching along network abutments and

at abutment intersections, see appendices B.3 and F of the theory document.

In any event, we eventually obtain a system of equations of the form (5.1.13)
which we solve to obtain the previously unknown singularity parameters,

5.6
V

j, J=l, ... N. Once all of the singularity parameters are known, a and

are completely known from the representation formulas (5.1.11). From these,

is determined by equation (5.1.6) so that the problem is effectively solved.

5.1.2 Formulation 2, Hess' Method [p = 0 on @B]

In this method, we do not actually specify what # is inside B, but

rather define it indirectly by choosing the doublet strength to be identically

zero. Thus, we assume that ¢ can be represented by a source distribution by

the equation

This expression may be differentiated to give values of (_n) at _+ and __:

(_¢/_n)_, = _i _(_)._[o(q) Vq _ (P,,q) dSq (5.1.18)
aB

Evaluating the average and difference of (a_/an)x,,v we find

(a#/an)_+ - (a#/an)__ = a(_)

1 [(a_/an)_+ + (a_/an = "[SB_

Combining these, we may eliminate (a#/an)__ to obtain

(@_/an)_+ = Z "LaB

^ = 0 may now be imposed to obtain
The boundary condition (V.n)_+

0 = . = U=.n * (;.n p. U= .n +(@#/an
÷ ÷

Vq, avg

(5.1.19)

Substituting this into (5.1.19), we again obtain a Fredholm integral equation
of the second kind,

avg

In this formulation, the N source parameters are the basic unknowns

and are determined by imposing the integral equation at N control points

PI and solving the resultant system of linear equations. Using the usual

representation formula (cf. 5.1.11a), we obtain the linear system

N

AIj xj = bI
J=l

(5.1.21)

where

5.7

AIj = _ sj
avg

(5.1.22)

bI = -U®.n(p I) (5.1.23)

As before, the determination of all the singularity parameters provides us

with a complete representation for o and, by way of equation (5.1.17), a

representation for 0.

Before moving on to the definitions of influence coefficients, we point

out that the two formulations given here do not exhaust the possible

formulations of the problem. In Appendix H, we discuss two other formulations:

(1) A modified Morino formulation is presented in which total ¢ is set

equal to zero in the sphere interior (eL = 0). This
formulation has the advantage that no source IC's are required at
all (o = 0).

(2) A formulation in which both boundary conditions:

(a) _L = 0
(b) V._ = 0

(lower surface perturbation stagnation)

(direct velocity boundary condition)

are imposed explicitly, so that both source and doublet parameters
are unknowns in the problem. While this formulation is more

costly, it produces better answers near the stagnation point on
the surface of B.

In addition to discussing these other two formulations, appendix H also

explicitly states and compares the integral equations corresponding to each of
the four formulations.

The main purpose of studying these various formulations of the same
potential flow problem is to emphasize the fact that in PAN AIR, problem

formulation is the task of the program user. In particular we wish to point
out that the fundamental integral representation formula (cf. eqn. (5.1.6)):

() = ! ;S[-o/R + _ _.V(I/R)] dSq

K SnDp

integral equation. Rather, the PAN AIR user implicitly uses this

repr--_'sentatlonformula to help describe to the program the integral equation
that he needs to solve. While it is true that Class I boundary conditions

provide a convenient means of obtaining a standard formulation (essentially
Morino's formulation), it should not be forgotten that many other formulations

are possible and can be employed with PAN AIR. In particular, all four
formulations of potential flow around a sphere described here and in Appendix

H can be employed using PAN AIR. The function of PAN AIR is to perform the

many and complex tasks of problem analysis and numerical solution once the

user has formulated his problem.

V

v

5.8
V

5.1.3 Definitions of Influence Coefficients

Having described these two formulations of the problem of flow about a

sphere, we have provided the background needed to motivate the definitions of
the potential and velocity influence coefficients that MAG computes. The

" h
potential influence coefficients at a control point p, motlvated by t e
integral expressions appearing in (5.1.14) and (5.1.15), are defined by the

formulas

¢IcS(_) ,-(1 S_sj(q) * (7, _) dSq)
@B avg

•ICj° o IfmjCq) (Ivq dSql
BB avg

where _ is the general kernel function,

z

q_Dp

(5.1.24)

(5.1.25)

(5.1.26)

and ¢ is given by

{47 subsonic flow (5.1.27)K = 2_ supersonic flow

and B is the dual metric which, in the compressibility axis coordinate system,

takes the form

!B 0 O I

B : 1 O sB2 , i - M2 (5.1.28)

O 1

Because each global singularity parameter _j is either a source or a doublet

parameter, only one of ¢IC_ and ¢IC_ can be nonzero. Thus, no information is

lost by defining ¢ICj by

¢ICj = ¢ICS +_IC D.
(5.1.29)

With these definitions, the value of [_(P)]avg is given by

i

v

N

. _ _ICj (_) xj (5.1.30)
[_(_)]avg J=l

The coefficients AIj and bI of eqns. (5.1.14-15) (Morino's formulation)

are given in terms of these potential influence coefficients by

5.9

1 ¢ICD (_i) (5.1.14)'AIj =_mj(pi) -

N +N

_y_a ¢I cS (_I) xj
bI = J=N +i

P

(5.1.15)'

By substituting these expressions into (5.1.13) and using (5.1.30), we can

recover the original condition, (5.1.8). Doing the substitution, one has

N N +N

X_ (½mj(p I) -oIcD (P111 _j - "_]_ ¢IcS (PI) xj
J=l J=N +1

Rearranging,

N N N +N

" " ®zc)(_z>_j+"x° ,zcjs (_z>_j
½ J_l mJ(_I) Xj =J_l J=N +i

N +N

=
J=l

V

N

: X OlCj (_i) xj
J=l

Invoking (5.1.30) and the representation formula for _ (5.1.11b), we find

I .(_I) (_(_i))avg (5.1.31)

which Is clearly equivalent to (5.1.8) evaluated at PI"

The integral expression appearing in (5.1.22) motivates the definition

of source velocity influence coefficients (VIC's), viz.,

It is clear that _S (_) is the average, above and below the singularity

surface, of the expression*:

V

*The calculation goes as follows:

iSfsj(_Iv(_,_IdSq_ zSfsjVp [- _ = - _ (q) (Vp *(q*,-p)) dSq

1 ffsj (_) [(-I) Vq ,k (_,_)1= (-_) dSq
BB

where we use the Identity Vq e= - Vp _ •

5.10

:±

V

1 IIsj (9) _(_)dSq]Vp [-
_e

where the expression in square brackets bears an obvious relationship to the
definition (5.1.24) of source potential influence coefficients. Given this

fact, one is motivated to define doublet velocity influence coefficients by
averaging the expression

Vp [_ I_'mj(_) _(_). B Vq (_,-_) dSq]
@B

1 yymj(_) _(_) B Vq Vq *(i,P)dSq

above and below the singularity surface.

This leads to the definition,

i
_ (_) = (- _ ;Imj(q) _(_). B Vq Vq _ (_,_) dSq)avg (5.1.33)

_B

When the doublet basis functions mj are continuous interior to a network

of panels, the llne vortex integration by parts may be performed on the

integral appearing in (5.1.33) to yield (cf. Appendix B.3, theory document)

_-_jD (_) = (1 II(_ x Vq mj) x (B Vq *) dSq)avg
)B

ne rk md (B Vq *) x dr

boundaries

(5.1.34)

The right hand side of this expression consists of two parts, a surface
integral called the "regular part" and a line integral called the "line

vortex" part. When doublet matching is imposed along the network boundaries,
the individual network contributions to the line vortex terms all cancel and

may thus be discarded._ In the instance of supersonic flow this is essential,

since the line vortex integrals diverge at any point on the Mach cone which

emanates from a kink in a network boundary. The only situation in which PAN

AIR is designed to include the line vortex terms in the evaluation of V-_C_ is

when the following conditions are satisfied*:

(i)

(ii)
the flow is subsonic (M® < 1)

the user has specified the particular network edge to be a "no

doublet edge matching" edge.

The last type of influence coefficients, the normal mass flux IC's are

defined in terms of the velocity influence coefficients and the panel normal

at the control point, _(_), by the expressions

= J

*Note: No line vortex terms have been implemented in version 3.0, although the
needed interfaces for them have been included in MAG.

5.11

._cs(_Io_(_I.8_s (_I

._cjD(_):_(_).B_jD(7)

Here, B denotes the usual dual metric matrix (cf. Appendix E, PAN AIR Theory
Document).

V

W

5.12

5.2 MAG Overview

7

5.2.1 Purpose of MAG

The module MAG (Matrix Generator) performs three primary tasks in the

PAN AIR system. It ge-nerates

(i) the AIC-MATRIX dataset of the MAK database, (this dataset contains
an AIC matrix for each required symmetry condition),

(ll) the IC-MATRICES dataset of the MAK database, (this dataset

contains potential, velocity or normal mass flux influence
coefficients as requested by the program user),

(iii) the MAG-PANEL-DATA dataset of the MAK database that is

subsequently transcribed by MDG to the MDG database for subsequent
use by FDP.

In addition to these three principal datasets, MAG generates a number of

other datasets that aid in the use of these three principal datasets. These

other datasets include

DATA-BASE-HEADER }SYh_IETRY

Contain global information.

COLMAP }
COLMAP-INVERSE
COLMAP-BULK

ROWMAP }
ROWMAP-INVERSE

ROWMAP-BULK

Contain the connection between

DQG and MAG singularity parameter
indices.

Contain control point information,
the connection between DQG and MAG

control point indices.

Three other small datasets are also written to the MAK database to help

in the analysis of program errors, should they occur. These are

SOURCE-MATCHING }
DOUBLET-MATCHING

VORTICITY-MATCHING

Contain a thorough analysis

of all matching conditions.

PANEL-GROUP Contains panel grouping information.

These datasets are also used by MAG in the actual generation of AIC's and IC's.

In the short discussions of these datasets that follow, we will first

treat the principal datasets and following this, the auxiliary datasets.

5.2.1.1 The Principal Datasets_ AIC-MATRIX and IC-MATRICES

The first of the two principle datasets generated by MAG contains AIC's,

that is, aerodynamic influence coefficients. Each row of an AIC matrix
describes the dependency of an imposed boundary condition upon the known and

unknown singularity parameters, _K and _U that together represent a and

on the configuration's singularity surface. Thus the ith imposed boundary

condition generates the AIC equation

5.13

LAICu,ij _U + LAICK,ij _K = bi (5.2.1)

The precise way by which the various types of boundary conditions generate AIC
rows is described in detail in appendix K of the theory document. Aggregating
all of the AIC conditions into a single matrix equation, we obtain

[AICu] -_U + [AICK] kK = b (5.2.2)

Here, AICu will be square provided the number of imposed boundary conditions
equals the dimension of_ U. When this happens (it is a fatal program error
if it does not occur) we obtain the standard linear system

[AICu] _U ---_ - [AICK] -_K (5.2.3)

In PAN AIR, RMS performs the L-U factorization of AICU while RHS computes XK'

forms the right hand side of (5.2.3) and performs forward and backward substi-

tution to solve for _U"

The second principle dataset generated by MAG, IC-MATRICES, gives the

dependency of #A (average potential), _A (average velocity) or (Wn)A (average

normal mass flux) at selected control points.

These dependencies are expressed in the equation,

V_A = [VlC] L XK J

(Wn)A .WICj

(5.2.4)

The coefficient matrix on the right is called the integral IC matrix for the

control point and is denoted [ICA]. (Here, the subscript "A" is used to
connote "average".) The computations for _¢ICj and [VIC] are described in

detail in appendices J and K of the theory document, appendix J giving the
details of the panel influence coefficient (PIC) computations and appendix K

describing how PIC's are assembled to get _¢ICj and [VIC]. The scalar normal
mass flux IC's are defined by and can be computed from the formula:

=WIC_ = _ Bo [VIC] (5.2.5)

where _o denotes the surface normal at the control point (reference

coordinates) and Bo denotes the standard dual metric in reference
coordinates (cf. theory document, eqn. E.3.9).

An AIC row associated with a general boundary condition of the form

CA _A + tA'VA + aA(w'n)A

+ CD_ + t D. V_ + aD _ = b (5.2.6)

is readily computed from a control point's integral IC matrix [ICA] and its

v

V

5.14 V

singularity IC matrix [ICD], defined implicitly by the relation

(5.2.7)

(The subscript "D" in ICD is used to connote "diffeFence".) Using these, one
finds that an AIC row is defined by

:AIC_ = .c A , -tTA, aA_ _ [IC A] + L CD, _T, aD_J [ICD] (5.2.8)

Although eqn. (5.2,8) expresses Correctly the evaluation of LAIC_ in a
formal sense, in actual practice MAG proceeds slightly differently so as

T6--_uce processing costs. First note that not all rows of [ICA] may be

required to evaluate equation (5.2.8). Thus if cA, tA or aA i} _
identically zero, the evaluation of the corresponding rows of [ICAJ is not

needed and may be suppressed. Another way cost can be reduced is by noting

that if tA = O, then

Fv,cl ^,=

V

eliminating the need to explicitly compute _WIC, . Finally we note that
because _(_) and V_(_) can depend on at most 25 doublet parameters, and a(_)

can depend on at most 10 source parameters, there is no need to form [ICD]

explicitly. Rather, its contribution is simply added in to the AIC row for

the few entries of _AIC= that are actually affected.

It is appropriate to point out in this discussion of the principal

datasets computed by MAG, that not all of the AIC rows are of the form

(5.2.8). In particular, three types of matching conditions (source, doublet
and velocity jump) and a closure condition can arise. The matching

conditions, which are imposed along abutments, have the forms:

source matching: _ sk a(_k) = o (5.2.9)

edges Ek
of abutment A

doublet matching: _ Sk _(Pk) = 0

edges Ek
of abutment A

velocity jump matching:

(vorticlty matching)

Sk_.

edges Ek

of abutment A

=0

(5.2.1o)

(5.2.11)

In these equations (more fully developed in Appendices B.3, F.4, F.5, H.2, K.1
and K.6 of the theory document), we have used the following notation:

5.15

Ek denotes an edge of some network Nk participating in
abutment A.

-4,

Pk denotes a point on edge Ek in network Nk at which the

matchin_ condition is being imposed. Note that all of the
points _k are essentially coincident.

Sk denotes the orientation of edge Ek relative to the
intrinsic orientation of the abutment A. Sk=*l.

in the velocity jump matching condition, describes the

direction of the component of velocity to be matched. The
vector t points downstream along a wake surface. In _he
normal case that edge i is the wake's matching edge, t is
calculated as the local column direction at the control

point.

denote the normal and conormal on network Nk at_ k.

When the singularity distributions are expressed in terms of the problem's

singularity parameters, as in equations (5.1.11), the matching conditions
(5.2.g) (5.2.10) and (5.2.11) define AIC rows in the usual way.

A closure condition can be expressed formally by the equation:

L

V

Ak [aA,kR k. _A(-_k) + aD,k O(_k)] = b

panel center

control points

(5.2.12)

V

Here, the sum extends over panel center control points Pk in some row or

column of panels in a network. Ak denotes the area of the panel in which

Pk lies and aA,k, aD,k and b are coefficients provided by the user.

Again, this equation generates a row in an AIC matrix when a(_k) and

_k._A(_k) are expressed in terms of 3. Note that from equation (5.2.4)

_k" WA (Pk) = (Wn)A (Pk) = LWICj k x

As a consequence, when a network has associated with it closure boundary

conditions, the control points of that network are processed in such an order
that the effect of the normal mass flux influence coefficients LWICj can be

included into a "closure AIC buffer" as the different _WICj vectors are

computed. The handling of closure thus induces a significant amount of

complexity in the structure of MAG. For more details see Appendix 5-G.

The careful reader of this document will notice that nothing has been

said up to this point about the impact of configuration symmetry upon the
operation of MAG. In fact, as a consequence of the extensive analysis worked

out in Appendices F.5, H and K of the PAN AIR theory document, the actual

mechanics of handling symmetry are fairly simple. The main points to remember
are the following:

5.16

(I) The AIC equation is formulated separately for each symmetry
condition. Thus, for each of the four possible symmetrized

potentials _ij, MAG has the job of computing the matrix AIC ij

in the symmetrized AIC equations

(2)

(3)

(4)

t^ij }!
(no summation
over i and j)

(5.2.13)

Because the problem is separately formulated for each symmetry

condition, we find that subroutines SDMTCH and MATCH must treat

each symmetry condition separately when they analyze a matching
condition imposed at a corner or extra control point (ITYPCP = 3

or 4) lying on a plane of symmetry (KSYMCP _ 0). (See Appendix
F.5 of the theory document for a full discussion of the impact of

symmetry upon doublet matching at an abutment intersection.)

When the various images of a control point (_ij) are calculated

in DINFLU, special care is required if the control point lies in

either the first or the second plane of symmetry (ISYMCP _ O).--In
accordance with the rules worked out in Appendix K of the theory

document (cf. pg. K.5-5, algorithm At), one does the following

lies in Ist P-O-S: set _-J = _+J

lies in 2nd P-O-S: set_- = _i+

Thus, if a control point is recognized as lying in a plane of

symmetry, the reflection process is suppressed when we compute the
control point's reflection with respect to the P-O-S in which it
lies.

When in subroutines QNFCAL and PIFCAL, the program determines
whether or not the control point image under consideration lies

directly on a particular panel or subpanel, care is taken that
whenever the c.p. lies in the first (second) plane of symmetry,

the same determination is made for_ "j (resp. _i-) as for

-_+J (resp. _i-). As in (2) above, this is done in accordance
with the rules developed in the theory document, Appendix K.5,

algorithm A1.

Whenever an AIC row is constructed for a control point lying in a

plane of sjnnmetry, all integral IC's (@IC, VIC or WIC) are
effectively multiplied by (1/2) before their contribution is added
in to the AIC row. (See GENAIC for such closure AIC rows and

GENBC for ordinary AIC rows.) This factor is included in

accordance with the rules wo?ked out in Appendices K.3 and K.6 of
the theory document.

5.17

Aside from the complications required to implement these four points, the

handling of cases with symmetry is pretty much the same as the handling of
cases without symmetry.

5.2.1.2 The Principal Dataset MAG-PANEL-DATA

Because the streamline and off-body point processor FDP uses an

influence coefficient subassembly that is a slight modification of the PIVC

subassembly in MAG, most of the minimal panel defining quantities (cf. the
PANDTA random file) are saved on the MAK database on the MAG-PANEL-DATA

dataset. These data are subsequently transcribed to the MDG database for

later use by FDP. The only items of the PANDTA minimal panel defining
quantities that are not saved are the panel group singularity parameter index
vectors IISF, IIDF.

5.2.1.3 The Auxiliary Datasets DATA-BASE-HEADER and SYMMETRY

The dataset DATA-BASE-HEADER contains the usual information identifying

the run and indicating the final condition of the database, "COMPLETE" or not.

The dataset SYMMETRY contains global information concerning the symmetry
conditions that were treated and various counts of control points, AIC rows
and singularity parameters.

5.2.1.4 The Auxiliary Datasets COLMAP, COLMAP-!NVERSE and COLMAP-BULK

Because it is necessary for MAG to suppress null singularity parameters

and otherwise reorder the singuiarities in the following order (the range of

the MAG indices is given in parentheses),

Known, nonupdatable (i-I0000)

Known, updatable (10001-20000)

Unknown, nonupdatable (20001-30000)

Unknown, updatable (30001-40000)

various column map datasets are constructed to provide downstream modules with

the information correlating the MAG and DQG singularity indexing schemes. The
functions of these maps are illustrated below:

MAG singularity index
COLMAP

DQG singularity index

DQG singularity index
COLMAP

INVERSE
, MAG singularity index

DQG singularity index
COLMAP

BULK
MAG singularity index

The dataset COLMAP (respectively COLMAP-INVERSE) contains a dataset entry for

each MAG singularity parameter (respectively non-null DQG singularity

arameter). In addition, these datasets give singularity type (a or _),
ocation (network, panel and point on panel), updatability type and whether or

5.18

V

V

V

not it is "known". The last dataset, COLMAP-BULK, provides a single array

JSPDQG(I:NSPDQG) giving, for each DQG singularity index, the corresponding MAG

singularity index. If the DQG singularity numbered IDQG is null, then

JSPDQG(IDQG) = O.

5.2.1.5 The Auxiliary Datasets ROWMAP, ROWMAP-INVERSE and ROWMAP-BULK

These datasets provide the relationships between the DQG control point

indexing scheme and the MAG control point indexing scheme. The basic idea of
the MAG control point indexing scheme is to put nonupdatable control points
first (indexed 1-10000) followed by updatable control points (indexed

10001-20000). Control points that have neither an AIC row nor an IC matrix
associated with them are excluded from the list of MAG control points. Within
each major group of control points (updatable/nonupdatable), the control

points are ordered by network with extra control points included at the end of
each network's set. If a network has closure boundary conditions associated

with it, special care is taken (in CONBLK) with the ordering of that network's

control points so as to minimize the I-O activity in GENAiC associated with

managing the AIC/closure buffer.

The various functions of the control point maps are illustrated below:

MAG control point index
ROWMAP

: DQG control point index

DOG control point index
ROWMAP

INVERSE
MAG control point index

DQG control point index
ROWMAP

, MAG control point index

BULK

The dataset ROWMAP (resp. ROWMAP-INVERSE) contains a dataset entry for each

MAG control point index (resp., for each DOG control point that is also a MAG
control point: see remarks above). In addition these datasets give the

control point's network location and position in space, information describing

the effect of a control point's IC's on any closure boundary condition, the
control point's "control point block index" and "row partition index" (used in

organizing the computation of influence coefficients), as well as a variety of
other information used in computing and saving the AIC's associated with a

control point.

The last of these control point map datasets, ROWMAP-BULK contains a

single array JCPMAP(I:NCPDQG) giving, for each DOG control point index, the

corresponding MAG control point index. If no such MAG control point index

exists, then JCPMAP(ICPDQG) = O.

5.2.1.6 The Matching Condition Datasets

If a control point has any matching AIC conditions associated with it,

this fact is recorded by MAG in both the ROWMAP and ROWMAP-INVERSE datasets.
These conditions have the general form (compare with equations (5.2.9),
(5.2.10), (5.2.11)):

5.19

Sk e(_k) = 0

edges Ek (5.2.14)
of abutment A

where the generic function e(_) may involve o(_), _(_) or (_.A_)(_k). The

evaluation of Q(_k_ can be expressed in terms of the global singularity
parameters vector _ by the equation

Q(k): ICkj

For example if we are dealing with doublet matching, the entries of QIC are

given by

_ICkj j = mj(_k)

Because the source and doublet distribution on a panel depends upon at most 35

global xj's, the row vectors elC k are quite simple and can be efficiently

stored in a packed format giving the nonzeroes of eICk plus the

corresponding indexing information. In subroutine SDMTCH, each matching
condition associated with a control point is analyzed and the nonzero entries

of each eICk are evaluated along with the associated MAG singularity

parameter indices. This information is then saved on the appropriate

"-MATCHING" dataset along with the numbers sk and some indexing

information. These data are then accessed by subroutine MATCH to construct

full AIC rows during AIC generation.

5.2.1.7 The PANEL-GROUP D_taset

The PANEL-GROUP dataset is used mainly for local purposes in MAG to help

organize the computation of influence coefficients. It is included on the MAK
database principally as a debugging tool to help the maintenance programmer,
should any problems occur during processing.

In MAG, all of the panels of the configuration are aggregated into panel

groups, updatable and nonupdatable panels being placed in separate panel

groups. A panel group is any collection of panels such that the outer splines

for all of these panels depend upon < MXING(=160) global singularity

parameters kj. Some care is exercised to minimize the number of panel
groups generated (cf. subroutine PANIJ, called by PANGRP) so that I-O costs
associated with activity on the ICTP database can be minimized.

The actual information contained on the PANEL-GROUP database includes

the following

0

0

the number of global singularity parameters associated with the

group (< MXING = 160)

a list of the MAG singularity parameter indices of these global

singularity parameters

V

V

5.20
V

0 the number of panels in the panel group and a list of these

panels, including the network identifier (i.e. the key to many DQG
datasets: NETID = NETORD(K) where K is the network index) and the

row and column indices of each panel

5.2.2 MAG Input/Output Data

The overall organization of data input to MAG and output from MAG is

illustrated by Fig. 5.1. This figure also shows the internal communication of
temporary databases PANDTA, FPDQ and ICTP used internally by MAG*.

Most of the input to MAG comes from DQG with DIP providing only the
print flags and MEC providing the IC update flag and various information relat-

ing to system communication. The information provided by DQG falls into rough-

ly three classes: global data, boundary condition and control point data, and
panel data. The actual map names and DQG datasets used are listed below.

C1ass Dataset Map Name Notes

Global GLOBAL GLOBAL
NETWK-SPEC NETWK

SINGULARITY-SPEC SNGSPC

B.C. and

C.P. data

BNDRY-CONDN-SPEC BNDRY

BNDRY-CONDN-SPEC CNTRQ
CLOSURE CLOSE

EXTRA-HYPO-LOC EXHYLO

SPECIAL-POINTS SPCPT

Principally b.c. coefficients

Control point description
Closure coefficients and c.p.
lists

Main source of matching
information

Used to help find extra control
points

Panel data MAG-PANEL-SPEC PANSPEC DQG writes a panel dataset

especially for MAG

As noted in section 5.2.1, the principal output from MAG consists of the
AIC-MATRIX, the IC-MATRICES and the MAG-PANEL-DATA datasets. That part of

AIC-MATRIX corresponding to unknown singularities (AICU) is read by RMS and

factored. The portion of AIC-MATRIX corresponding to known singularities
(AICK) is used by RHS to form a right hand side (cf. equation (5.2.3)). RHS

then uses the factored AICU matrix as provided by RMS to solve for _U.

*These temporary "databases" (they are actually Fortran files) contain the

following data
PANDTA - A random file for storage of minimal panel defining quantities

FPDQ - Seque--e_t-_alfiles for storage of minimal panel defining

quantities for nonupdatable (FPDQNU) and updatable (FPDQUP)
panels

ICTP - A set of 12 sequential files used for temporary storage of

influence coefficients, [ICA]. File names are of the

form ICTP01, ICTP02, . • . ICTP12.

V

5.21

--_ A

The IC-MATRICES dataset is used by MDG to evaluate _, _ and w.n at various

points on the network surfaces for subsequent use by the post-processors, PDP,

CDP and PPP. The MAG-PANEL-DATA dataset is transcribed by MDG to the MDG

database for subsequent use by FDP, the streamline and off-body point
processor.

In addition to these principal output datasets, the COLMAP and

COLMAP-INVERSE datasets are used by RMS, RHS and MDG to establish the

connection between MAG and DQG singularity parameter indices. Similarly the
ROWMAP and ROWMAP-INVERSE datasets provide the relationship between MAG and

DQG control point indices. Finally the SYMMETRY dataset provides global

information relating to the execution of MAG that includes the following:

0 Indicators describing which of the various symmetry conditions of

(i.e. _SS, hAS, _sAA, _SA) are nonzero

o Flow symmetry flags

o Counts of MAG control points, updatable and nonupdatable

Counts of MAG singularity parameters, known and unknown, updatable

and nonupdatable

o Counts of AIC rows, updatable and nonupdatable

5.2.3 Data Base Interfaces

As noted in Section (5.2.2) above, MAG's communication with external

components of the PAN AIR system by way of the various databases issummarized

in Fig. 5.1. Note that during an IC update run, MAG updates an existing MAK
database, a process that requires some reading and rewriting of the MAK
database.

MAG's communication with the three internal temporary databases,

summarized in Fig. 5.1, is discussed in some detail in Section (5.3.3) which

gives additional information concerning the internal databases.

V

V

5.22

5.3 MODULE DESCRIPTIONS

The main overlays and their structure are described in this section

along with a description of MAG's internal databases.

5.3.1 Overall Structure

Fig. 5.2 illustrates the overall structure of the MAG module. The

execution of the program proceeds roughly from top to bottom and from left to

right, following the usual order for the traversal of a tree. The first

overlay of the program (MAGIO) performs problem setup while the second overlay
(MAG20) performs actual IC and AIC generation. In the second overlay, the
three components CBSET, ICTEMP and GENAIC are executed repeatedly in that

order, once for each control point block. In Fig. 5.3, various internal
library routines are classified and listed. Assuming that the appropriate
common block environment has been established, these library routines can be

called from any place in MAG.

5.3.2 Overlay Descriptions

The main overlay of MAG performs some initialization of some common

blocks (via LOCKDATA), opens the random file PANDTA for minimal panel defining

quantities, invokes MAGIO to perform some setup functions, invokes MAG20 to

perform the actual IC and AIC generation and terminates execution with a call
to MAGFIN.

5.3.2.1 MAGIO, Overlay (1.0)

MAG10, the setup overlay of MAG, invokes the following routines in the
order given to perform their required functions.

OPENDB: OPENDB opens the MEC, DIP, DQG and MAK databases, establishing all of
te--h-e-S-DMSmaps used throughout the remainder of the program. OPENDB then reads

DQG's GLOBAL and NETWK-SPEC datasets, establishing global information

concerning the whole flow configuration. (OPENDB also opens and maps the MAGX

and MAGY temporary databases. Although these are not currently implemented,
MAGX would be a replacement for the ICTPxx set of files for temporary storage
of IC's and MAGY would be a replacement for the collection of files PANDTA,

FPDQNU, FPDQUP used for storage ef minimal panel data.)

BLOCK: BLOCK performs some checking of input data, establishes global

constants (e.g. T) and then defines some global parameters and arrays relating
to Mach number, compressibility axis orientation and configuration symmetry
conditions.

COLMAP: COLMAP generates the MAG indexing system of all of the non-null DQG
sin_arity parameters. If the user has requested it via input print options,

COLMAP generates schematic maps of MAG and DQG singularity parameter indices.

PANGRP: PANGRP defines the panel groups according to the following
con--6_-i'arerations:

(i) Updatable and nonupdatable panels go into different groups.

5.23

(ii) _o panel group may have more than MXING singularity parameters

associated with it (cf. the parameter MXING = 160).

As each panel is included in some panel group, its panel data is read from the

MAG-PANEL-SPEC.DQG dataset, cleaned up by MGPAND, transformed into a minimal

packet of data by PAKPQF, and saved on various files. During this process, DQG

singularity parameter indices are transformed into MAG singularity parameter

indices, and these in turn are turned into panel group sin_ularit_ parameter
indices, numbers between i and 160 (MXING). The map INDGRP from panel group
s.p. indices to MAG s.p. indices is also generated and saved on the PANEL-GROUP

dataset, along with a list of all the panels in each panel group. Finally it
should be noted that PANGRP generates the MAG-PANEL-DATA dataset on the MAK
database.

CONBLK: CONBLK defines the control point block data structure that describes
e-t'_e-_-_ganizationfor the processing of control points. The rules for

construction of control point blocks are as follows:

(i) Let NCNSYM denote the number of symmetry conditions under
consideration in the current PAN-AIR run.

(ii) Let MXRCPB denote the maximum number of rows per control point

block. This number, nominally set equal to 100, is related to the
amount of scratch memory available to subroutine ICTEMP in the

second overlay. (A buffer of size MXRCPB*MXING = 100"160 = 16,000
is used there.)

(Ill) Let MXRP denote the maximum number of IC rows that may be

associated with a row partition. MXRP is defined by subroutine

BLOCK and is related to the amount of scratch memory available in
subroutine GENAIC.

(iv) Let MXCPBK denote the maximum number of control points per control

point block. This is set to 150 by LOCKDATA, and must be
consistent with the memory allocation for the array WCB in

/CPBLK/. The value of 150, somewhat larger than MXRCPB = 100, is

used because control points that require matching AIC rows to be
computed may actually have no IC rows associated with them, (e.g.,
matching control points), m

(v) Given these definitions for the important parameters, CONBLK calls

PROCP to include a control point into a control point block while
observing the followlng rules:

(a) Updatable and nonupdatable control points are not mixed in
the same block.

(b)

(c)

The total number of IC rows per control point block = NCNSYM

* (Sum of the IC rows for each control point)
must be < MXRCPB.

No more then MXCPBK control points in a control point block.

V

5.24

A row partition is a subset of a control point block that contains

the IC's for a set of control points but only one symmetry
condition. Additional conditions associated with control point

row partitions include:

(d) The number of IC rows associated with a row partition must

be less than or equal to MXRP.

(e) NCNSYM*(The number of row partitions in a control point block)

must be less than or equal to MXICTP (= 12), the number of
sequential files associated with the ICTPxx database.

In the process of defining the control point blocks and row partitions, PROCP
also defines the ROWMAP and ROWMAP-INVERSE data structures and saves crucial

information needed for the complete processing of closure control points by
CLSROW. In this way, when all of the control points of a network have been

processed by PROCP, subroutine CLSROW updates the ROWMAP and ROWMAP-INVERSE

datasets to include closure information for any control points whose IC's
affect a closure condition.

5.3.2.2 MAG20, Overla_ (2,0)

MAG20, the IC and AIC generation overlay of MAG, performs dynamic alloca-

tion of memory for the second overlay and, for each control point block, invokes

the following routines in the order given to perform their required functions.

CBSET: For each control point in the control point block, CBSET generates an

_rd packet of data containing the information about the control point
needed by ICTEMP.

ICTEMP: ICTEMP computes the total influence of the configuration on the

current control point block and writes this data to the ICTP database. The

organization of ICTEMP is as follows:

For each panel group in the configuration [updatable groups only on an

update run if the control point block is nonupdatable]

For each panel in the panel group

Read the panel data from a sequential file (FPDQNU or FPDQUP),
unpack it and extend it

For each control point in the current control point block

Unpack the control point's data packet and determine if any
IC's are needed

If IC's are needed, invoke PIVC to compute the panel on

control point influences for all symmetry conditions and
include them in the RIC influence coefficient buffer for

the panel group on control point block influence

end, loop on control points

end, loop on panels

5.25

Using WRICT,write the panel group on control point block influences
to the ICTP temporary database, the data for each control point row
partition going to a separate file.

end loop on panel groups

GENAIC: For each control point block, GENAIC generates the appropriate
con-B_-t-_Tbutionsto the AIC-MATRIX and IC-MATRICES datasets. The organization of
GENAIC is as follows:

For each symmetry condition of interest

For each row partition

Compute the number of rows in the row partition (NICPRT)

Read in from the ICTP database and aggregate the influence of
all panel groups on the current row partition/symmetry condition
con_)ination.

For each control point in the row partition

Get the panel data for the panel on which the control point
lies

Using the aggregate influence coefficients, [ICA],
generate any nonclosure AIC rows associated wit_ the
control point and write them to the AIC-MATRIX dataset

Include the effect of the current control point's IC's on

any closure AIC row, taking care that the closure AIC
buffer is properly managed.

end loop on control points

end loop on row partitions

end loop on symmetry conditions

If the closure AIC buffer is nonempty, write it out to the AIC-MATRIX
dataset.

5.3.3 MAG Databases

The principal output of MAG, the MAK database, has already been described
in some detail in section (5.2.1). The SDMS master definition of this

database is included on the PAN AIR delivery tape. A short program (MDPRNT)

that generates an indexed listing of a master definition is listed in Appendix
5-A.

In the process of constructing MAG, it has been found convenient to define

and implement three temporary "databases", each of which is nothing more than
a specific set of files designated for a specific purpose. The main
characteristics of these databases are outlined below.

V

5.26 V

Database File Names Data

PANDTA 6LPANDTA

FiTe Organization

random (READMS/WRITMS) Minimal panel data

FPDQ 6LFPDQNU,

6LFPDQUP

seq. (BUFFERIN/OUT) Minimal panel data

ICTP 6LICTP01

6LICTP02

m • •

seq. (BUFFERIN/OUT) Panel group on

control point block
influence
coefficients

6LICTPI2

In the subsections that follow we will discuss separately each of these
"databases".

Before going into this discussion, one final remark is appropriate
concerning temporary databases in MAG. Since it is possible that at some

future time the computing centers will reduce the high cost penalty associated

with the use of random I-O as compared with sequential I-O, master definitions
have been created for two temporary SDMS databases, MAGX and MAGY that could

be used to replace the temporary databases discussed here. The master
definitions for these databases may be found on the PAN AIR delivery tape

MAGX (IC-TEMP) would replace ICTP
MAGY (PANEL-DATA) would replace both PANDTA and FPDQ

5.3.3.1 PANDTA Database: Random Access to Minimal Panel Data

The random file PANDTA, opened in program MAG, is defined in subroutine
PANGRP and used in those parts of the code where it is necessary to have

random access to the panel data. These places include SDMTCH where the
various matching conditions are analyzed and GENAIC where boundary conditions
are imposed.

The file PANDTA is a standard random file accessed using the READMS/WRITMS
package (available on both CDC and CRAY). A specific record of PANDTA,

containing the minimal panel defining quantities for a specific panel, is
accessed using the global panel index IPNDEX associated with the panel. The
computation of this index in two cases of interest is illustrated below.

Case I: network index = K, panel row index . IPAN, panel column index = JPAN
IPNDEX = IPAN + (JPAN-1)*NROWNT(K) + NPNCUM(K)

Case 2: network id = KNET, panel row index = IPAN, panel column index = JPAN

set K = NETINV(KNET) and proceed as in Case i
note: If K = NETINV(KNET), then KNET = NETORD(K)

The actual data stored on PANDTA for each panel includes all those panel
defining quantities that would be expensive or impossible to recompute "on the

fly". The resulting data packet of 256 words is about 8 times smaller than
the corresponding panel defining quantities dataset record of version 1.0 of

PANA!R. The decision to include a particular data item in the data packet was
based on a "5 microsecond tradeoff". That is, after an analysis of a number

5.27

of computing center charging algorithms, and taking into consideration the
program's size and file buffer sizes, it was determined that it is cost

effective to regenerate any data items for which the cost is less than 5 _s
per word on a CDC 7600 or Cyber 760 computer.

We conclude our discussion of PANDTA by listing all of the items contained
in a data packet

Panel location

Source outer splines
Source MAG s.p. indices

Source panel group s.p. indices
Doublet outer splines

Doublet MAG s.p. indices
Doublet panel group s.p. indices

Panel geometry

Skew transformation and parameters
Line vortex flags
Data for farfield test

Panel _/_ type

Index of collapsed side
Index describing half panel cut
(s,t) parameters for regeneration of

half-panel _ splines
panel diameteP

^ ^

sgn(n5.Co), used in supersonic

influence coefficients

subinclined/superinclined indices

KNETNR, ICOLNR, IROWNR
ASTS

IISMAG, INS
IISF
ASTD

IIDMAG, IND
IIDF

CP, EN, NCONVX, AREAQ

AQ, C1, C2, C3, CTEST
LVTERM

RFMIN, QDLTF, PWF, PXF, DIAMF
ITS

ICS

ISQN
STRC

DIAMF, DIAM
SGXF

IIN

5.3.3.2 FPDQ Database: Sequential Access to Minimal Panel Data

When it is reasonable to do so, as in the panel influence coefficient

generation in subroutine ICTEMP, it is more efficient to access the panel data
from a sequential file than from a random file. For this reason, the FPDQ

database was created. This database consists of two sequential files, FPDQNU

containing nonupdatable panel data and FPDQUP containing updatable panel
data. The actual data associated with each panel is exactly the same as the

data contained on PANDTA. The organization of the data is different, however,

in that FPDQNU and FPDQUP are buffered sequential files, each buffer
containing 256 word panel data packets for 8 panels. The panel data is stored

on these files in precisely the order it is required by ICTEMP as ICTEMP
computes the influence of all the panel groups on a particular control point
block.

5.3.3.3 ICTP Database: Sequential File Storage of the Influence

Coefficients for a Control Point Block

The ICTP database is a set of 12 sequential files used for the storage

of the influence coefficients for a control point block. In this section we
will discuss both the structure and the construction of this database.

The structure of the database: To illustrate the structure of the

database, we will consider the construction of ICTP for a run in which there

^Aare two active symmetry conditions (_S and # , say) and for a control

5.28

V

V

point block having 5 row partitions for each symmetry condition. Thus, there
are 10 (which is <12) total row partitions for the control point block. The

number of IC rows'-for each of these row partitions is given by the vector:

[RK] = [9, 12, 9, 11, 9, 9, 12, 9, 11, 9] (5.3.1)

Note that the last five row partitions (corresponding to _A) have the same

number of rows as the first five (corresponding to _S). Note also that the

total number of rows in the control point block is given by:

9 + 12 + 9 + . . . + 9 + 11 + 9 = 100 (5.3.2)

satisfying the restriction that a control point block have (<_100) IC rows
associated with it.

The construction of the ICTP database for a c.p. block is performed in

overlay 2 as follows:

Rewind all units ICTP01, . . . ICTP12 (MAG20)

For each panel group in the configuration (ICTEMP)

Compute the influence of the panel group on the control point
block (ICTEMP/PIVC)

Place the current panel group's influence on the ICTP database as
follows (ICTEMP/WRICT):

For each row partition number K, with RK rows do:

Write the RK rows of the IC buffer associated with row

partition K to unit ICTP K, being careful to include global
MAG singularity parameteF indices for the current panel group

end, loop on row partitions

end loop on panel groups

In order to be even more explicit about the structure of the ICTP
database, we consider a control point block having two IC row partitions as
follows

[RK] = [2, 2] (5.3.3)

The panel group will be assumed to have global singularity parameters
associated with it with indices given by

[INDGRP] = [20004, 20001, 20005, 2, 20002, 20006, 20003, 1] (5.3.4)

To facilitate the disk ouput of data in WRICT, the panel group on control

point influences are stored transposed in memory, and are given by the array

5.29

D

3.12
2.14

2.52
1.31

[RIC] = 7.23

6.48
7.23

6.31

row partition

3.56 5.98 6.91
7.23 7.95 8.73
6.13 7.21 4.31
4.35 6.31 6.14
6.39 7.12 5.14
9.25 8.64 6.15
4.27 6.31 5.21
3.26 5.76 6.36

No :1 No 2

20004
20001
20005

2
20002
20006
20003

1 (5.3.5)

Associated MAG

s.p. indices

These influence coefficients for the panel group and the control point block
are written to the ICTP databases by performing the following writes to the

two sequential files, ICTP01 and ICTP02.

20004 3.12 3.56

20001 2.14 7.23
20005 2.52 6.13

2 1.31 4.35

20002 7.23 6.39 -----ICTP01
20006 6.48 9.25

20003 7.23 4.27
1 6.31 3.26

r 20004 5,98 6.91
20001 7.95 8.73
20005 7.21 4.31

2 6.31 6.14

20002 7.12 5.14 -_--ICTP02
20006 8.64 6.15

20003 6.31 5.21

1 5.76 6.36

(5.3.6)

(5.3.7)

To continue this example and further illuminate the nature of ICTP,

suppose further that the problem under consideration has exactly two panel
groups associated with it. We will assume that the record described by
(5.3.6) above is the first record written to ICTP01 and that the second is

given by

20008 2.42 8.71
20004 4.31 6.54

3 7.25 4.74

20007 6.41 5.92 --_-ICTP01
20002 1,72 6.81
20006 6.37 5.41

2 9.21 3.69

To get the full influence on row partition No. I, one then aggregates the
arrays appearing in (5.3.6) and (5.3.8) to obtain

(5.3.8)

5.30

i 6.31 3.26
2 10.52 8.04

3 7.25 4.74

20001 2.14 7.23
20002 8.95 13.20

20003 7.23 4.27
20004 7.43 10.10
20005 2.52 6.13

20006 12.85 14.66
20007 6.41 5.92
20008 2.42 8.71

P

= influence of whole configuration on
first control point row partition

(5.3.9)

This aggregation task corresponds to what is done in subroutine GENAIC during

the IC aggregation phase.

5.3.4 Data Flow

The internal data communication in MAG is summarized in Fig. 5.4. This

diagram, which is a truncated version of the overall program structure diagram
Fig. 5.2, describes all database activity by map name (for SDMS datasets) or

file name (for temporary internal databases). The correlation between the map

names noted in Fig. 5.4 and the actual datasets is given by Fig. 5.5. The
actual nature of the data flow activity is indicated in Fig. 5.4 by an i (for

input), 0 (fo_ output), S (for setup: open or rewind), C (for close) or R

(for release) preceeding the map name, For example, I:MECHED indicates that

the map MECHED is used to input data from the MEC dataset DATA-BASE-HEADER.

5.31

5.4 LOWER LEVEL FUNCTIONS

5.4.1 Function Decomposition

In this section we present a functional decomposition summary that
describes roughly the activities of the routines appearing in Fig. 5.2, MAG's

overall program structure diagram. This functional decomposition summary will

consist of two parts, one part for the overall program organization and a
second part for the PIVC subassembly used to evaluate panel influence

coefficients. In Appendix 5-A we provide a listing of a simple program FDPRNT

that generates a more detailed printout of subroutine functional
decompositions extracted from the code itself.

V

Functional Decomposition for MAG, upper level routines MAG [0,0]

A. Perform standard program initialization (including BLOCKDATA), [ISDMS]

initialize SDMS, and open the random file PANDTA. [OPENMS]

B. Invoke overlay [1,0], program MAGiO, to perform all preliminary [MAGIO]

analysis needed to achieve efficient computation of influence
coefficients.

BA Open data bases, define all SDMS maps and initialize the [OPENDB]
following global data.

- Run identifiers

- IC update flag

- MAG print flags
- network counts, network identifiers, network dimensions,

plus other basic network data

- singularity parameter and control point counts
- basic symmetry information
- gap filling panel count

- basic compressibility axis data and Mach number

- counts for singularity parameters and control points

BB Double check consistency of compressibility axis and

symmetry information, expand upon compressibility axis
and symmetry data and initialize global constants.

Compute the maximum row partition size based upon the
available scratch memory in GENAIC.

[BLOCK]

BC Define MAG singularity parameter indices for all non-null

DQG singularity parameters, generating the datasets
COLMAP, COLMAP-INVERSE and COLMAP-BULK. The DQG s.p.'s

are assigned MAG s.p. indices in accordance with the

numbering scheme:

[COLMAP]

Partition No. Type MAG s.p. index range

1 known, nonupdatable 1 - 10000
2 known, updatable 10001 - 20000

3 unknown, nonupdatable 20001 - 30000

4 unknown, updatable 30001 - 40000

5.32

V

V

BD

On an update run, care is taken to ensure consistency of

MAG s.p. indices. Printed singularity parameter maps will

be produced if they have been requested.

Define the panel groups to be used during the PIC and

AIC generation, A panel group consists exclusively of
either updatable or nonupdatable panels. Taken together,

all of the outer splines for the panels in a group depend

upon < MXING global singularity parameters. The panel
groupTng is performed by processing each network of the

configuration (including the gap-filling "network") in

such a way as to minimize the number of groups (cf. PANIJ).
For each network, do the following:

[PANGRP]

BDA Proceeding in an appropriate order through the

panels of a network, include each panel in a panel
group of appropriate type, creating new panel groups
as needed.

[PANIJ]

BOB Update the llst of singularity parameters for the

current panel group, keeping track of each global
s.p. index and the corresponding group s.p. index.

Generate the group s.p. indices (IISF, IIDF)

corresponding to the global s.p. indices (IISMAG,

IIDMAG) associated with the panel's outer splines.

BDC Generate for each panel a full set of panel defin-
ing quantities, expanding upon the panel data

transmitted from DQG.

[MGPAND]

BDCA Generate the essential near field data that

was not transmitted from DQG. This Includes

skewness parameters and the associated coordi-
nate transformation along with the quasi near

field panel cut strategy (ISQN) and the asso-

ciated (s*, t*) values for computing half panel
splines (cf. Appendix 1.3, theory document). By

extending all near field panel data via a call to
PSDDQG, ensure that nothing unexpected happens in
Overlay 2.

[NEARDT]

BDCB Generate the essential far field data that

was not transmitted from DQG. This includes

especially the parameters (PXF, PWF, SGXF and
QDLTF) used in the rapi_ far field test. By
extending all far field data with calls to

FFDQGX, RACOF and XCOF, ensure that nothing
unexpected happens in Overlay 2.

[FARDT]

BDCC Save panel data on MAG-PANEL-DATA for subsequent
use by MDG andFDP,

5.33

Cu

BDCD Pack up a very minimal set of panel defining [PAKPQF]
quantities (256 words per panel) saving them [PAKAST]

on the random file PANDTA and buffering them

out to either FPDQNU (non-updatable panel) or
FPDQUP (updatable panel).

BE Define the control point blocks and row partitions to be [CONBLK]
used during PIC and AIC generation. As one proceeds, MAG

c.p. indices are assigned to each control point that is
recognized as a MAG c.p. During this processing the ROWMAP,

ROWMAP-INVERSE and ROWMAP-BULK datasets are defined and/or

updated. Processing is performed on a network by network
basis.

BEA For each control point in a network (processed in an [PROCP]
order designed to minimize I-O activity on the
closure AIC buffer), read the control point's

defining quantities and determine if it should be a

MAG control point. If so, do the following:

BEAA Analyze any matching conditions associated

with the control point, handling each symmetry
condition separately for corner and extra
control points on a plane of s_nnmetry.

[SDMTCH]

BEAAA Evalqate the dependencies of a,
and _.a_ for each c.p. in a match-

ing condition, producing an entry
on one of the datasets: SOURCE-

MATCHING, DOUBLET-MATCHING or
VORTICITY-MATCHING.

[GRAD]

BEAB Save closure information if appropriate.

BEAC Perform data checking of c.p. data and then write
out information to the ROWMAP and ROWMAP-INVERSE
datasets.

BEB If appropriate, place closure condition coefficients [CLSROW]

(aA, aD, AIC row index and updatability flag,
symmetry conditions indicator) in appropriate places
on the ROWMAP and ROWMAP-INVERSE datasets.

BEC For each network, generate maps of MAG c.p. indices
and AIC row indices.

BED If requested, generate reports summarizing control

point and boundary condition information.

[DRWMAP]

Invoke overlay [2,0], program MAG20, to perform evaluation of

influence coefficients. The processing is performed by control

point blocks. After packing into WCB some minimal control point
defining information for the current c.p. block, MAG20 generates
the IC's and AIC's for the current block as follows.

[MAG20]

V

V
5.34

CA

CB

For each panel group, the influence of all the panels [ICTEMP]

upon the current c.p. block is calculated and written to
the ICTPxx database, the information for each row partition/

symmetry combination being written to a different file.
This is accomplished as follows.

CAB
/

for each panel in the current panel group, the [PIVC]

minimal panel data is obtained from the appropriate

sequential file (FPDQNU or FPDQUP), unpacked by UPKPQF

and extended by FFDQGX. Then, for each control point
in the current c.p. block, the influence of the current

panel on each control point is calculated by PIVC and
included in the panel group/c.p, block IC buffer.

CAC When the influences of all the panels in the [WRICT]

current group have been calculated, the panel group/
c.p. block IC buffer is written out to the ICTPxx

database. Care is taken to include corresponding
global singularity parameter information. Note that
each file in the ICTPxx database contains all the

panel group influences for precisely one row partition/
symmetry condition combination.

Once the influence of the whole configuration upon the [GENAIC]

current c.p. block has been calculated and saved on ICTPxx,

the program proceeds to generate the IC's and AIC's for all
of the control points in the current block. This is done

as follows. For each row partition/symmetry condition com-

bination, all of the influence coefficients are read from
the appropriate file on the ICTPxx database and then aggre-

gated. Then, for each Control point in the row partition,
the following tasks are performed.

CBA The control point's boundary condition information [CBMOVE]

and other defining quantities are placed in the

appropriate commonregions.

CBB The dependencies of a, _ and V_ are evaluated for the [GRAD]

control point's hypothetical location.

CBC The AIC rows (for the current c.p. and symmetry [GENBC],

condition} corresponding to general [GENBC], [MATCH]

singularity specification [GENBC] and matching
[MATCH] boundary conditions are calculated and

written to the AIC-MATRIX dataset.

CBD Place any user requested influence coefficients on
the IC-MATRICES dataset.

CBE Include the effect of the current c.p.'s influence
coefficients on any closure condition. Much care
must be taken with the management of the closure AIC

buffer both here and when the processing of the

current c.p. block is completed.

5.35

5.4.2 Functional Decomposition for the PIVC Subassembly

The purpose of PIVC is to compute and add in to the panel group/c.p.

block IC buffer the influence of a given panel upon all symmetry conditions of

a particular control point.

A. Calculate all required images of the basic c.p., taking special [DINFLU]

care when the c.p. lies in a plane of symmetry, and determine
the method of PIC calculation for each c.p. image.

B. If necessary, extend the panel defining quantities to permit [PSDDQS]

quasi-near field evaluation (i.e. type 5, using QNFCAL).

C. Invoke IC to organize the calculation of the panel influences. [IC]

IC achieves its purpose as follows.

CA For each image of the control point, select the appropriate
method of calculation and use it. The choices are:

CAA Monopole far field evaluation. (type i) [FFPIC]

CAB Dipole far field evaluation. (type 2) [FFPIC]

CAC Quadruple far field evaluation. (type 3) [FFPIC]

CAD Quasi far field evaluation, involving one

call to NFTPIC. (type 4)

[QFFCAL]

CAE Quasi near field evaluation, involving two [QNFCAL]
calls to NFTPIC. Note that this method is always
considered if the influence test has indicated a

near field (PIFCAL) should be used. Note further

that this method may fail to give adequate answers
so that PIFCAL is then required. (type 5)

CAF True 8 subpanel near field evaluation involving

8 calls to NFTPIC. (type 6)

[PIFCAL]

Once the panel influences have been calculated for the

current c.p. image, line vortex terms could be included.

At present, line vortex terms are not implemented in PAN AIR.
However allowance has been included for their future inclusion

by providing the following control logic:

CAG Subroutine LINVOR would select a near or a far field

evaluation procedure for line vortex terms. The near
field procedure performed by NFLVT would be essentially
the procedure described in Appendix J.lO of the theory

document. The far field procedure performed by FFLVT

would implement a combination of the ideas in Appendix

J.9 and J.10 of the theory document.

V

V

5.36

V

_J

CAH Once the full influence of a panel on a c.p. image has
been calculated, the influence is added (with appropriate
sign) into the various panel on c.p. symmetry condition
accumuiators.

CAI When accumulators containing the influence Of the panel on
the c.p. symmetry conditions are complete, the outer spline
matrices are applied and the results are aggregated in to

the appropriate places in the panel group/c.p, block
influence buffer.

5.4.3 Subroutine Descriptions

In Appendix 5-A we provide a listing of a simple program SDPRNT that

generates a printout of subroutine descriptions extracted from the code itself.

5.37

V

MAG

io

o

3.

Run identification, IC update flag and data base directory information
(this last item via CHPADB).

.

Print options.

Boundary condition and control point data, including closure information.
Global information.

Data for matching conditions.
Panel defining data.

Singularity parameter information.

Random access to a minimal set of panel defining quantities (created in

PANGRP, accessed in SDMTCH and GENAIC).

.

.

.

Sequential access to a minimal set of panel defining quantities, file

FPDQNU for nonupdatable panels, file FPDQUP for updatable panels (created

by PANGRP, accessed by ICTEMP).

A set of twelve sequential files is used for efficient temporary storage

of panel group on control point block influence information. File names
are ICTP01, ICTP02, ... ICTP12.

Principal data written are the [AIC] matrix (AIC-MATRIX) and the control
point _, _ and _._ influence coefficients (IC-MATRICES). Also, the
dataset MAG-PANEL-DATA.

8. That part of the AIC-MATRIX dataset corresponding to unknown singularities,

_U" ([AICu]' cf. equation (5.2.2), maintenance d,c.).

9. That part of the AIC-MATRIX dataset corresponding to known singularities,

_K' ([AICK]' cf. equation (5.2.2), maintenance d.c.).

10. The IC-MATRICES, [ICA], (cf. equation (5.2.4), maintenance d,c.). Also,

MAG-PANEL-DATA for subsequent usage by FDP.

Figure 5.1 - Data Base Relationships

5.39

PRECEDING PAGE BLANK NOT FILMED

NTENTIOrNAh_YBLANI

s

5.40

o

v

0

s
e-i

n__m

o
!

_.1

z
w

__ ,|

I
I

m]

!

2

I

_g

V

V

V

oi"

L_

S.

Is.

5.41

• 1
-;-;_ , _- _ .,..I '_ l-l--F- _"

•..=-..,-..---_ vl ¢Ii 4/) i (r-_ "P" I I I
-a "* .._ ------" ---I I =l cJ (J .-.I _" (J _l
"O "_ "O / l .""" "1---- " _:_ 0 _'_ I:=

Z _1-- :_1 I O" I= i.. :IE -, ,, ,, ,, a.l

i ,_ _ 0" _ ,_ _.___ I "_ "-" 0 i _'1

............ ,_1 x< ";I I (.;I __
• • |P.'_. c_ I (J i P-- _-I

-'-I _l I-- (JI l U_lz
/zc.J ,_ U _-._I. z--I i.. I

/,, ,, -, ,, ,,i _ I _.--.i I= O'll _"
/ @1 l,_ Cb _'1 z_
/_'-'_'-'_ _'-_ O _--_/ _ .. o'l-P I

i_. in-P. e-

',-_-_,<_>_>
e. I= "31.

0 _ o _

LtI->II r_-/''_ ! _<-o<-_- -,<_® _>
• -_l-- i.. u'l e" Q.I i=

"< I ! °"->-
P" C_ TM ,_ _._ o

.-I/"_1-- _i I rvl-l_.loc31 li. _ >'o (_

-_ ,_<..>= <.>I'.'_o I_ I o I I -- ®_ =_ "
o/_ m I I r'-"-'°l I _ .,-'-o.,-<-" =,"

I r I I : .,-+.>
_ " I I ',.i- "r, -i- Z_ _ ..t-I _

I .--- I I _'Z_:l "P ! (J _ • el _ _
I "o----i I _-. ""_-_=EI u I@ ,,_1-- _ m _'- u _-
I e- _'1 I (._ I--:3i:1/I-./_11 ---_" I-- =l -,=- 4_
i _ _! t-0_ _-O01--Z--i>- ,_ i I i / ,"," .i-,_"_,.i:
I '-- _ i = (.._ ,',_' ,-',_ / _,'-_/ "_- Z ,',.-" .,_,__--" _ u,t ¢1 _- .I.-)

C_ C_ I It.. _J u'J.p 0 "_-_: I<->_:"'-'1 " "'_"/<_/_r_
--_"_ JI'I'I_L (_IE xL I _"_"_01 "I_.:_, ,'-, - o

rN i °- ""0 ._.- e...
I,,. ,.l..i _l_i ._ .J=l
Oil= ,-_'_

_E__ c_

•. _ _o
,-- _-) _ Oq.-

£- ,._Q.;,-= a.l
¢/I ._o s-

0 o

•_ l:l. al" I.,
.-.i 1_. =1 u,i -,i

I=: =1 _i_-- aJ
•r-- 0 _ (J S-

II II 11 II II

_-.._0 V) _,.) P,"

=: p-- i/i e"

Q.l "_ l.. II0
E I.. dD u'l

ill I-- i_l _ ,,i-i
r" U J= -r.. I_

I'-- _-._ I'-- I.i. I_

00000 V
5.42

-_,,_. J+

(/I
43
E

z

43

I.t.

q-
0

ul

._1

I

u')

I.n

43
s.

c_

LI_

5.43

APPENDIX 5-A

PROGRAMMING AIDS: EXTRACTION PROGRAMS FOR MAG

As noted in the main text of this section, we list here three standalone

programs that are used to generate useful printfiles for the maintenance

programmer. The listings provided include both the code and the short job
control record that has been used on the BCS Cyber system. The job control
record will have to be modified in order for these job decks to be executed at

an alternative site. The decks provided here perform the following functions.

FDPRNT: This program reads a full SOURCE file for the MAG program and

extracts the functional decompositions for each subroutine. When all

functional decompositions have been extracted, a sequential index and an

alphabetical index are generated and written to the output file, FDLIST.

SDPRNT: This program reads a full SOURCE file for the MAG program and
extracts the subroutine descriptions for each subroutine. This listing, which

is significantly shorter than the listing generated by FDPRNT, has generated
for it both a sequential and an alphabetical index.

MDPRNT: This program generates an indexed listing for an SDMS master

_nition file. This program may be used to generate a useful listing for

any master definition file. It is particularly recommended for working with
long master definitions such as those of the DQG and MAK databases.

All of the source code listed in this section has been included on the

version 3.0 delivery tape.

5-A.I

V

I °
Z_

ol II

0

• • , !-- * *

[...

0
II

r.l

<

¢

Z

II

0

o

_ oo

Z_ _ _

_ _ 000000 _ Z

U_

N_

B.

F_
Z
=

U _
Z

.- 0

I1__O_ _ -_ _ _11 _11 _ _ II _ II II II II _ 0_11

o
u _._ II

.

oO 0

5-A.2

FDPRNT (I of 4)

,,.. ;

V

,'_ _ ca:: _ I:_ _ c_ ¢_

B • • ! • • • •

II II II II fl It II li

[,,-, (--, _ _ (,_ (,_ [,,-, i'-,

3: 3_ 3= 3E 3

_ _ 4 _ ,_ _ -.

!_ i! !+ eD !. +__ wll !1+

mm mm mm _m m_ _ _m mm_

fl

z

A

O

_., _ _
• _ _

Z . _ __

• __Z

O _ O

O
o O

O

E_ / FDPRNT (2 of 4)

5-A.3

V

V

5-A.4

FDPRNT (3 of 4)

O0
m_

.t¢ ,-x -_

0

z

z

(-,

C3

0
o
o

+ •
- _ H II H II g H H IIN AZ

Z _O_ 0 _ _ OOZ

o o o 0

FDPRNT (4 of 4)

5-A.5

II
V

5-A.6

SDPRNT (1 of 4)

V

_ °_ <.

II

• ._+ _U_

_ZZ_ll _

o Oo 0 o 0 0 0 0 0
o_ 0 0 0 0 0 o _

SDPRNT (2 of 4)

5-A.7

_ I

V

-K ,,K

4(.J ,=.] -K r__
r.l.1<: r.,.1

•.K .ic ::=_ .#:

= ==
•K 0'3 4(_.

::C: _(,-,,,r,,_,,l ,,0 v _0 _: _0C3 _C_.1 _ H H II

.-_ z _==O_==:C _l-._=_:[::c: = _ -x -x -L >"

0 0 0 0 0

v

5-A.8

SDPRHT (3 of 4)

o
o

0

8
o

0

_ ._ ,
<_,-i II H II II fl I1 fl fl _._

v

SDPRNT (4 of 4)

5-A.9

V

V

5-A.10

MDPRNT (1 of 3)

MDPRNT(2 of 3)

5-A.II

<

_o

mM_

000
000

_.4 I-4

• ek-_

° °_ "_

° °_: ,_

<
4<

(-_

• ,rJ}

-" -" M 4_

dd "

<<: m -x

,<

0

.

<

• _"_ _'_ 0

•'-- M _ _ ,,, _,..1 li II fl fl II I I II

0 0 0 0

V

5-A.12

MDPRNT (3 of 3)

V

APPENDIX 5-B

DATA BASE COMMUNICATIONS CHART

The Data Base Communications Chart for the SDMS databases is presented in

three forms. Each form is alphabetized by columns, from left to right. The
first form has a column order of Data Base, Dataset Name, Map Name, Common

Block, and Program/Subroutine. The second form has a column order of Data

Base, Map Name, Dataset Name, Common Block, and Program/Subroutine. The third
form has a column order of Common Block, Data Base, Map Name, Dataset Name,

and Program/Subroutlne. Thus a person can get a cross reference on a data

element by knowing either the Dataset name, Map Name or Common Block name.
Note that the map "AIC" which is accessed directly only by the I-O interface
routines RDAIC and WRAIC, is listed as being referenced by GENAIC, GENBC and
MATCH, which are the routines that use these I-O interface routines.

5-B.1

DATA
BASE

DIP

DQG

DQG

DQG

DQG

DQG

DQG

DQG

DQG

DQG

MAK

MAK

MAK

MAK

MAK

MAK

MAK

FIRST FORM

COMMON

DATASET NAME MAP NAME BLOCK

GLOBAL-PRINTS GLOPRT Dynamic

BNDRY-CONDN-SPEC BNDRY Dynamic

[/BCDATA/]

[/CNTRQ/]

BNDRY-CONDN-SPEC CNTRQ Dynamic
[/CNTRQ/]

CLOSURE CLOSE Dynamic

EXTRA-HYPO-LOC EXHYLO Dynamic

GLOBAL GLOBAL /MAGNUM/

/MAGGLO/
/SYMTRY/

Dynamic

MAG-PANEL-SPEC PANSPEC Dynamic
[/DQGPAN/]

NETWK-SPEC NETWK Dynamic
[/MAGNUM/]

SINGULARITY-SPEC SNGSPC Dynamic

SPECIAL-POINTS SPCPT Dynamic

AiC-MATRiX AIC Dynamic

COLMAP COLMAP Dynamic

COLMAP-BULK COL-BULK Dynamic

COLMAP-INVERSE COLINV Dynamic

DATA-BASE-HEADER MAKHED Dynamic
[/RUNIDS/]

DOUBLET-MATCHING DBL-MTCH Dynamic

IC-MATRICES

PROGRAM/
SUBROUTINE

OPENDB

DRWMAP,

GENAIC

PROCP

CLSROW

SDMTCH

OPENDB

PANGRP

OPENDB
CONBLK

COLMAP

CONBLK

GENAIC

GENBC
MATCH

COLMAP

COLMAP

COLMAP

MAGFIN

SDMTCH,
MATCH

IC Dynamic GENAIC

V

W

5-B.2

V

DATA
BASE

MAK

MAK

MAK

MAK

MAK

MAK

MAK

MAK

MEC

MEC

DATASET NAME

MAG-PANEL-DATA

FIRST FORM (CONT.)

MAP NAME

MAG-PAN

COMMON

BLOCK

/PANDF/

/PANDQ/

PANEL-GROUP PANGRP Dynamic

ROWMAP ROWMAP Dynamic
[/CNTRQ/]

ROWMAP-BULK ROW-BULK Dynamic

ROWMAP-INVERSE ROWINV Dynamic
[/CNTRQ/]

SOURCE-MATCHING SRC-MTCH Dynamic

SYMMETRY

VORTICITY-MATCHING

SYMTRY /SYMTRY/

/MAGNUM/

VOR-MTCH Dynamic

PROGRAM/
SUBROUTINE

PANGRP

PANGRP
ICTEMP

PROCP

CLSROW

DRWMAP
MAG20

CONBLK

PROCP

CLSROW

SDMTCH

MATCH

MAGIO

SDMTCH
MATCH

DATA-BASE-HEADER MECHED /RUNIDS/ OPENDB

MACRO-OPTIONS MACRO /MAGNUM/ OPENDB

"v"

5-B.3

DATA
BASE

DIP

DQG

DQG

DQG

DQG

DQG

DQG

DQG

DQG

DQG

MAK

MAK

MAK

MAK

MAK

MAK

MAK

MAP NAME

GLOPRT

BNDRY

CLOSE

CNTRQ

EXHYLO

GLOBAL

PANSPEC

NETWK

SNGSPC

SPCPT

AIC

COL-BULK

COLINV

COLMAP

DBL-MTCH

IC

MAG-PAN

DATASET NAME

GLOBAL-PRINTS

BNDRY-CONDN-SPEC

CLOSURE

BNDRY-CONDN-SPEC

EXTRA-HYPO-LOC

GLOBAL

MAG-PANEL-SPEC

NETWK-SPEC

SINGULARITY-SPEC

SPECIAL-POINTS

AIC-MATRIX

SECOND FORM

COMMON

BLOCK

Dynamic

Dynamic

[/BCDATA/]
[/CNTRQ/]

Dynamic

Dynamic
[/CNTRQ/]

Dynamic

/MAGNUM/

/MAGGLO/
/SYMTRY/

Dynamic

Dynamic

[/DQGPAN/]

Dynamic

[/MAGNUM/]

Dynamic

Dynamic

Dynamic

COLMAP-BULK

COLMAP-INVERSE

COLMAP

DOUBLET-MATCHING

IC-MATRICES

MAG-PANEL-DATA

Dynamic

Dynamic

Dynamic

Dynamic

Dynamic

/PANDF/

/PANDQ/

PROGRAM/
SUBROUTINE

OPENDB

DRWMAP,
GENAIC

CLSROW

PROCP

SDMTCH

OPENDB

PANGRP

OPENDB

CONBLK

COLMAP

CONBLK

GENAIC

GENBC
MATCH

COLMAP

COLMAP

COLMAP

SDMTCH,
MATCH

GENAIC

PANGRP

V

5-B.4

DATA

BASE

MAK

MAK

MAK

MAK

MAK

MAP NAME

MAKHED

PANGRP

ROW-BULK

ROWINV

ROWMAP

SECOND

DATASET NAME

DATA-BASE-HEADER

PANEL-GROUP

FORM (CONT.)

COMMON

BLOCK

Dynamic
[/RUNIDS/]

Dynamic

ROWMAP-BULK

ROWMAP-INVERSE

ROWMAP

Dynamic

Dynamic
[/CNTRQ/]

Dynamic

[/CNTRQ/]

PROGRAM/
SUBROUTINE

MAGFIN

PANGRP

ICTEMP

CONBLK

PROCP
CLSROW

PROCP
CLSROW

DRWMAP
MAG20

MAK

MAK

MAK

MEC

MEC

SRC-MTCH

SYMTRY

VOR-MTCH

MACRO

MECHED

SOURCE-MATCHING

SYMMETRY

VORTICITY-MATCHING

MACRO-OPTIONS

DATA-BASE-HEADER

Dynamic

/SYMTRY/
/MAGNUM/

Dynamic

/MAGNUM/

/RUNIDS/

SDMTCH
MATCH

MAGIO

SDMTCH
MATCH

OPENDB

OPENDB

-.j

5-B.5

COMMON
BLOCK

Dynamic
[/BCDATA/]
[/CNTRQ/]

DATA
BASE

DQG

MAP NAME

BNDRY

THIRD FORM

DATASET NAME

BNDRY-CONDN-SPEC

PROGRAM/
SUBROUTINE

DRWMAP,
GENAIC

V

Dynamic

[/CNTRQ/]

Dynamic

[/CNTRQ/]

DQG

MAK

CNTRQ

ROWINV

BNDRY-CONDN-SPEC

ROWMAP-INVERSE

PROCP

PROCP
CLSROW

Dynamic
[/CNTRQ/]

MAK ROWMAP ROWMAP PROCP

CLSROW
DRWMAP
MAG20

ynamic
/DQGPAN/]

DQG PANSPEC MAG-PANEL-SPEC PANGRP

/MAGNUM/

/MAGGLO/
/SYMTRY/

Dynamic

Dynamic
[/MAGNUM/]

DQG GLOBAL GLOBAL OPENDB

DQG NETWK NETWK-SPEC OPENDB

CONBLK

L __

V

/MAGNUM/

ISYMTRYI

MAK SYMTRY SYMMETRY MAGIO

/MAGNUM/ MEC MACRO MACRO-OPTIONS OPENDB

/PANDF/
/PANDQ/

MAK MAG-PAN MAG-PANEL-DATA PANGRP

Dynamic
[/RUNIDS/]

MAK MAKHED DATA-BASE-HEADER MAGFIN

/RUNIDS/ MEC MECHED DATA-BASE-HEADER OPENDB

Dynamic DIP GLOPRT GLOBAL-PRINTS OPENDB

Dynamic DQG CLOSE CLOSURE CLSROW

Dynamic DQG EXHYLO EXTRA-HYPO-LOC SDMTCH

Dynamic DQG SNGSPC SINGULARITY-SPEC COLMAP

Dynamic DQG SPCPT SPECIAL-POINTS CONBLK

5-B.6

V

_.j

COMMON

BLOCK

Dynamic

Dynamic

Dynamic

Dynamic

Dynamic

Dynamic

Dynamic

Dynamic

Dynamic

Dynamic

DATA

BASE

MAK

MAK

MAK

MAK

MAK

MAK

MAK

MAK

MAK

MAK

THIRD FORM (CONT.)

MAP NAME

AIC

DATASET NAME

AIC-MATRIX

COL-BULK

COLINV

COLMAP

DBL-MTCH

IC

PANGRP

ROW-BULK

SRC-MTCH

VOR-MTCH

COLMAP-BULK

COLMAP-INVERSE

COLMAP

DOUBLET-MATCHING

IC-MATRICES

PANEL-GROUP

ROWMAP-BULK

SOURCE-MATCHING

VORTICITY-MATCHING

PROGRAM/
SUBROUTINE

GENAIC
GENBC

MATCH

COLMAP

COLMAP

COLMAP

SDMTCH,
MATCH

GENAIC

PANGRP
ICTEMP

CONBLK

SDMTCH

MATCH

SDMTCH
MATCH

"V

5-B.7

V

APPENDIX 5-C

DYNAMIC MEMORYMANAGEMENTAND PROGRAMLIMIT PARAMETERS

Some care was taken in the design and construction of MAG to allow certain

critical parameters to be increased as larger computers become available. On

the following two pages (5-C.2 and 5-C.3), these parameters are listed

together with their values (sometimes a formula), their description, where
they are defined and the common block where they reside. In addition, notes
are given describing the parts of the program that need to be changed if any

particular parameter is altered. Notice that in preparing these charts, (and
occasionally in other parts of this document as well), we have used the

abbreviations "c.p." for control point, "s.p." for singularity parameter, and
"nw" for network.

At the present writing (October 1984), the program is being run on various

models of CRAY computers for which the following increases in critical

parameters would be desirable and suitable.

MXING 384
MXCB 500
MXRCPB- 150
MXCPBK 200
MXDYIO 50,000
MXDY21 75,000
MXDY22 75,000
PANMAX 4,801

On the page following the summary of critical parameters, we present

figures describing the allocation of scratch memory by programs MAGIO, which
organizes phases (1,A), (1,B) and (1,C) of the execution (problem setup) and
MAG20, which organizes phases (2,A) and (2,B) of the execution (IC calculation

and aggregation, AIC generation). Notice that the scratch common block
/DYNAM/, containing the scratch work array W, is separately declared each time

it is needed and not generated by a COMDECK call. In the memory maps

presented on page 5-C.4, the various scratch array lengths appear inside the
boxes, the array addresses (in W, /DYNAM/) appear to the right of the

corresponding box and the array name for the given phase of processing is

given in brackets below the array address.

5-C.1

Critical

Parameters

NSING

MXING

MXFGRD

NPDQBF

MXRWCL

MXCB

NCPDQG
MXRCPB

MXRP

MXCPBK

Value Description

NMBRSP(3) Total no. of DQG s.p. parameters

160 Max # of s.p.'s associated w panel

group. Also max # of panels in a

group.

max [(2 Mk-l)(2Nk-l)] Max # of pts in any nw's fine
k grid

2048 Sequential file buffer size for panel
data

200 Maximum no. of rows or columns in any
network

250 Maximum # of c.p. blocks
NMBRCP(4) Total no. of DQG control points
lO0 Max # of IC rows associated w a

c_p. block
[(MXDY22:MXING-2 NSING)/(NSING+MXING)]

Maximum number of IC rows allowed

in a control point row partition

150 Maximum # of c.p.'s in a c.p. block

Where Defined

OPENDB

LOCKDATA

OPENDB

LOCKDATA

LOCKDATA

LOCKDATA

OPENDB
LOCKDATA

B_CK

LOCKDATA

MXPSRC lO Max # of source parameter -_LBSjmay

depend upon

LOCKDATA

MXPDBL

MXDYIO
MXDY21
MXDY22
MXPGP

MXHYLO

MXICTP

25

40,'_00
42,000

42,000
lO0
lO

12

Max # of doublet parameters --LBDjmay

depend upon

LOCKDATA

Scratch memory for execution of MAGIO LOCKDATA
Scratch memory for execution of ICTEMP LOCKDATA
Scratch memory for execution of GENAIC LOCKDATA

Max # of panel groups LOCKDATA
Max1"_ of points involved in any given J"LOCKDATA

matching condition
Maximum # of files on the ICTPxx db LOCKDATA

MXNET
MXNWID

NPANBF

PAN_t_X

PANWPR

NWCB

lO0
2OO

8

3001

256

II

Maximum # of networks

Maximum value for a network id

Number of panels' data stored in

a sequential file buffer for FPDQNU
or FPDQUP

Maximum number of panels + l, the
size of the index array for file
PANDTA

Number of words per panel for the
minimal panel data packet

Number of words per c.p. for the c.p.

data packet

LOCKDATA

LOCKDATA

LOCKDATA

LOCKDATA

v

5-C.2

V

k_Y

Commo n

Block

/MAGNUM/

/MAGPRM/

/MAGNUM/

/SQFPDQ/

/MAGPRM/

/MAGPRM/

/MAGNUM/
/MAGPRM/

/MAGPRM/

IMAGPRM/

IMAGPRM/

/MAGPRM/

IMAGPRM/
IMAGPRM/
IMAGPRM/
/MAGPRM/

Notes

Arrays of this length are dynamically allocated throughout
MAG

Arrays of this length are dynamically allocated throughout
MAG

Used to allocate space for fine grid maps in COLMAP and
CONBLK

All sequential file buffers are dynamically allocated (2 in
PANGRP, i in ICTEMP)
Used to allocate the NCL closur_ data array In _UNBLK

cf. NCBSZ, /MAGNUM/

Used to allocate JCPMAP, calculated by CONBLK
Main impact of this parameter is on the size of RIC, phase
2,A

Determined by the amount of memory in phase 2,B. Things

should be arranged, if possible, so that MXRP*MXICTR>MXRCPB

cf. WCB,/CPBLK/. Exceeds MXRCPB because some c.p.'s have
no IC rows

cf. PANGRP: arraYs IISD, LOCSD, IISF, IISMAG, ASTS, ASTSF,
BS. Also, see PAKPQF, UPKPQF. Arrays SG (SDMTCH); SG, SGH
(GENAIC)

cf. PANGRP: arrays IISD, LOCSD, IIDF, IIDMAG, ASTD, ASTDF,

BD. Also, see PAKPQF, UPKPQF. Arrays AMU, DMU
(SDMTCH); AMU, DMU, _4UH, DMUH (GENAIC)
cf. W, /DYNAM/, MAGIO.

cf. W, /DYNAM/, MAG20.
cf. W, /DYNAM/, MAG20.
cf. NGRPSP, NGRPPA, /MAGNUM/.

/MAGPRM/

IMAGPRM/

see arrays SIGNX, SPBIAS (MATCH); SPBIAS, SIGNX, XHYLO,

KNETX, ICOLX, IROWX, MSUBPX (SDMTCH)
cf. the list of file na,ms ICTPSQ(I:MXICTP) in LOCKDATA.

Should be a multiple of 4, > 12
cf. NETORD, NROWNT, NCOLNT,-_PNCUM, /MAGNUM/
cf. NETINZ, NETINV(I:2OO),/MAGNUM/

/SQFPDQ/ Always make sure that NPANBF*PANWPR = NPDQBF

IPINDEX/ cf. PANDEX, /PINDEX/.

/PINDEX/

/MAGPRM/

cf. PANGRP, array PQF; cf. SDMTCH, array PQF.

cf. WCB, /CPBLK/

5-C .3

MAGIO Dynamic Allocation V

I,A [COLMAP] 1,B [PANGRP] 1,C [CONBLK]

NSING

NSING

MXFGRD

LCOLMP

[ICOLMP]

LSNGPK

[ISNGPK]

LMAPFN

[MAPFN]

NSING

2*MXING

2*MXING

2*MXING

2*MXING

2*MXING

2*MXING

2*NPDQBF

LCOLMP

[ICOLMP,IMAGSP]

LNDGRP

[INDGRP]

LNDSRT

[INDSRT]

LNDLOC

[INDLOC]

LKNTGP

[KNETGP]

LIRWGP

[IROWGP]

LICLGP

[iCOLGP]

LPDQ

[WPDQ]

NSING

5*MXRWCL

2*(MXCB+I)

NCPDQG

MXRWCL

MXRWCL

MXRWCL

3*MXFGRD

"-LCOLMP

[ICOLMP]

4-LNCL

[NCL]

*--LMAGCB

[FiAGCB]

_-LJCPMP

[JCPMAP]

,-LICLCP

[ICLCP]

_-LAA

[AA]

4-LAD

[AD]

,-LCPAIC

[KCPAIC]

MAG20 Dynamic Allocation

2,A [ICTEMP] 2,B [GENAIC]

(MXRCPB+I)*_ING

MXING

MXING

MXING

NPDQBF

5-C.4

4- LRIC

[RIC]

"-LKNETG
[KNETGP]

4=LROWGP
[IROWGP]

w--LCOLGP
[ICOLGP]

4- LPDQ
[WPDQ]

MXRP*NSING

(MXRP+I)*(MXING)

NSING

NSING

4- LSIC
[RIC]

_- LBIC

[IBIC,BIC]

4- LAIC

[AIC]

w- LAICCL

[AICK]

APPENDIX 5-D

THE PIVC SUBASSEMBLY

The PIVC subassembly, which adds the influence of a given panel upon a

particular control point into a group on block IC buffer, lies at the very

heart of MAG. This package of subroutines performs the evaluation of panel
influence coefficients described in detail in appendix J of the theory

document. In this appendix we describe the operation and overall structure of

the package with a special emphasis on the more arcane attributes of its

operation.

The basic tree structure for the P!VC subassembly has been outlined in

figure 5.2 (see the lower right hand corner). On the last page of this
appendix (5-D.7) we have reproduced this structure and have added remarks

describing the function of each element.

The basic data that are input to the PIVC subassembly are:

(i) The principal image of the control point (ZCP) plus its

associated data (/CNTRQ/).

(ii) The panel defining quantities read from the FPDQxx database and

unpacked by UPKPQF. These include all data required for far

field and quasi far field computations (INFLU= 1,2,3,4), but
exclude some of the data required for quasi-near field or near
field computations (INFLU=5,6). The "data flags" INDQNF and

INDQRP were set to .FALSE. by UPKPQF when the current pane]'s
data were read in, and are subsequently set to .TRUE. only when

the corresponding data are required and regenerated with a call
to PSDDQ5 or PSDDQ6.

(iii) A partially completed group-on-block IC buffer, AIC, together

with pointers (LAIC) that give the starting column indices in
the buffer associated with each symmetry condition of the
control point.

Given these data PIVC begins its task by calling DINFLU to evaluate all

geometric images of the control point* and PIC computation indices for each

image (N.B. l=monopole, 2=dipoTe, 3=quadrupole, 4=quasi-far, 5=quasi-near,
6=near field). If any PIC computation indices have the values 5 or 6
(quasi-near or near field values), subroutine PSDDQ5 is called to generate

quasi-near field data and that fact is recorded in INDQNF. (Note that type 6
data for a true near field computation are not immediately generated. This is

because, even when DINFLU recommends a type 6 PIC computation, subroutine IC

always first attempts a type 5 computation before deciding that a type 6 is
necessary.) Having regenerated any required type 5 data, PIVC then zeroes out

PIC buffers for all required symmetry conditions and proceeds to call
subroutine IC.

*Remark: For control points lying in a plane of symmetry, special care is
taken in DINFLU not to reflect tho_-6 points in their plane of symmetry. (cf.

algorithm A1, appendix K.5, Theory Document.)

5-D.1

Subroutine IC invokes lower level PIC routines to perform the actual
computation of the influence of a panel upon a control point image. In this
process there are four main areas where there is somesubtlety in the code.
Wedescribe each of them.

(1) The velocity influence coefficients required from subroutine FFPIC
are, in the languageof appendix K of the theory document, (cf. p. K.6-2),

RiJ _Q(RiJ_, sI) Rij _Q(RiJ_, mI)

-.T i j --, --,.T --.
Vp Rij V_Q(Rp, sI) Vp Rij V_Q(Rijp, mI) (5.D.1)

a

Because FFPIC works mainly in the mean panel's local coordinate system, the
velocity influence coefficients most readily computed would be denoted

' _Q ij_
J V_(RiJ_, Ca) V (R v, CB) (5.D.2)

where the prime (') indicates that these VIC's are given in the local

coordinate system. The basis functions (_ , _=1,2,3} and (_B' B= i,...,6}

are the standard polynomial basis functions L1, (, n, ... n2/2j used for

the representation of the approximate source and doublet distributions in the

far field. The way in which _ are used to construct approximations to sI and

mI is easily described and is given, in the language of appendix 1.3 of the

theory document by,

3x5 lxNS
lx3 [PSPL s] [BS]5XNs

L _J LSIj

6x9 lxND
_Sj Ix6 [PSPLD] [BD]gXND = LmIj

with the following matrix-FORTRAN variable connections

[PSPL S] = RA, [BS] = ASTS, [PSPLS] [BS] = ASTSF

[PSPLD] = QA, [BD] = ASTD, [PSPLD] [BD] = ASTDF

(5.D.3)

(5.D.4)

(5.D.5)

(5.D.6)

The primed VIC's are transformed to reference coordinates using the

reference to local transformation A5 (cf. appendix E.3 of the Theory Document)

for subpanels 5 through 8:

V-_u(R JP' 6B) = _B

The required results may thus be obtained by forming the following quantities,
as indicated.

5-D.2

,'j41 , olJ
(Rij A5T) CV_(R Jp, _B)]

(Vp Rlj AT))]

(5.D.9)

(5.D.I0)

(5.D.11)

(5.D.12)

Thus, when transforming velocity PIC's out of local coordinates, FFPIC applies

the matrix Rij A_ (='RATF(*,i,j), see FFDQGX). Further, when generating

normal mass flux PIC's, FFPIC multiplies on the left by the vector:

LARNUj : _Tp [RiJ AT] : [A5 RiJ _p]T (5.D.13)

.j

(2) The quasi far field evaluation of PIC's (QFFCAL) is very similar to

the far field evaluation except that NFTPIC (the near field PIC routine) is
used to evaluate the PIC's in local coordinates. Having computed the PIC's in
local coordinates, NFTPIC then returns the following quantities, (where the

vector LZNUj and the 3x3 array [ART] are passed through the calling sequence)

[ART] [J-_Q(RiJ_,o _)], etc. (5.D.14)

ij_LZNUj [ART] [J (R v, _)], etc. (5.D.15)

By comparing these with the expressions appearing in (5.D.9-12) above, we see

that the correct choices for LZNUj and [ART] are:

[ART] RiJ T
= A5

4T
LZNUj : Vp

(: RATF(*, i,j))

(= ZNUCP, see /CNTRQ/)

(5.D.16)

(5.D.17)

(3) The calculation of quasi-near and near field PIC's by QNFCAL and

PIFCAL requires evaluation of expressions of the form,

,&,Qk,_ij_
RiJ _ AT [Jk va IK p, ck)] SPSPL s (5.D.18)

k,ct

k,o&

with similar expressions for doublet influence coefficients. Here, the sum

with respect to k extends over subpanels k for which the reference to local

transformation is Ak and having subpanel basis functions {_k}a . The

5-D .3

symbol SPSPLS denotes the source subpanel (or half-panel) spline matrix. In
the actual operation of the code, we loop over the subpanels, calculating for
each and accumulating into an array, the quantities

k } (5.D.20)

I[_Tp Rij] A_ [Jk vQk(RiJ_,_ _k)]e SPsPLSI}y (5.D.21)

Thus the k-th call to NFTPIC is made with LZN_ and [ART] given by

-T
LZNUj = Vp Rij (cf. calculation of RNU in IC) (5.D.22)

[ART] = A_ (5.D.23)

Further, when the loop over subpanels is complete, RiJ must still be applied
to the velocity influence coefficients (as distinguished from the normal mass

flux IC's), the quantities expressed by (5.D.20).

(4) Whenever some of the PIC computations are types 1 through 4 for some

control images and types 5 or 6 for other control point images, the far field
or quasi far field PIC's must be re-expressed in terms of the 5 panel source

and 9 panel doublet parameters before they are accumulated. This
transformation, accomplished with the help Of the panel splines PSPL (=RA) and

PSPL D (=QA), is necessary because ASTS and ASTD (rather than ASTSF and ASTDF)

will be used to express the symmetrized PIC's in terms of global singularity

parameters. (The code that applies PSPLS and PSPLD to panel influence

coefficients directly follows the calls to FFPIC and QFFCAL in IC.)

The preceeding discussion summarizes the main fine points of subroutine

IC. Once the PIC's for a given control point image have been calculated, they

are added/subtracted into the accumulators for the required symmetry
conditions.

When all control point images have been processed, the influence of the

panel on each control point symmetry condition is complete. Subroutine IC is

now prepared to add these PIC's into the panel group on control point block IC

buffer, applying an outer spline matrix as it proceeds. The figure below
demonstrates the inclusion of the source PIC's for the 1st symmetry condition
into the IC buffer. To simplify the example we assume that ASTS depends on

only 3 global source parameters. Defining

[_1 bl 31] = [PIcS]4x5 [ASTS]5X3 (5.D.24)
Ist symmetry
condition

V

5-D.4

V

we see in figure 5-D.I (see p. 5-D.6) that , and cI are added into rows
IISF(1), IISF(2) and IISF(3) of AIC, starting in column LAIC(1). Similarly,
the secondsymmetrycondition PIC's are added into the sameset of rows
starting with column LAIC(2), and so on.

5-D.5

12
m,

X

X

X

X

X

x

X

X

LAIC(1) LAIC(2) LAIC(3) LAIC(4)

XXXX

XXXX

XXXX

I _ 1st

INDGRP _SS

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

2nd 3rd

_AS _AA

XXXX

XXXX

XXXX

IISF(1)

_-----IISF(2)

. IISF(3)

symmetry
condition

V

Global s.p.
indices
associated

with this

panel group.

IC's for various symmetry conditions

AIC = Panel Group on Control Point Block IC Buffer

Figure 5-D.I Inclusion of Panel Influence Coefficients in the

Panel Group on Control Point Block IC Buffer

5-D.6

V

I

iDIiFLUI

Evaluate control point images

and calculate PIC computation
method for the various control

point images

Organize the calculation and
inclusion of PIC's for all

symmetry conditions of a

control point. Handles
evaluation of type 5 data.

I

Organize the looping over
control point images,

accumulating PIC's into

symmetry condition buffers.
By calls to INDADD, includes

symmetrized PIC's into the IC
buffer

Iq CALJ IP
Far field Quasi far field Quasi near field Near field Apply outer
PIC evalu- PIC evaluation PIC evaluation PIC evaluation splines and

ation (2 half panel) (8 subpanel) accumulate

I I 1 data intothe IC

(NFTPIC) (NFTP IC) (NFTP IC) buffer.

I

M= <1

NFTPI C I

l
Flat panel, near field
PIC evaluation

i

ISUPSPI/AICSUP I

M® >1 M= >1

Subi nclined Superi ncl ined

Figure 5-D.2 Tree Diagram for the PIVC Subassembly

5-D.7

V

APPENDIX 5-E

PANEL DEFINING QUANTITIES IN MAG

Much care is taken in MAG to minimize run cost (both CPU and I-0) by means

of careful handling of the panel defining quantities. In this appendix we

discuss where the various panel defining quantities come from and how the
concept of data regeneration is implemented in MAG.

The basic observations which motivated the way in which panel defining

quantities were handled were the following:

(i) Disk I-O, especially random I-O, tends to be quite expensive.
Version 1.0 of MAG was unacceptably inefficient with respect to its

use of I-O, mainly because DQG's PANEL-SPEC dataset was far larger

than necessary.

(ii) Many of the panel defining quantities used in PAN AIR are "soft"

quantities in the sensethat they can be quickly regenerated from
other panel defining quantities much more cheaply than they can be
read from disk. On the other hand, some of the quantities are very

"hard", in the sense that they can be regenerated only with a large

amount of work. During the design and coding of MAG, an element or

an array of panel defining quantities was judged to be "soft" if it

could be regenerated at an average cost of under 5 _sec per word on a
CDC 7600. This tradeoff criterion was developed from a careful
examination of various data center charge algorithms combined with a

good understanding of the execution environment of the program.

As a consequence of these observations a set of hard panel defining quantities

was identified that was as small as possible, consistent with the 5 _sec
tradeoff. When this had been done, the volume of hard quantities was about

270 words/panel. Now since a CDC 7600 handles random I-O much more

efficiently when record sizes are a multiple of 64, the "hard" quantities were
reduced to just below 256 by identifying as soft an array (CF) that slightly
violated the tradeoff criterion. Having defined the "hard" panel data, a set

of routines PAKPQF and UPKPQF were constructed that respectively create and
subsequently unravel a 256 word panel data packet. Once this data packet has
been created (by PANGRP's call to PAKPQF), it is written out to the random
file PANDTA (for random access by SDMTCH and GENAIC) and also to the FPDQxx

set of buffered sequential files (for sequential access by ICTEMP).

The common block definition charts at the end of this appendix describe

the provenance of each entry in the four panel defining quantity common
blocks, (/PANDQ/, /PANDF/, /PANDQX/, /PANDFX/). For the hard panel data in
/PANDQ/ and /PANDF/, either the source in /DQGPAN/ (read from DQG's

MAG-PANEL-SPEC dataset) is indicated or else the routine in MAG that generates

the data is listed. The basic organizational idea for these common blocks is

that /PANDQ/ and /PANDF/ contain the hard panel data (exceptions: ASTSF,
ASTDF) while /PANDFX/ contains soft far field data regenerated by calls from

UPKPQF to CCALN and FFDQGX, and /PANDQX/ contains soft near field data
regenerated with calls to XCOF, RACOF, PSDDQ5 and PSDDQ6.

5-E.I

C
0

,In
I.-)

_.,--

e-

°r,-,

E_
f,- "l_
0

5.. e"_
Z

F--

v_

5.-

__ul vl
US.. _
rO_O
. 0. 4.
_" ul 0

U') C::

0

•,.- ¢)

_J (_0 ¸

°_...

¢.._.

3

5-E. 2

C_rb_b. I, Ll_ L_.I, I, LL L_ L__
..=L _._. 0.0._. O. 0.0. I O_

_, _._. CL_', ___._, _, ,", O. i _.

..d
<C u_

L_. _)_
Z _,, ._.

0-{:1. <<

P-" _," P," (._ (3

i1-_1_1 "_ -_

=E
_-- E3" <E

XXXX X XX X X X X XX XXXX XX XXXX X

ecs

3[

O.

t.-

_.
0

"0
_J

in

0'1

S..
_o

(/!
._m
£.-

l--

X

V

Q

,p.,

op,

3_

0

t-.i 1._.1

p,. r._

U _

!
LO

•I_ e-"
e- 0

0

i. _ _"
p._ .._ .-.

< _.

J _
5.- _'

O _

P,

o.----v ¢: L) (J
0% ,--.4 L,") _ .r- (j -_.- ._-.

_" Z :Z "" .. "" _"-- 0 ".--_" _.J ..I
,-_ ,-.I ,--q _l. t/) "s-

............. _, L < _ S. "_

.._. _. O.O.O.,r_ _. 0..._ -, _ (_ _'0. _') _(_" _ "_'_

---',. ,. ,. ,. N ,. _p- ,,
×_

XXXX

I--

Z

E
0

.r.-

{4

J=
I---

X

I--

Z

.io

0

e-

f...

u,.

S.

e-

_J

v_

S.

e,-
I--

"1(

5-E.3

¢J
0

0
¢J

t--

-I_ 0

_ .,-.-4.J

.f...

4.-
q.)

Ce

°r.-
S,.

5-E.4

,,--I,--I('_I OlJ

(_ • • • I I¢'_f_ ¢_ I I LIJ

I,-,4 I....4I--4 I-..4

LJ.I

(.._ _ c/'){._ (._ {,_ ¢,,,')C,_
X _'_",r',l_. (_. (_. Q.. ,'_

X

<¢_ rico ,_ ,I_

5-

,,-- (I)

•_ |

I t/l

f • * I
I N N !
I • • I

I--I I--I

--J

I'-- "n ¢1

_,- S.
" ¢1 _-0

_J _.-

.1_ r--

z =

Z

v

0
S..

r..,-
r-,-

(.I

.--I
Q.
¢,0

II

S. S,..

I|

v

V

+_

4-)

_J

-=t

0

0
dJ

I'--

i i

• I ! I • ; II IJ=IIJ=ILL_I ! I _ _ I I
• " I I I • " I I

I

¢-.
0
.p.
4-I

.ii.

"0

X
b-

Z

.',--

Z

iI-

XXX XXXXX XXX

I,.I. t, I.I.. b. LI. h b.. LI. <J I.I_ b.. l',
l.i.l.i, kl. l.i. IJ. L.i. Li. IJ_ _ IJ.. b. l.i-

X

%
,p..
4-

I
L

0
f.

"0

l.i,

t_

X

"0
e-

-r,-

|1

_J

i.

5-E.5

_w

APPENDIX 5-F

PRINTED OUTPUT AND PROGRAMMING AIDS

In this appendix we describe the printout and print control features
included in the MAG program. Most of the printout from MAG is principally of

interest to the maintenance programmer trying to track down the source of a
problem. In addition to providing a fairly comprehensive picture of the

analysis performed by MAG, the printout from MAG has proved to be quite

helpful in tracking down errors in the user's problem specification and in

DQG's analysis of that specification.

In the subsections that follow, we will describe the printout from MAG
according to the following classification scheme:

(i) Printout controlled by MAG's internal print flags. (cf. common block

/WFLAGS/ defined by OPENDB using dataset GLOBAL-PRINTS from the DIP
database)

(2) A summary of the error conditions detected by MAG

5.F.1 Print Flag Controlled Output

Each of the descriptions that follow is headed with the following
information

the name of the internal print flag (in /WFLAGS/) that controls the

particular printout

the index of the print flag in the array MAG-PRINTS (DIP database)

that turns on each internal print flag, enclosed in brackets: [2]

the program elements in MAG that _efer to the internal print flag

o a one-line description of the printout

WDFALT, [i], (MAG, COLMAP, MAG20)

High level problem and processing statistics, timing information

MAG prints the following information:

(i) Source and doublet PIC counts for each type of PIC computation method
(e.g. near field, far field, etc.)

(2) A summary of the volume of I-O for each of nearly 30 categories of I-O.

This information includes estimates pf the volume {in words) of I-O for
each category along with the apparent number of I-O requests. Because the

operating system buffers most_LiO 6perations, the actual number of I-O
requests is generally somewhat lower than the apparent number, which is
computed by counting the number of calls to I-O routines (e.g. READ,

WRITE, REBUF, WRBUF, ESGET, ESPOR). In figure 5-F.1 we have produced an

5-F.1

index describing for each category of I-0 its general nature, its mapor
file nameand the nameof the routines requesting the I-O.

(3) CPUtotals for PIC evaluation and AIC assembly

(4) Counts for general, matching and closure boundary conditions for each
symmetrycondition.

COLMAPprints the numberof (MAG)singularity parameters in the four
categories: (I) known, nonupdatable, (2) known, updatable, (3) unknown,
nonupdatable, (4) unknown,updatable.

MAG20prints a running summaryof the c.p. block processing together with the
corresponding CPUtime.

WCMMAP,[I], (MAGIO,MAG20)
Absolute octal addresses of dynamicmemory

As a supplement to the program load map, MAGprints the absolute octal
addresses of all of the arrays allocated from the dynamicmemorybuffer
(comon block /DYNAM/).

IWCPLST, [2], (DRWMAP)Summary of ROWMAP's information about each MAG control point

For each MAG control point, the following information is printed. The label

in brackets is the label appearing at the top of each page on the printout.

[IUPDCP]

[IMAGCP]

[IDQGCP]
[IBLKCP]

[IRPTCP]
[KNETCP]
[IROWCP]

[ICOLCP]

[MSUBCP]
[IROW]

[ICOL]

[IN-POS-FLAG]
[ON-POS-FLAG]
[NULLIN]

[IPCP]
[NTCHAR]

[IDRWCP]
[ONST]
[IUPDCL]

[IDRWCL]

5-F.2

Control point updatability type (O=nonupdatable, l=updatable)
MAG control point index

DQG control point index
c.p.°s block index

c.p.'s row partition index

network identifier]

panel row index

panel column index describe control point location

subpanel index
fine grid row index

f_ne grid column index
1 -,, in first POS, 2 -w,in second POS, otherwise 0

1 -_ o_ first POS only, _---_ on second POS only, 3 -_ on both

0 -_ no AIC rows for this c.p.4 1 -_ at least 1AIC row
IC row counts for required _, v and _._ IC's

Number of AIC rows for this c.p.
AIC row indices for this c.p.

Control point type (1=center), (2=edge), (3=corner), (4=extra)
Updatability type of affected closure c.p.

AIC row index of affected closure boundary condition V

[LSYMCL]

[ZCP]

[ICHAR]

[IPDPBC]

Index of symmetry conditions for affected closure conditions

(bit vector)
Control point location, reference coordinates
Characteristics for b.c.,s, all symmetry conditions, 1st and

2nd b.c.
PDP IC row counts for _, _ and _.B IC's required in post

processing

WBCLST, [2], (DRWMAP)
I •

Summary of boundary condition information for each AIC row

For each AIC row, the following information is printed. The full printout is

repeated for each symmetry condition of interest. The data headers are listed
in brackets.

[ROW]

[BC TYPE]

[CH]
[CPI:MAG]

[CPI:DQG]

[u]
[R]
[A/A:WN]

[C/A:PHI]

[T/A:V/A]

[A/D:SG]

[C/D:MU]

[T/D:DMU]

[CLS/ROW]

[A/A:WN]

[A/D:SG]

AIC row index

Boundary condition type (e.g. GENERAL, SNG-SPEC etc.)
Boundary condition character index (1 -_ GENERAL, etc.)

MAG c.p. index

DQG c.p. index
Updatability type [O=nonupdatable, l=updatable]
1-_first b.c., 2-w, se¢ond b.c., (for this c.p.)

aA, coefficient of (_'n)A

_A' coefficient of (#)A

tA, coefficient of (_)A

aD, coefficient of

_D' coefficient of

tD, coefficient of V

AIC row index of affected closure condition (negative if first)

aA, k, coefficient of Ak(_._) k in affected closure condition

aD,k, coefficient of Ak(O) k in affected closure condition

WSPMAP, [3], COLMAPSingularity Parameter Maps

Singularity parameter maps are printed giving a schematic description of both
the MAG and the DQG singularity parameter indices. For each point on the fine

grid matrix for each network, the MAG and the DQG source and doublet indices

are printed.

5-F.3

WBCMAP,[3], (CONBLK)
Control point and AIC maps

For each network a fine grid matrix mapis printed giving the following
information:

o DQGc.p. index
o MAGc.p. index
o first boundary condition AIC row number
o secondboundary condition AIC row number

WGENRL,[4], (OPENDB,BLOCK)
IGenerally useful information

OPENDBprints someglobal information about the whole configuration that is
useful, but poorly formatted. BLOCKprints information relevant to the
calculation of MXRPof /MAGPRM/.

ICOLMAP processin_ summary
WCLMAP, [4], (COLMAP)

Includes the bulk column mapping array ICOLMP/IMAGSP, giving the DQG ÷ MAG

singularity parameter index mapping.

V

IPANGRP processing summary
WPNGRP, [4], (PANGRP)

Includes all information written to the PANEL-GROUP dataset.

WCNBLK, [4], (CONBLK)

CONBLK processing summary

Includes the bulk control point mapping array JCPMAP giving the DQG -* MAG

c.p. index mapping.

5.F.2 Error Conditions Detected by MAG

A summary of all error conditions detected by MAG has been generated, and

presented in figure 5-F.2, by extracting from the code all calls to
subroutines MAGERR and r4AGMSG. The format of the calls to each of these is

identical: the name of the subroutine generating the error message followed

by the error message itself (up to 40 characters). Calls to MAGERR are

5-F .4

immediately fatal while calls to MAGMSGare temporarily ignored, causing fatal
error termination at the end of the execution of MAGIO.

Occassionally someextra information is printed out along with the error
messageto help explain the cause of the problem. If the particular error is
extremely uncommon,it will probably be necessary to refer to the code to
interpret this printout.

5-F.5

Activity
MAPor R=read
filename W:write Subroutines

Nature(*)
of data

Io

2.
3.

4.

5.

ICTPxx W WRICT

ICTPxx R GENAIC

IC [1] W GENAIC

IC [2-4] W GENAIC

IC [5] W GENAIC

IC
IC

IC (_)

IC (v)^
IC (_.n)

e

7.
8.
9.

10.

AIC W GENBC, MATCH
AIC R GENAIC

AIC W GENAIC

FPDQxx R ICTEMP

AIC

AIC (closure)

AIC (closure)

PDQ

11.
12.

13.

14.
15.

PANDTA (random) R GENAIC

PANDTA (random) R SDMTCH

ROWMAP, ROWINV W CLSROW, PROCP

PDQ

PDQ
CP

16.

17.
18.

19.
20.

ROWMAP, ROWINV R CLSROW, PROCP, DRWMAP
ROWMAP R MAG20
PANSPEC R PANGRP

PANDTA (random) W PANGRP

FPDQxx W PANGRP

CP
CP

PDQ
PDQ

PDQ

21.

22.

23.
24.

25.

BNDRY, CNTRQ R DRWMAP, PROCP
BNDRY R GENAIC
EXHYLO R SDMTCH

PANGRP R ICTENP

CP

CP

MATCH

26.

27.
28.

29.
30.

SRC/DBL/VOR-MTCH W

SRC/DBL/VOR-MTCH R

SDMTCH
MATCH

MATCH

MATCH

5-F.6

Codes describing nature of data

IC Influence coefficients (¢IC, ViC or WIC)

AIC Entries in the [AIC] matrix

PDQ Panel defining quantities
CP Control point and/or boundary condition data
MATCH Information relating to matching conditions

Figure 5-F.1 Index to Summary of Substantial I-O

4<

Figure 5-F.2 Error Conditions Detected by MAG (page 1 of 3)

5-F.7

v

_ _ _" "-" "-- _ "" _" -" "" ; " _. ;. - --" T-. "-

<: 3: _.,_," ¢3 r_ r._ L._ _' Z :E _ :=: '-- ::[: <
_, _- r..')L_oo Z '_ Z :Z; =: ,-, 3:: 3: U _ ,'-', Z:

r..9 {.9 0 _, _ r,O 2: _ _-_" _ _: i r,O
II = z- o - II [3[.-_-0 n n ii u J

r..) u u u _J tl _"O'_..Z r.d,r,_ ,-Iv",_ II _-_<_1i_ _" II I1 I1 E :E: -
L,3 r,_ L_ r,_ r42 rl L_.]_,,_i._,I<_- UZ I| <{',4 - _1.,:1_.,_r,30 rl II II II ,-_ tl

==========,'== =
= ::::::::::::::::::::::::

: :E= _"= _" E= = : Z: 2=- : = " eL- _,- • -U: : : : : U= U= - - :

--1 -J ..1 --1 <_ _ _:_ _" _ E-: ;;5 + "< <_ <: <_ L_ <::

^ . = _ =. = = ,.; _ _ - =
o 0 _.. Ld Z _._ _L _ O. Z 0 0 (3 0 Z Z 0

(3 0 0 0 Z _ _ _" ,-I _-_ • r_ U

V

5-F.8

Figure 5-F.2 Error Conditions Detected by FAG (page 2 of 3)

00000_<_00000000___00

_- __ _,._.._.._..u_<_ _ -

=======<=<=<====
+__ _ _ _ _ _ _ _ _ _

_<<oooo<<<<<

= d z z u u u u z z e z z

z z =c= ==
•-_ I,d X _ _"
0 I-- _ I._ ,-.,

_ ,,r,,
II II r,,,j

z

L9

88a
Z _, II fl ,..1

w

-- on- D.- E---- -": _: =
0 -_J" -< .u'j .r_ -LJ -

-< C_

(n:c:
:¢

< .< < <: <:
_J _.3 U U

.4
<¢

u_
<r

Figure 5-F.2 Error Conditions Detected by MAG (page 3 of 3)

5-F .9

V

APPENDIX 5-G

HANDLING CLOSURE B.C.'s IN MAG

The design capability in PAN AIR needs to be able to impose a special

class of non-local boundary condition, called the closure condition, The

precise form of the AIC constraint induced by this boundary condition is given
in the PAN AIR theory document by equation (K.I.25) when there is no symmetry

in the problem, and by equations (K.6.45-46), (K.6.48-49) and (K.6.55-58) when

symmetry is present. For the purpose of the present discussion, we reproduce
here equation (K.1.25) for the case of no symmetry.

AT , S

Ak {aA,k nk [Bo] [VlCk] + aD, k L1, _, nkj [SPSPL_] EBk] } -_

panel s = b

Pk (5.G.I)

Here the sum extends over the panels Pk in a row or column of a network.

other symbols in this equation have the meanings:

The

Ak =

aA, k
A

nk

[B o] :

[VIC k] :

aD, k

, nk =

[SPSPL_] =

[B_] :

b

area of panel Pk (AREAQ)

the coefficient of (w.n)k in the closure condition (A_CLCP)

the panel normal at the panel center control point

_k on panel Pk ([Bo]_k = ZNUCP)

the dual metric matrix in reference coordinates

(cf. app. E, theory document)

the 3xN velocity influence matrix for control point Pk
(stored in RIC)

the coefficient of (o)k in the closure condition (ADCLCP)

the local coordinates of _k'S hypothetical location
(not recessed)

the source subpanel spline matrix for the subpanel on which

Pk lies

the 5xN (extended) source outer spline matrix for panel Pk

the vector of global singularity parameters

a user specified value

Note that by virtue of equation (5.2.5) of this section that the combination
AT
nk [Bo] [VICk] could be replaced by LWICkj when only normal mass flux IC's

are computed for _k"

The main difficulty that must be dealt with to handle this equation is the

fact that the velocity influence coefficients [VICk] are not necessarily saved

5-G.I

on any file after they have been generated (in GENAIC)and used to computeAIC
rows for _k" Thus, unless somespecial care is taken, the information
required to generate a closure AIC row will not all be available whenit is
needed.

V

To deal with this situation, subroutine GENAIC has some very special logic
to perform asynchronous management of a closure-AIC buffer, AICK. The basic

idea is to add in to AICK the individual contributions from each control point

Pk as the various [VICk] matrices become available. In order to implement

this idea, we must know, for each control point Pk the following information
that MAG stores on the ROWMAP dataset:

(i) The AIC row number of the closure condition that is affected by Pk
[IIDRWCLI]

(ii) The symmetry conditions for which _u makes a contribution to a

closure condition [LSYMCL]
m_

(iii) The updatability type for any affected closure condition [IUPDCL]

(iv) Whether or not control point Pk has the smallest MAG control point

index of all the MAG control points influencing a particular closure

condition. (IDRWCL<O if Pk has the smallest MAG c.p. index.)

Associated with the AICK buffer, subroutine GENAIC keeps track of the

following "AICK identifiers"

(a) the closure AIC row number [INDRWK]

(b) the closure AIC row's symmetry condition [ISYMK]

V

(c) the closure AIC row's updatability type [IUPCPK]

These three items are the keys to the record in the AIC-MATRIX dataset to

which the closure AIC row will eventually be written. In fact, during the
actual construction of the AIC closure row, partial sums of equation (5.G.1)

may be written to and read from this record several times.

The actual management of the closure AIC buffer is then handled as

follows. As GENAIC is called to process each control point block, it begins

by setting the "AICK identifiers" to impossible values (e.g. symmetry

condition O) to indicate that AICK is empty. Next, whenever a matrix [VIC k]

is generated for a control point Pk and that control point influences a closure

condition [IDRWCL _ 0], GENAIC prepares to include the effect of [VICk] into
the AIC closure condition. This is done as follows

(1)

5-G.2

If the "AICK identifiers" disagree with those associated with _k and

the current symmetry condition, the AICK buffer must be written to
the AIC-MATRIX dataset (provided AICK is not empty) and the AICK

buffer reset. Next, the AICK identifiers are set equal to

(IIDRWCLI , ISYM, IUPDCL). Then, if Pk is the first c.p. to

influence AICK, we set AICK=O. Otherwise AiCK is read from the

AIC-MATRIX dataset using the AICK identifiers. V

(2) First theWe are now ready to include _k'S contribution into AICK.

[VIC] contribution is included as follows

AICK ----- AICK + (f.Ak.aA, k) WIC k

or

AICK _ AICK + (f.Ak.aA, k) g_ [VICk]

(5.G.2)

(WIC's available)

(5.G.3)

(VIC's available)

The factor f is included here to account for the effect of networks

that lie in a plane of symmetry. We have

s

: { 1/21

if the network lies in a P-O-S

(5.G.4)

if the network does not lie in a P-O-S

(3) Next we include the source term in AICK. This is done by using the

arrays SGH and IISMAG which give the nonzero entries and the

corresponding locations of the expression

' [SPSPLs] (5.G.5)J,

The inclusion is performed in a fairly obvious fashion. No special

handling of control points lying in a plane of symmetry is required.

(4) When GENAIC is finished with the processing of a control point block,
it writes the AICK buffer out to the AIC-MATRIX dataset using as keys

the AICK identifiers.

Some final remarks are in order concerning the treatment of closure.

First it should be clear that the volume of I-O on the AIC-MATRIX dataset

could be quite high if the "AICK identifiers" changed each time a control

point contribution was added in to AICK. In order to minimize the I-O
activity, subroutine CONBLK sees to it that the control points are processed
in the correct order. If a network's closure conditions involve sums over

network columns, then the control points are processed by columns; if the sums

are over network rows, the control points are processed by rows.

The second set of remarks we wish to make concerns the generation of

closure information for the ROWMAP dataset. This is done as follows. As

CONBLK processes the control points of each network, PROCP records the

following information relating to each control point that has a closure
condition

(I) network identifier

!(2) DQG control point index

keys to the CLOSURE dataset

(3) Updatability type

5-G.3

(4) MAG'sAIC row index for the closure condition

(5) The symmetryconditions having a closure condition

Next, whenall of the control points in the network have been processed by
PROCP,subroutine CONBLKinvokes CLSROWto process each closure condition,
updating the ROWMAPand ROWMAP-!NVERSEdatasets by adding the following
information:

(1) The coefficients aA,k and aD,k
CLOSUREdataset

(cf. eqn. 5.G.1) obtained from DQG's

(2) The updatability type of the closure condition

(3) MAG's AIC row index for the closure condition, multiplied by (-1) if

ROWMAP's control point has the smallest MAG c.p. index of all c.p.'s
affecting the closure condition

(4) The symmetry conditions having a closure condition

V

5-G.4

V

APPENDIX 5-H

ALTERNATE PROBLEM FORMULATIONS

As promised at the end of section (5.1.2), we now take up the discussion
of alternate integral equation formulations for the problem of incompressible
potential flow about a sphere. This appendix will consist of three parts:

(i) a discussion of the modified Morino, doublet alone formulation,

(ii) a discussion of the direct velocity formulation,

(iii) a summary of all four formulations treated in this document,

comparing and contrasting the relative merits of each.

5-H.I Formulation 3, The Modified Morino Method

[• = 0 inside B]

This formulation, which leads to an identically zero source strength,

chooses the flow interior to B to be total stagnation. That is, we assume

that interior to B the total velocity V = O:

V = U= + V_ = 0 for points p c int(B)

Now since U= satisfies the relation,

U= : Vp _ ,

¢= =U= .p

(5.H.I)

(5.H.2)

(5.H.3}

we find that the total potential _ defined by

: _= + _ (5.H.4)

must satisfy

V¢ = V = 0 for points p _ int(B) (5.H.5)

As a trivial consequence of equation (5.H.5), we find that • must be
constant interior to B. The actual value of the constant is immaterial so
that we take it to be zero:

= 0 for points p ¢ int(B) (5.H.6)

Having determined that • is identically zero inside B, we can now
obtain some relations for the source and doublet strength on 3B, the boundary
of B. We have for _:

o = (_lan)_p, - (3_l_n)_

= (a_/Bn)*p+ + (2¢= /@n)*p+ - (B_/Bn)__ - (B¢®/Bn)_.

5-H.1

since ¢_ is continuous across aB. Using equation {5.H.4) this becomes,

- (a ¢lan)_ .a = (a¢lan)_+

Now, since ¢ _ 0 interior to B, VetO there as well and we obtain

o = (a¢lan)p+ (_ v_)_ ^
= . = (n.V) = 0 (5.H.7)

P+ _+

Here we have used equation (5.H.5) togethe_ with the boundary condition

(n.V)_+ = 0 (see the figure on p. 5.4). The relation for the doublet

strength that we require is derived:

. : (_)_+- (_)__ (by definition)

= (¢®)7+ + (6)_p+- (_®)__ - (_)__ (since ¢_ is continuous)

w

: (¢)g+ (¢)__ (by 5.H.4)

= (¢)_+ + (¢)__ (since (_)_ _ O)

= 2 _ + 2(#(_))avg
(5.H.8)

We now invoke the representation theorem (cf. eqn. (5.1.6)) with o set equal
to zero to obtain

() = 4_1 Sf u (_.Vq@)dSq (5.H.9)

aB

Denoting the average value, above and below aB, of the integral appearing on

the right with the subscript "avg," we write

1 _ ^(¢(P))avg = g (¢(7+) + ¢(P')) = (ff _(n. Vq*)dSq) (5.H.I0)

aB avg

Substituting this result into (5.H.8) and rearranging slightly we obtain the

required integral equation,

sŝ),(_) - ,(n. Vq_)dSq : _® (5.H.II)
aB avg

The integral equation (5.H.11) is readily transformed into an AIC equation of

the usual form (cf. equation (5.1.13)) by assuming a finite dimensional

representation for _ (cf. eqn. (5.1.11b))

N

.(_)= Z mj(_)xj
J=l

5-H.2

V

V

V

L _

and then evaluating equation (5.H.11) at N collocation points (i.e. control

points), PI" One obtains

N

J=l

where

AIJ _j = bl (5.H.12)

1
AIj : _ mj(p'I) -

1 {Sf mj(q) (n.Vq@)dSq}
T_ _B Pl,avg

(5.H.13)

bl = ¢® (_i) (5.H.14)

5-H.2 Formulation 4, The Direct Velocity Formulation

Here, as in the Morino formulation, we assume that the perturbation

potential is identically zero inside B. In contrast with the Morino
formulation, however, we leave the source distribution as an unknown and

explicitly impose the impermeable surface boundary condition, (V.n)_+ = O.

To see how this works, observe that the condition

6 " 0 inside B (5.H.15)

implies as well that u satisfies

. : (6)+- (6)_: (6)+÷ (5.H.16)

Writing the representation formula for 6 in the form

)(6(_))avg = - _ o @ dSq
BB p,avg

1+ _ , B._ dSq _,avg
_B

We obtain from equations (5.H.16) and (5.H.17) the result

I (_)(6(_) 1 (Sf_ @ dSql" =)avg = "4-_ @B _,avg

+ _ (S_u _.,*dSq) _,avg (5.H.18)

Note that this integral equation is essentially identical to the integral

equation (5.1.8) obtained for the Morino formulation.

Our next task will be to obtain a second integral equation by combining

the impermeable surface condition wi_ the fundamental representation formula
for V(_), equation (B.3.9) of the theory docu_nt. Assuming that doublet

5-H.3

matching is performed, we maydiscard the line vortex term and rewrite
equation (B.3.9) in the following form, appropriate to the present context:

(V(_llavg--_ fl o(_IVq_dSq _ ff (_xv,lxX/q,dSq_.avg
BB BB

(5.H.19)

Next, we write the impermeable surface boundary condition in the form

o = (7._)_÷ u® _(_)+ _ _(_+)

= gs. a(_)÷½ _(_).[(7(_+)- v(__)]

: U® .n + g o + . v avg
(5.H.20)

Substituting (5.H.19) into this then yields our second integral equation:

@B
]dSq+_ SS(BxX/,lxX/q_dSq :-_s.A(_)

aB _,avg

(5.H.21)

This integral equation* in combination with (5.H.18) constitutes a pair of
dual integral equations for the unknown functions o(_) and _(_).

We write out pair of equations (5.H.18) and (5.H.21) in the form:

1 4_ I (_) _(_) X/q @ dSq 0_ " + ._'S° _dSq "_-_'_ SS" " :
BB 3B

-o + o() _(_) • X/q@ dSq + Sf (_ x x/,) x V @ dSq _(_) : - Us •

BB _B (5.H.22)

V

* It is worthwhile pointing out that equation (5.H.21), which can be written
in shorthand form as

° + _(P) " (_(P))avg : - Us • n(p) (A)

could be replaced by

2_(_) . (V(_))avg : - U® . _(_) (B)

the difference between these two equations being the quantity

^)avg I _ V(_)n . (_(_) - _ o : • .

Equation (A) is preferred over equation (B), however, because it has better
numerical propertie_.

5-H.4

In writing downequation (5.H.22) in this form we have adopted the convention
that all integrals are to be interpreted as average value integrals, above and
below aB. It can be shownthat this constitutes an Hermitian system of
integral equations having the form

2 2
M B uB(_) + _ ff KaB(_, _) UB(_) dSq = ba (p)

B=I B=I aB

(5.H.23)

with

Ma_ : MBa , KaB(_,_) : KB (_,_) (5.H.24)

Of the four formulations studied in this section, only this one leads to an

Hermitian integral equation or system of integral equations.

5-H.3 Summary of Four Formulations

In this section we write down in one place the integral equations on aB
obtained from each of the four methods of formulation that have been studied.

In what follows, all integral expressions are to be interpretted as being

averaged, above and below aB

[1] Morino's formulation

1 Sf. Vq, dSq= ffo
aB BB

where o(_) = - 0"oo . _(_)

dSq (5.H.25)

[2] Hess' formulation (u- O)

• o

aB

Vq _ dSq = - _® . _(_)
(5.H.26)

[3] Modified Morino formulation (o _ O)

½,('P) - _ ff u A(_) . Vq @ dSq = _ (_)

aB

[4] Direct Velocity formulation

i _ I _(q) Vq @ dSq 0_ + 15 o @ dSq -T_-x ff u • =

BB BB

-o +-_ SIo(_) _(_) . VqOdSq +_-_ (_ xV_) xV@dSq .

aB aB

(5.H.27)

(5.H.28a)

:

(5.H.28b)

5-H .5

First wemust emphasizethat o (resp. _) for one formulation is not the same

as o (resp. _) for another formulation. Other appropriate remarks are:

(1) Both of the Morino formulations [1] and [3] lead to the same AIC

matrix. (Compare equation (5.1.14) to (5.H.13) to observe this.)
However, the modified Morino formulation is less expensive because it

requires no source influence coefficients.

(2) The general folklore relating to these various formulations suggests
that in terms of solution quality, [4] is best, [1] is second best,

[3] third best and [2] is the least accurate. In particular, Hess'
formulation, because it does not allow doublet wake sheets, cannot be

used for lifting configurations.

(3) In terms of cost, method [2] is least expensive followed by [3], [I]
and [4] in that order.

(4) All of these integral equations are Fredholm integral equations of
the second kind. This is all to the good, since Fredholm integral

equations of the first kind are notorious for leading to poorly
conditioned matrix equations. Second kind integral equations on the

other hand usually lead to fairly well conditioned matrix equations.
This is especially true when, as in PAN AIR, the integral kernels are
singular.

(B) The direct velocity formulation [4] leads to an Hermitian system of

integral equations. This fact helps explain the excellent numerical
properties of this method of formulation.

V

V

5-H.6

_.._rJ

6.0 REAL MATRIX SOLVER (RMS) MODULE

6.1 INTRODUCTION

The RMS module solves large systems of linear equations. Most of the
subroutines used by RMS reside on the PAN AIR library (PALIB).

(1) Decompose the square matrix [AIC] into [L] and [R] plus pivoting

terms [P].

[AIC] , [L] ([P][R])

where,

[AIC] is the Aerodynamic Influence Coefficient matrix
[L] is the lower-triangle matrix
[R] is the upper-triangle matrix
[P] represents pivot terms

(2) Perform the forward and backward substitutions with [L] and [R] plus

the right-hand-side constraints matrix, [RHS], to find the lambda
solutions [_].

The matrix [AIC] is generated in the PAN AIR module MAG and the matrix [RHS]

is generated in the module RHS. The primary function of the RMS module is to
perform the decomposition of the AIC matrices. The forward and backward
substitution will be done in the latter stages of RHS. The subroutine that

RMS uses to decompose [AIC] is called RMSD and resides on PALIB. For

efficiency's sake, the subroutines operate on matrices in blocked
(partitioned) format. To interface with the other modules of PAN AIR, the RMS

module performs the following steps:

(1) Block the partition of AIC matrix corresponding to the unknown

singularity parameters (it was generated in rows by the MAG module).

(2) Decompose the "unknown" AIC matrix into [L], [R], and [P].

(3) RMS, during an update run, uses a restart capability of _4SD by
setting the restart row and column submatrix indices to point to the

first submatrix not previously decomposed. If [AIC] consists of k by
k submatrices, then the restart index must be set to k+1.

The module also generates a permanent RMS data base for the storage of the
decomposed matrix. The [L] and [R] matrices replace the [AIC] matrix while

the pivot terms [P] are stored on the RMS data base.

A temporary data base, RMST, is used for internal data storage.

v

6.1

6.2 RMS OVERVIEW

6.2.1 Purpose of RMS

The Real Matrix Solver (RMS) is a module of the PAN AIR System. RMS will

block and decompose the AIC matrices that were generated in the MAG module.

6.2.2 RIISOutput Data

RMS prints only error diagnostics information when SDMS errors and matrix

singularity errors occur. Appendix 6-E lists the possible RMS error
diagnostics.

6.2.3 Data Base Interfaces

RMS reads input data from data bases created by MEC and MAG. The MEC data

base provides data base names, account numbers, data base status, date of
creation, and other similar information. The MAK data base created by the MAG
module contains the unknown AIC matrices. RMS creates a single data base

during its execution. The decomposed AIC matrices are always stored on the
RMS data base and later used in the RHS module. Also, the RMS data base is

used as input during a RMS update run. In addition, RMS uses a temporary data
base RMST. The RMS and RMST data base master definition is described in

Appendix 6-D.

6.3 MODULE DESCRIPTION

The main overlays and their subroutines are briefly summarized in this
section. The RMS functional decomposition is shown in Appendix 6-B and a
chart of the subroutine tree structure is presented in Appendix 6-A.

6.3.1 Overall Structure

Figure 6.1 illustrates the top level structure of the module RMS. The
functional decomposition of all overlays and their subprograms is given in

Appendix 6-B.

6.3.2 Overlay Descriptions

A summary description of each overlay of the module RMS is given in the

following paragraphs.

6.3.2.1 RMS Overlay (0,0)

The top level overlay (0,0) of RMS initializes the data bases and controls

access to the 3 primary overlays.

V

V

6.2

v

6.3.2.2 RMSlNT Overlay (1,0)

Checks the status of data bases and initializes the COMMON BLOCK variables

used in the matrix process.

6.3.1.3 BLOCKA Overlay (2,0)

The RMS subroutines from RMSLIB operate on the AIC matrices in blocked

partitioned format and all matrices must be stored as a direct data set on RMS
data base (Figure 6.2). The BLOCKA module will block, by rows, the AIC

matrices which were generated in the MAG module. In order to accomplish this,

there must be a scratch array buffer of length at least long enough to hold

any 3 submatrices required for the RMS decomposition process. The size of the
buffer is preset to 30,000. If larger blocks are desired, the user must

redimension blank common and data load the new length into labeled common
/BCLEN/.

The blocking of the AIC matrices is accomplished by calling subroutine BLOCK

for each non-updatable and�or updatabTe partition.

6.3.2.4 DCOMPO Overla_ (3,0)

The subroutine RMSD from RMSLIB is called to decompose the non-updatable

and/or updatable partitions of the AIC matrices which were generated in

BLOCKA. In order to accomplish this there must be in core, a scratch array at
least long enough to hold any 3 submatrices produced from BLOCKA. The size of

the buffer area is preset to 30,000 [decimal], the same as in BLOCKA.

Subroutine RMSD is called to decompose the AIC matrix into the product [L],

[R], and generates the pivoting information matrix [P]. The [L] and [R]

matrices are the lower-triangular and the upper-triangular matrices which
replace the blocked AIC submatrices on the RMS data base after the
decomposition process.

The following process takes place during an AIC update run after the

decomposed AIC matrices are saved on the data base in an original run through
the PAN AIR system.

Original Run

o Decomposition of the AIC blocked submatrices.

o The [L], [R], and [P] submatrices are saved on the RMS data base.

Update Run

Retrieve the [L], [R], and [P] submatrices from the original run from
the RMS data base.

Restart the initial problem by setting the Yndex key to point to the

first submatrix not previously decomposed.

The [L], [R], and [P] submatrices produced from the original run or
update run will be saved on the RMS data base.

6.3

6.3.3 RMS Data Base

The Master Definitions of the data bases RMS and RMST are given in Appendix

6-D.

6.3.4 R_IS Interfaces

Figure 6.3 summarizes the internal and external data interfaces between the
RMS module and the RMS, MEC, and MAK data bases. The RMS data base is used by
the module RHS. RMS uses the RMS data base as input of the decomposed AIC

matrices created in a previous run during an Update Run.

6.3.5 Data Flow

Figures 6.4 through 6.6 illustrate the data flow for the major sections of RMS.
Detailed data flow information can be found by consulting these figures,

Appendix 6-C (Data Base Communication Chart), and the glossaries of the
program/subroutines which are of interest.

6.4 LOWER LEVEL FUNCTIONS

6.4.1 Functional Decomposition

See Appendix 6-B for a description of the RMS decomposition.

6.4.2 Subroutine Descriptions

6.4.2.1 BLKGEN

Submodule BLKGEN generates RMS blocking information for the non-updatable

and/or updatable partitions of the AIC matrices.

The core storage in Blank Common area available for use as scratch array for

temporary data storage is calculated using REQFL from PALIB. The blocking
information parameters are calculated for the updatable and/or non-updatable
AIC submatrix block sizes and are saved on the RMS data base.

During an AIC update run, the submatrix block and decomposition restart
location is calculated. The blocking information from the previous run stored
on RMS data base is read and the blocking information is calculated for the

additional row/column updates. Finally, all blocking information is saved on
the RMS data base.

6.4.2.2 BLOCK

Submodule BLOCK converts a matrix stored as rows into a matrix stored by

blocks. The basic processing steps in blocking matrices is done in a two step

operation. In the first step, the matrix is read by rows, and written on a

temporary data base by rectangular blocks in subroutine RECBLK. In the second
step, enough rectangular blocks are read to form larger blocked submatrices
and written out on the RMS data base for later processing. These steps are

repeated until all rows of the AIC matrices are processed.

V

6.4

6.4.2.3 RECBLK

SubmoduleRECBLKproduces enoughrectangular blocks to produce larger blocks
by reading (a row at a time) the AIC matrices from the MAKdata base created
in the MAGmodule. These rectangular blocks are mergedto form a larger
blocked rectangular matrix. Finally, the blocked rectangular matrix is
sub-divided into smaller column blocks and written out onto the RMStemporary
data base. This process is repeated until all rows of the AIC matrix are
processed.

6.4.2.4 SQBLK

SubmoduleSQBLKreads enoughrectangular blocks from the RMStemporary data
base produced in RECBLKto form square block submatrices. The blocked
submatrices are written onto the RMSdata base for later processing in module
DCOMPO.This process is repeated until all rectangular submatrices are read
and processed.

6.4.2.5 RMSD

Decomposesthe blocked AIC submatrices formed in SQBLKand stored on the RMS
data base into [L], [R], and [P].

V

6.5

OVERLAY(1,0)
RMSINT

Check Data Bases
and Initialize
CommonBlocks

UPDATERUN

RMS

Top Level
Overlay (0,0)

Initialize
and Call other

Overlays

Ir

ii i

OVERLAY (2,0)

BLOCKA

Block the Unknown

AIC Matrices

ii

OVERLAY (3,0)

DCOMPO

Decompose

the AIC Matrices

V

_f

6.6

Figure 6.1 - Top Level Structure of RMS

OVERLAY (2,0)

BLOCKA

Block [AIC]

i

J

BLKGEN

Generates

Blocking

Information

BLOCK

Blocks

[AIC]

I
1

1
L.

RECBLK

Rectangular

Blocking Process

SQBLK

Square

Blocking Process

_RMS)

Figure 6.2 - Structure of (2,0) Overlay of RMS

6.7

MEC

MAG MAK
RMS RMS , RHS

Data Base Directory Information

Unknown AIC Matrix by Rows

Decomposed AICMatrix

Temporary Storage for Blocks of Submatrices

Figure 6.3 - Data Base Relationships

MEC)
DATA-BASE-HEADER

MACRO-OPTIONS

OVERLAY(I,0)

RMSINT

Figure 6.4 - Structure and Data Flow of (1,0) Overlay

6.9

MAK

RMS

OVERLAY(2,0)

BLOCKA

AIC-BLOCK
PIV-BLOCK

RMS

' BLOCK-INFO
BLKGEN

BLOCK-INFO

SYMMETRY

AIC-UNKNOWN

BLOCK

_W

O RMST)REC-BLOCK
RECBLK

Figure 6.5 - Structure and Data Flow of (2,0)

SQBLK

Overlay

6.10

J

RMS) OVERLAY (3,0)

DCOMPO

Decomposed

Matrix

Figure 6.6 - Structure and Data Flow of (3,0) Overlay

6.11

V

APPENDIX 6-A TREE STRUCTURE

The tree structure diagram of the RMS module has been deleted from this

document. It is, however, available on the installation tape.

6-A.1

APPENDIX6-B
RHSFUNCTIONALDECOHPOSITION

6-B.I

V

V

Initialization of RMS Execution [Overlay (0,0)] (RMS)
A Initialize Printout (PRGBEG)
B Initialization of SDMS for Execution (ISDMS)

C Check Data Base(s) and Initialize Common Blocks

[Overlay (1,0)] (RMSINT)

A Open Data Base MEC (DBOPEN)
B Get Data-Base-Header (ESGET)
C Check DatazBase-Location of MAK, RMS, and RMST (CHPADB)

D Close Data Base MEC (DBCLOS)

Blocks the Unknown AIC Matrices [Overlay (2,0)] (BLOCKA)

A Open Data Bases MAK and RMS (PAOPEN)
B Generates RMS Blocking Information for Non-Updatable

and Updatable Partitions (BLKGEN)
A Determines Core Storage Available (REQFL)

B Get Previous AIC Blocking Information from the RMS Data
Base (ESGET)

C Determine AIC Block Sizes
A Calculates Maximum Block Size for [AIC]

B Determines Size of All [AIC] Non-Update Blocks
C Determines Size of All [AIC] Update Blocks

D Calculate Restart Location and Total Problem Size

E Generate [AIC] Blocking Information on RMS Data Base
A Place [AIC] Blocking Information on RMS Data Base (ESPUT)

B Replace [AIC] Blocking Information on RMS Data Base (ESREP)
F Gets Previous [AIC] Blocking Information From the RMS

Data Base (ESGET)

G Determines RHS Block Sizes (For RHS Module)
A Calculates Maximum Block Size for RHS Blocks

(For RHS Module)

B Error Test (For RHS Module)
C Determines Size of RHS Blocks (For RHS Module)

C Performs Blocking of AIC Matrices
A Blocks Non-Updatable (Upper-Left) Portion of AIC (BLOCK)
B Blocks Updatable (Upper-Right) Portion of [AIC] (BLOCK)

C Blocks Updatable (Lower-Left) Portion of [AIC] (BLOCK)

D Blocks Updatable (Lower-Right Portion of [AIC] (BLOCK)
A Open Temporary Data Base RMST (PAOPEN)

B Form Enough Rectangular Blocks to Form Submatrices (RECBLK)
A Computes Number of Rectangles Per Block
B Distributes the Number of Rows in Current Block

C Gets a Matrix Row (ESGET)

D Writes Rectangular Row Partition onto Data Base RMST (ESPUTR)
C Form Row of Square Blocks From the Rectangular Blocks (SQBLK)

PRECEDING PAGE BLANK NOT FILMED _E r"__INTENTtO_NA_LY BLANI

6-B.3

A ReadBlocked Columnof Rectangular Matrices . ,
B Write Submatrix onto Data Base

D Close and Return Data Base RMST (PACLOS)

D Close Data Base MAK and RI4S (PACLOS)

Decomposes the AIC Matrices [Overlay (3,_)] (DECOMPO)
A Open Data Base RMS (PAOPEN)

B Decomposes the Non-Updatable (Upper-Left) Portion of
[AIC] (RMSD)

C Decomposes the Updatable Portions of [AIC] (RMSD)
D Write Data Base Header Data Set (ESPUT)

E Close Data Base RMS (PACLOS)

Terminal Program Execution and Printout (PRGEND)

6-B.4

k._y
APPENDIX 6-C

DATA BASE COMMUNICATION CHARTS

The Data Base Communications Chart is presented in three forms. Each form is

alphabetized by columns, from left to right. The first form has a column
order of Data Base, Dataset Name, Map Name, Common Block, and

Program/Subroutine. The second form has a column order of Data Base, Map
Name, Dataset Name, Common Block, and Program/Subroutine. The third form has
a column order of Common Block, Data Base, Map Name, Dataset Name, and

Program/Subroutine. Thus a person can get a cross reference on a data element

• by knowing either the Dataset Name, Map Name or Common Block name.

6-C.I

V

DATA
BASE

MEC

MEC

MAK

MAK

RMS

RMS

RMS

RMST

RMST

DATA
BASE

MEC

MEC

MAK

MAK

RMS

RMS

RMS

RMST

RMST

DATA SET-NAME

DATA-BASE-HEADER

MACRO-OPTIONS

AIC-UNKNOWN

SYMMETRY

AIC-BLOCK

BLOCK-INFO

PIV-MAT

REC-BLOCK

REC-BLOCK

HAP-NAME

MECHDR

UPDATE

AICUNK

SYM

AICBLK

8LIN

PIVMAT

RECMAT

RECMAT2

FIRST FORM

MAP NAME

MECHDR

UPDATE

AICUNK

SYM

AICBLK

BLIN

PIVMAT

RECMAT

RECMAT2

SECOND-FORM

DATA-SET-NAME

DATA-BASE-HEADER

MACRO-OPTIONS

AIC-UNKNOWN

SYMMETRY

AIC-BLOCK

BLOCK-INFO

PIV-MAT

REC-BLOCK

REC-BLOCK

COMMON
BLOCK

/RUNIDS/

/BLKINF/

/BLKINF/

/BLKINF/

Dynamic

/BLKINF/

Dynamic*

Dynamic*

Dynamic

COMMON
BLOCK

/RUNIDS/

/BLKINF/

/BLKINF/

/BLKINF/

Dynamic

/BLKINF/

Dynamic*

Dynamic*

Dynamic

PROGRam/
SUBROUTINE

RMSlNT

RMSlNT

BLOCKA

BLOCKA

DCOMPO

BLKGEN

DCOMPO

BLOCK

BLOCK

PROGRAM/
SUBROUTINE

RMSINT

RMSlNT

BLOCKA

BLOCKA

DCOMPO

BLKGEN

DCOMPO

BLOCK

BLOCK

6-C.3

PRECEDING PAGE BLANK NOT FILMED L_;[._ _, _" tNT[NTt(_dAI_LYBLAN_

THIRD-FORM

CO_40N DATA PROGRAM/
BLOCK BASE MAP-NAME DATA SET NAME SUBROUTINE

/RUNIDS/ MEC MECHDR DATA-BASE-HEADER RMSlNT

/BLKINF/ MEC UPDATE MACRO-OPTIONS RMSlNT

/BLKINF/ MAK AICUNK AIC-UNKNOWN BLOCKA

/BLKINF/ MAL SYM SY_ETRY BLOCKS

Dynamic RMS AICBLK AIC-BLOCK DCOMPO

/BLKINF/ RMS BLIN BLOCK-INFO BLKGEN

Dynamic* RMS PIVMAT PIV-MAT DCOMPO

Dynamic* RSMT RECMAT REC-BLOCK BLOCK

Dynamic* RMST RECMAT2 REC-BLOCK BLOCK

V

Dynamic mapping of the dataset is used, thus requiring no common block
storage. See Section 13 of this document.

6-C.4

[

APPENDIX 6-D FIASTER DEFINITION

The data base master definition listing of the DIP module has been deleted

from this document. It is produced from the PAN AIR tape during installation.

L .
v

6-D.I

V

V

APPENDIX 6-E
RMS ERROR MESSAGES

6-E.1

V

The following is a list of the RMS error diagnostic messages by overlay.

RMS - OVERLAY (0,0)
ERROR IN MODULE ERRMOD

where, ERRHOD is RMSINT, BLOCKA, or DCOMPO.

0 RMSINT - OVERLAY (1,0)
******* NERR = IS COUNT OF FATAL ERRORS FROM RMSINT.

0 BLOCKA - OVERLAY (2,0)

******** ERROR IN MODULE ERRMOD
where, ERRMOD is B_BLOCK(UL), BLOCK(UR), BLOCK(LL), or

BLOCK(LRT

Note: UL designates Upper Left partition of AIC,
UR designates Upper Right partition of AIC,

LL designates Lower Left partition of AIC,
LR designates Lower Right partition of AIC.

BLKGEN

******** FATAL ERROR IN BLKGEN ********

CORE NOT LARGE ENOUGH TO HOLD ONE COLUMN OF RIGHT-HAND-SIDE MATRIX.

DCOMPO - OVERLAY (3,0)
1. ******** ABNORMAL ERROR EXIT FOR NON-UPDATE DECOMPOSITION RUN

FOR AIC MATRIX IMAGE.
2. ******** ABNORMAL ERROR EXIT FOR UPDATE DECOMPOSITION RUN

FOR AIC MATRIX IMAGE.

3. ERROR CODE IS IERR
WHERE, I_ -i SCRATCH ARRAY IS NOT LONG ENOUGH TO PROCESS

SOLUTION.

= -2 IMPLIES FAILURE IN SDMS.
= K IMPLIES SOLUTION APPEARS SINGULAR AT ROW K.

All other RMS error diagnostics are written from the RMSLIB

subprograms during execution.

6-E.3

PRECEDING PAGE BLANK NOT FILMED IBb6(. (_" E'._, IN_ENh0)IAI_LY BLANK

7.0 RIGHT HAND SIDE (RH.S)MODULE

7.1 INTRODUCTION

_k

The primary function of the RHS module is to find the unknown singularity

parameters _un of the linear system

[_n]= [RHS][AIC] Xun

from a decomposed AIC matrix, [AIC], the known singularity parameter, matrix,
[_n], and the right-hand-side constraints matrix, [RHS]. Related tasks
include the generation of the right-hand-side matrix, [RHS], and the
forward/backward substitition using the decomposed AIC matrix.

The module also generates a permanent data base, RHS, for the minimal data
generator module MDG. This data base contains all the known and unknown
singularity parameters _.

Two temporary data bases, RHSX and RMST, are used for internal data
storage.

7.2 RHS OVERVIEW

7.2.1 Purpose of RHS

The PAN AIR system was created to find the pressures, forces and
velocities of a flow around an arbitrary body. The problem is reduced to
finding the solution of a large linear system of equations:

[AIC] [_] : [RHS]

where [AIC] is a matrix of aerodynamic influence coefficients, [RHS] is a
matrix of right-hand-side constraints and [_] is the singularity vector which
may contain known and unknown parameters.

The RHS module constructs the [RHS] matrix and uses forward and backward

substitution in conjunction with a decomposed [AIC] matrix from the RHS module

to find the unknown portion of the singularity vector [_]. More detail of the
process is given in Paragraph 7.3.

7.2.2 RHS Input/Output Data

7.2.2.1 Output

Very little printed output is given by the module RHS. What does occur is
error diagnostic information if an error is encountered. A message is printed
at the end of execution indicating the number of errors, if any.

7.2.3 Data Base Interfaces

The module RHS creates one data base, RHS, for MDG and two temporary data
bases, RHSX and RMST, for internal storage. The data bases from DIP, DQG,
MEC, RMS and MAG are used for required input data. Figure 7.1 illustrates the
relationships between RHS and all used data bases.

7.1

The input data from MEC,DIP, DQG,MAGand RMSare used by RHS. The MEC
data base furnishes names,account numbers, status and related information for
all the data bases. The DIP data base gives user option and constraint data.
The DQGdata base furnished constraint and global data. Finally, the RMSdata
base has available the decomposedAIC matrix.

The two temporary data bases, RHSXand RMST,are used for internal
storage. The data base RHSXstores the DIP constraint data while RMST
contains the blocking information for the AIC matrix.

The RHSpermanentdata base contains several sets of data. The symmetry
information, the RHSright-hand-side matrix, the on-set flow vector for each
control point, the inverse value of the partition of the AIC matrix
corresponding to the knownsingularities and the values of all singularities
in row or columnformat.

7.3 MODULE DESCRIPTION

The linear system of the PAN AIR problem can be placed into the parition
form

[_ Icnn Ou]II FRHSn] Cun u °
where [AICnn] is a diagonal submatrix corresponding to the known singularities

[_n] , [AlCun AlCuu] is the partition of the aerodynamic influence coefficient

matrix corresponding to the unknown singularites [_un], [RHS n] is the

submatrix of right-hand-side constraints corresponding to the known
singularities and [RHS u] is the submatrix of the right-hand-side constraints

corresponding to the unknown singularities. With minimal effort, the linear
system can be put into the form:

[AICnn] [_n] : [RHSn] (7.3.1)

[AlCuu] [_u] = [RHSu] _ [AICun] [_n] (7.3.2)

It is this latter form with which RHS is concerned.

7.3.1 Overall Structure

Figure 7.2 illustrates the structure of the module RHS. The top level
overlay (0,0) RHSPRG initializes the data bases and controls access to the
other five overlays. The functional decomposition of all the overlays and
their subprograms is given in Appendix 7-B. See also Appendix L of the Theory
Document (Reference I) for theoretical details.

_ I

V

W

7.2
V

L

7.3.2 Overlay Descriptions

7.3.2.1 OPENDB Overlay (1,0)

The program initializes the data bases used by RHS and creates the data

base maps which set up correspondence between the data base variables and the

program variables. Figure 7.3 illustrates the overall program execution of
OPENDB.

The DIP constraints data is also read from its data base and converted to

a form usable by RHS. The restructured data is placed on the temporary data
base RHSX.

7.3.2.2 PBCAD Overlay (2,0)

The primary purpose of the second overlay is to compute the

right-hand-side constraint matrix, [RHSu] (the right-hand-side of equation

(5.7.26) of the Theory Document, Reference 1) corresponding to unknown

singularities _u. In this process, the onset flows are calculated. The data
is then saved on the RHS permanent data base. Figure 7.4 illustrates the
overall data transfer.

7.3.2.3 RHSC Overla_ (3,0)

The third overlay serves as a controller for three sub-overlays, KNOWN,

TRANSF and KWNCTR. Figure 7.5 shows the overall execution process of the

three sub-overlays.

7.3.2.4 KNOWN Overlay (3,1)

The calculation of the right-hand-side constraint matrix [RHSn] (which

constitute the extreme right-most terms in equation (5.7.17) of the Theory

Document (Reference 1)) for the known singularity parameters occurs in overlay

(3,1). It also finds the known singularities from the known diagonal matrix,
[DI] occurring in the same equation. The data is stored on the RHS data base.

7.3.2.5 TRANSF Overlay (3,2)

The second level overlay (3,2) symmetrizes and transforms the known

singularities from row to column format. The data is stored on the RHS data
base.

7.3.2.6 KWNCTR Overlay (3,3)

The second level overlay (3,3) finds the right-hand-side constraint matrix

[RHSu], for the unknown singularities and then subtracts off the contribution

[AICun] due to the known singularities. That is, it computes the complete

right-hand-side of equation (5.7.17) of the Theory Document (Reference 1).

v

7.3

7.3.2.7 RHSOLV Overlay (4,0)

The fourth overlay solves the system of equations (7.3.2) for the unknown

singularities _n using forward and backward substitution on the decomposed

matrix [AICu]. Figure 7.6 indicates the interaction between the program and

the affected data bases.

7.3.2.8 RHSD Overlay (5,0)

The last overlay gives a report on execution, either successful or

unsuccessful. Figure 7.7 indicates the interaction between the program and

data base.

7.3.3 RHS Data Bases

The master definitions of the data bases RHS and RHSX are given in

Appendix 7-D.

7.3.4 RHS Interfaces

Figure 7.1 summarizes the internal and external data interfaces between
modules and their data bases.

The interrelationship (functional decomposition) between all overlays and

subroutines is given in Appendix 7-B.

7.3.4.1 Internal Interfaces

The RHSX temporary data base is used as a scratch file for the

right-hand-sides constraint and singularity data.

V

7.3.4.2 External Interfaces

The input data is obtained from the MEC, DIP, DQG, MAK and R_iS data
bases. The MEC data base furnishes data base names, accounts, status and
other related information for all data bases. The DIP data base introduces

the user options affecting RHS and the constraint data used for constructing

the right-hand-side constraints. The DQG data base supplies control point
data. The _K data base provides the unknown singularity portion of the

aerodynamic influence coefficient matrix. Finally, the RMS data base provides
the decomposed known singularity portion of the aerodynamic influence
coefficient matrix.

The output data, consisting of the right-hand-side constraints and

singularity data, is stored on the RHS data base. This data is used by the
MDG module.

7.3.5 Data Flow

The execution of RHS has already been discussed to some extent in

Paragraph 7.1 and Figure 7.1. A somewhat different picture to the exact
sequence is given in Figures 7.2 through 7.6. With the information given

previously, the figures should be self explanatory.

7.4

7.4 LOWER LEVEL FUNCTIONS

7.4.1 Functional Decomposition

See Appendix 7-B for a description of the RHS decomposition.

7.4.2 Subroutine Descriptions

BLKGEN

Generates RHS blocking information for non-updateable and updateable
partitions.

BLOCK

Converts a matrix stored by rows into a matrix stored by blocks.

CENTER

Arranges the looping sequence for processing center control points.
See Appendix 7-E.

CNSTR

_Initializes the constraints conditions of all the different RHS

solutions for general boundary conditions.

CNSTRT

Initializes the constraints conditions of all the different RHS

solutions for boundary condition_ which define a known singularity

parameter.

COLMNZ
_onverts RHS solution matrix LAMBDAS from blocks to columns of

non-updateable and updateable singularity parameters.

CPINFO

Initializes the control point data, including boundary conditions,
image locations and normals.

DIPCTS

The constraints data in DIP is in the user input format. RHS

requires the constraint conditions for each control point. This

subroutine pre-processes the DIP data and stores the results on RHSX
data base.

DIPFUL

reads the constraint data, that is, the coefficients of equation
(H.3.25) of the Theory Document (Reference 1), from the DIP data base

into a holding array and orders them according to the control
points. See Appendix 7-D.

EDGE

Arranges the looping sequence for processing edge control points.
See Appendix 7-D.

7.5

MAPS
Defines all the required SDMSmaps.

NETSP
Gets netwk-spec and special-points datasets from DQG.

NEWCST
Transfers newconstraints data from a holding array to the output
array. SeeAppendix 7-D.

PRNCST
_dds the most recently computedconstraints data to the RHSXdata
set. SeeAppendix 7-D.

PREP
Defines constraints dataset, the closure boundary condition edge and
the constraints that are required from DIP. SeeAppendix 7-D.

RECBLK
_eads a matrix stored by rows and writes it in rectangular blocks.

RHSVEC
_enerates the onset flow vector and computesthe right-hand-side from

the user-input parameters. It is also used in MAG.Cfor generating
right-hand-side vectors for knownsingularities. RHSVECcomputesthe
left-hand-side of equation (H.3.25) of the Theory Document(Reference
1).

SLNDAT
--Tnitializes /NUM/ and /SYM/ and generates solution-data.

SNGINF

Initializes the information on the known singualrity, its image
locations and normal s.

SPECIL

Arranges the looping sequence for processing special control points.

See Appendix 7-D.

SQBLK
_Reads a matrix stored by rectangular blocks and writes it by square

blocks.

SYMKWN

Symmetrizes known singularities and forms partial columns of the

symmetrized singularities.

V

V

7.6

V

[MEC MEC

DIP DIP
®

®
DQG DQG RHS RHS MDG

®

MAG _K C

RMS RMS RHSX RMST

(!)- Data Base Directory Information

(_)- Input Options and Constraints

®- Global Data and Constraints

(_)- Partition of AIC Matrixfor Unknown Singularities

(_)- Decomposed AIC Matrix

(_)- DIP Constraints Data

(2)- Blocking Information for the AIC Matrix

(_)- The Known and Unknown Sigularities for the MDG Module

V Figure 7.1 - Data Base Relationships

7.7

DB Info

OVERLAY (1,0)

OPENDB ,

-Open Data
Bases

•Process DIP
Constraint

.l}ala

iConstant

I Data

OVERLAY (2,0)
i

PBC AD

I

Right Hand
Side

Constraints

(Unknown)
i

f
v_

IOVERLAY (3,1)

_OWN

Right Hand
Side

Constraints

(Known)

JN

f

OVERLAY (3,0)

RHSC

Cont_Is

Sub-Overlays

RHS TOP LEVEL

RHSPRG

OVERLAY (0,0)

Initializes

and Call Other

Overlays

OVERLAY (4,0)

RHSOLV

Finds
I

r Unknown
Singularities

AIC

(Known)

Overlay (3,2)

TRANSF

Sy_etrizes

Unknown

Singularities

OVERLAY (3,3)

KWNCTR

Cal culates

the _own

•Singulari ties
|

V

OVERLAY (5,0)

_SD

S_ary

Execution

Da_

T

MDG

7.8 Figure 7.2 - Structure and Data Flow of RHS

OPENDB

Overlay (I,0)

Subroutine

MAPS

SDMS

MAPS

DQG
GLOBAL

DIP
GLOBAL

_I DIP:
Constraints
Data

Subroutine

SLNDAT

Subroutine
DIPCTS,
Constraints --
Transcriber

RHS

.UT!ON-DATA

RHSX:)

_ Constraintsl

Constraints-

Figure 7.3 - Structure and Data Flow for Overlay (1,0)

7.9

V

II RHSX:

CONSTPJ_INTSI

CONSTRAINTS

MAK:AIC Data

PBCAD

Overlay(2,0) RHS:
-- RHS-UNKNOWNI

ONSET-FLOW/

V

Figure 7.4 - Structure and Data Flow for Overlay (2,0)

7.10

V

RHSC I

Overlay (3,0)

RHSX

!Constraints i
Constraints

MAK:
COLMAP&
WMAP-INVERSE

KNOWN

Overlay(3,1)

RHS:
AIC-DIAGONAL

RHS-KNOWN

IRANSF

Overlay (3,2

RHS:
RHS-UNKNOWN

MAK:

AIC-KNOWN

KWNCTR

Overlay (3,

RHS:

LAMBDA-KNOWN

RMS:

RHS-UPDATED

Figure 7.5 - Structure and Data Flow for Overlay (3,0)

7.11

RHS:
RHS -UPDATED

PIV-MAT

RMS:AIC-BLOCKS

RH SOLV

Overlay (4,0) RHS: 1

BLOCK-INFO
LAM-MAT

LAMBDA-KNOWN

V

Figure 7.6 - Structure and Data Flow for Overlay (4,0)

7.12

I RHSD

Overlay (5,0)
I) RHS:)

DATA-BASE-
HEADER

Figure 7.7 - Structure and Data Flow for Overlay (5,0)

7.13

v

APPENDIX 7-A TREE STRUCTURE OF RHS

The tree structure diagram of the RMS module has been deleted from this

document. It is, however, available on the installation tape.

7-A.I

V

W

APPENDIX 7-B FUNCTIONAL DECOMPOSITION

The functional decomposition of the RHS module is presented here. The

decomposition labels given in the order of their execution and therefore may
not be alphabetic.

7-B.1

_w

V

V

Open data bases and initialize (OPENDB) [OVERLAY (1,0)]

Au Check the condition of the data bases and generate SDMS maps (MAPS)

A. Open 14ECdata base and define SDMS maps for MEC
(DBOPEN/DSMAP/SVMAP/ENDMAP)

B. Initialize /RUNIDS/ (ESGET)
C. Check data base conditions (CHPADB)

D. Close MEC data base (DBCLOS)

E. Open DQG data base and define SDMS maps
(PAOPEN/DSMAP/SVMAP/DVHAP/ENDMAP)

F. Open MAK data base and define SDMS maps
(PAOPEN/DSMAP/SVMAP/DVMAP/ENDMAP)

G. Open RHS and RHSX data bases and define SDMS maps
(PAOPEN/DSMAP/SVMAP/DVMAP/ENDMAP)

H. Open DIP data base and define SDMS maps
(PAOPEN/DSMAP/SVMAP/DVMAP/ENDMAP)

B, Initialize global data and generate solution data set (SLNDAT)

A. Get global data set (ESGET)
B. Initialize /NUM/ and /SYM/ (ESGET/CAB)
C. Get solution data set from DIP (ESGET)

D. Generate entry to RHS solution data (ESPOR)

Cg Pre-process constraints data (DIPCTS)
A. Get network data from DIP (ESGET)

B. Get network-spec data set from DIP (ESGET)
C. Initialize constraints value
D. Write to constraints -1 data set (ESPOR)
E. Write to constraints -2 data set (ESPOR)

F, Get DQG network-spec and special points data sets (ESGET)
G. Get networks bulk data control data set from DIP (ESGET)
H. Process full constraints transcriber (DIPFUL)

A. Pre-process DIP constraints (PREP)
A. Write to constraints -1 data set (ESPOR)

B. Initialize edge condition (ZERO)

C.. Define a point on the edge
D. Get DQG boundary condition data set (ESGET)

E. Initialize edge condition to closure
F. Initialize mapping information (ZERO)

G. Define mapping information (ZERO)
B. Define term

C. Initialize smear condition
D. Define column number

E. Get DIP constraints data (ESGET)

F. Process center control points (CENTER)
A. Convert to five lattice index
B. Define solution - ID

C. Process constraints (PRCNST)

A. Define boundary condition number
B. Zero the constraints array (ZERO)
C. Get the current constraints -2 data set

(ESGET)

7-B.3

PRECEDING PAGE BLANK NOT FILMED
I_GE___ _ INTENTIONALLYBLANK

Go

H.

Go

Ht

D. Get new constraints data (NEWCST)

A. Define length of constraint term
B. Define constraints value

C. Set constraints array

D. Get tangent vector from DQG boundary
condition data set (ESGET)

E. Replace the current constraints -2 data set
(ESPOR)

Process edge control points (EDGE)
A. Define solution - ID
B. Define the number of control points involved
C. Define fine lattice indices
D. Process constraints (PRCNST)

Process special control points (SPECIL)
A. Define lattice indices
B. Define solution - ID

C. Process constraints (PRCNST)
A. Define boundary condition number
B. Zero the constraints ARRAY

C. Get the current constraints -2 data set
(ESGET)

D. Get new constaints data (NEWCST)

A. Define length of constraint term
B. Define constraints value

C. Set constraints array

D. Get tangent vector from DQG boundary
condition data set (ESGET)

E. Replace the current constraints -2 data set
(ESPOR)

Process edge control points (EDGE)
A. Define solution - ID

B. Define the number of control points involved
C. Define fine lattice indices

D. Process constraints (PRCNST)

Process special control points (SPECIL)
A. Define lattice indices

B. Define solution - ID

C. Process constraints (PRCNST)

7-B.4

7

Produce boundary condition analysis data corresponding to unknown singular-
ities (PBCAD) [Overlay (2,0)]

A. Get velocity vector information and number of right-hand-sides (ESGET)

BI Define partition type and start and end indices of control points in

the partition

Cg Initialize control point and boundary condition information (CPINFO)
A. Get row map data set (ESGET)

B. Get boundary condition spec data set (ESGET)
C. Calculate image control point and normal vector (IMAGE)

E. Get B-pointer data set

D. Zero the RHS solution (ZERO)

Eg Initialize constraints (CNSTR)

A. Get constraints 1 d_taset (ESGET)
B. Define new lattice indices
C. Set lattice indices as default

D. Get constraints 2 data set(ESGET)

F. Initialize constriants

GI Compute right-hand-side vector (RHSVEC)
A. Calculate onset flow

B. Calculate right-hand-side

C. Set right-hand-side to zero

H. Store local onset flow (ESPOR)

J. Write to RHS-unknown data set (ESPOR}_

7-B.5

Solve for knownsingularities (KNOWN)[Overlay (3,1)]

A. Initialize
A. Get velocity vector information and numberof RHS(ESGET)
B. Start VARDIM(STARTR)
C. Set up blank commonstorage for known-AICdiagonal (INITIR)

B. Define partition type and the start and end indices of known
singularities in the partition

C. Initialize singularity and boundary condition information (SNGINF)
A. Get colmap data set (ESGET)
B. Get singularity-spec data set and initialize B-pointer (ESGET)
C. Convert panel indices to fine grid lattice indices
D. Get boundary-condition-spec data set (ESGET)
E. Calculate image normal and coordiates (IMAGE)

D. Initialize constraint information (CNSTRT)
A. Get constraints -1 data set (ESGET)
B. Define new lattice indices
C. Set lattice indices as default
D. Get constraints -2 data set (ESGET)

E. Initialize the constraint conditions (ZERO)

F. Computeright-hand-side vector (RHSVEC)
A. Calculate onset flow
B. Calculate right-hand-side
C. Set right-hand-side to zero

H. Generate entry to RHS-KNOWNdata set (ESPOR)

I. Solve for knownsingularities (CAD)

J. Generate entry to SING-KNOWNdata set (ESPOR)

K. Accumulate to AIC-diagonal

L. Enter into AIC-diagonal data set (ESPOR)

M. Delete blank commonstorage (DELETR)

7-B.6

V

Transform rows of knownsingularities into columnsand symmetrize (TRANSF)
[Overlay (3,2)]

A. Start VARDIM(STARTR)

Bo Find out the core memory available and the number of rows that can be
fit in core (REQFL)

C. Set up blank common storage (INITIR)

D. Define partition type

EQ Symmetrize the known singularities and form partial columns (SYMKWN)
Ao

B.

C.

D.
E.

F.

G.
H.

Initialize partition information
Zero the matrix (ZERO)
Read in a row of SING-KNOWN data set (ESGET)

Increment-counter

Transfer solution to the symmetrized matrix (XFERA)

Symetrize the known singularities (CAPDB)

Form partial column.of known singularities
Generate entry to lambda-part data set (DESPUT)

F. Delete blank common storage (DELETR)

G. Set up blank common for a column of known singularities (INITIR)

H. Initialize partition information and counter

I. Read a partition of lambda-part data set (DESGET)

J. Increment counter

K. Generate entry to lambda-known data set (ESPOR)

L. Delete blank common storage (DELETR)

7-B.7

Update and generate RHSwith contribution from knownsingularities (KWNCTR)
[Overlay (3,3)]

A. Oefine SDMSmapsfor matrix multiplication (DSMAP/SVMAP/DVMAP/ENDMAP)

B. Start VARDIM(STARTR)

Co Define partition type

D. Define mapinformation

E. Generate knownsingularitiy contribution (MULTI)

F. Define the row number in each partition

G. Get accumulatedcontribution to RHS(ESGET)

H. Formthe row of knownsingularity contribution (ESGET)
I. Update RHSsolution vector (CAMB)

J. Generate entry to data set (ESPOR)

K. Close RHSXdata base (PACLOS)

V

7-B.8

Solve for right-hand-side (RHSOLV)[Overlay (4,0)]

Ae Open RMS and RHS data bases and define maps (PAOPEN/DSMAP/
DVMAP/ENDMAP)

B. Read the right-hand-side matrix information (ESGET)

Ce Determine block sizes for RHS (BLKGEN)

Ae

B.

C.
D.

E.

G.

Determine core storage available (REQFL)

Get previous AIC blocking info from RMS data base (ESGET)
Determine AIC block size
Calculate restart location and total problem size

Place AIC blocking info on RMS data base (ESPUT/ESREP)

Determine RHS block sizes

D. Write blocking information onto RHS data base (ESPOR)

Ee Open temporary data base RHSX and define map for blocked RHS
(PAOPEN/DSMAP/DVMAP/ENDMAP)

Fm Perform the blocking of RHS (BLOCK)

A. Open temporary data base RMST and define maps
(PAOPEN/DSMAP/DVMAP/ENDMAP)

B. Form rectangular subblocks (RECBLK)

A. Compute number of rectangles per block
B. Distribute the number of rows in current block
C. Get a matrix row (ESGET)

D. Write rectangular row partition onto data base RI4ST (ESPOR)

C. Form row of blocks (SQBLK)
A. Read blocked column of rectangular matrix (ESGET)
B. Write submatrix onto data base (DESPUT/DESREP)

Be Solve the system of equations via forward and backward substitution

(RMSFB)

He Convert the blocked solution matrix to columns (COLMNZ)

A. Read a block and append to array containing column of blocks

(DESGET)
B. Write a column of non-updateable lambdas (ESPUT)

C. Read a block and append to array (DESGET)

D. Write a column of updateable lambdas (ESPOR)

I. Close and return data base RHSX (PACLOS)

J. Close RMST data base (PACLOS)

7-8.9

Close data bases (RHSE) [Overlay (5,0)]

A.

Bg

C.

Set condition parameter of RHS data base to 'COMPLETE', if successful
execution and to 'FATAL' otherwise

Write 'DATA-BASE-HEADER' dataset (ESPOR)

Close DIP, DQG, MAK and RHS data bases (PACLOS)

v

V

7-B.I0

APPENDIX 7-C RHS DATA BASE COMMUNICATION CHART

The Data Base Communications Chart is presented here in three forms. Each

form is alphabetized by columns, from left to right. The first form has a
column order of Data Base, Dataset Name, Map Name, Common Block, and

Program/Subroutine. The second form has a column order of Data Base, Map

Name, Dataset Name, Common Block, and Program/Subroutine. The third form has
a column order of Common Block, Data Base, Map Name, Dataset Name, and

Program/Subroutine. Thus a person can get a cross reference on a data element

by knowing either the Dataset Name, Map Name or Common Block name.

V

7-C. 1

V

" _ FIRST FORM

DATA BASE DATASET-NAME MAP-NAME

DIP CLOS-COND DIPCLS

DIP CLOS-COND DIPCLS
DIP COEFF-GEN-BC DIPGBC

DIP COEFF-GEN-BC DIPGBC

DIP GLOBAL NETDATA
DIP GLOBAL SOLDATA
DIP LOCAL-FLOW DIPLFW

DIP LOCAL-FLOW DIPLFW

DIP NETWK-BDC NETWKBD
DIP NETWK-SPEC NETWKSP

DIP SPEC-FLOW DIPSFW

DIP SPEC-FLOW DIPSFW

DQG B-POINTER BPOINT

DQG BNDRY-CONDN-SPEC BNDRY
DQG BNDRY-CONDN-SPEC DIPTNG

DQG GLOBAL GLOBAL
DQG GLOBAL GLOBAL
DQG GLOBAL ROTATE

DQG NETWK-SPEC NETWK
DQG SINGULARITY-SPEC SNGSPC
DQG SPECIAL-POINTS SPECPT

MAK AIC-KNOWN AICKWN
MAK AIC-KNOWN MATRXA
MAK AIC-KNOWN MATRXA
MAK COLMAP COLI
MAK ROWMAP ROWI
MAK ROW_P-INVERSE ROWINI
MAK SYMMETRY SYMI
MAK SYMMETRY SYM1
MAK SYMMETRY SYMI

MEC DATA-BASE-HEADER MECHED

RHS AIC-DIAGONAL AICDIA
RHS DATA-BASE-HEADER RHSHED

RHS LAMBDA-KNOWN LMBKWN
RHS LAMBDA-KNOWN MATRXB
RHS LAMBDA-KNOWN MATRXB

RHS L_-MAT LAMBLIC
RHS LAM-_AT LAMBLIC
RHS LAMBDA-UNKNOWN LAMUNK

RHS ONSET-FLOW ONSET
RHS PIV-MAT PIVMAT
RHS RHS-UNKNOWN RHSUNK
RHS RHS-UPDATED RHSUPT

RHS RHS-KNOWN RHSKWN
RHS SINE-KNOWN SNGKWN

RHS SOLUTION-DATA SOLDAT

COMMON

BLOCK*
PROGRAM/
SUBROUTINE

Dynamic MAPS

/FILDIP/ MAPS
Dynamic _PS

/FILDIP/ MAPS

Dynamic MAPS
Dynamic MAPS

Dynamic MAPS

/FILDIP/ MAPS
Dynamic MAPS

Dynamic MAPS
Dynamic MAPS

/FILDIP/ _APS

Dynamic MAPS

Dynamic MAPS
Dynamic _PS

/MUM/ MAPS
/SYM/ MAPS

Dynamic MAPS
Dynamic FLAPS

Dynamic MAPS
Dynamic MAPS

Dynamic MAPS
Dynamic KWNCTR

ICPUP,ISNGUP,IPOS KWNCTR
Dynamic MAPS
Dynamic MAPS

Dynamic MAPS

Dynamic MAPS
/NUM/ MAPS

/SYM/ MAPS

/RUNIDS/ MAPS

Dynamic MAPS
Dynamic MAPS
Dynamic MAPS
Dynamic KQNCTR
IROWUP,JPOS KWNCTR
Dynamic RHSOLV
IMAG RHSOLV
IMAG RHSOLV
Dynamic HAPS
IPOS RHSOLV
Dynamic MAPS
Dynamic _PS
Dynamic MAPS

Dynamic MAPS

Dynamic MAPS

PRECEDING PAGE BLANK NOT FILMED

_GE_INI_ENTIONAELY BLANI

7-C.3

DATA BASE DATASET-NAME

RHS BLOCK-INFO
RHS BLOCK-INFO

RHS PIV-MAT

RHS RHS-UNKNOWN
RHS RHS-UNKNOWN
RHS SOLUTION-DATA
RHS SOLUTION-DATA

RHSX CONSTRAINTS1

RHSX CUNSTRAINTS2

RHSX LAMBDA-PART
RHSX MATRIX-C

RHSX RHS-MATRIX

RMS AIC-BLOCKS

RMS AIC-BLOCKS
RMS BLOCK-INFO

RMS REC-BLOCK
RMS REC-BLOCK

MAP-NAME

BLRHS

BLRHS
PIVMAT

RHSUNKX
RHSUNKX

RHSIZE
RHSIZE

CNSTR1
CNSTR1
LMDPRT
MATRXC
RHSBLIC

AICBLK

AICBLK
BLIN

RECI,_T
RECMAT2

COMMON
BLOCK*

/BLKINF/
NAICS

Dynamic
Dynamic

IMAGE,IUP
/cPos/
NRHS

Dynamic

Dynamic

Dynamic

Dynamic
Dynamic

Dynamic
IPOS
F. P.

Dynamic

Dynamic

PROGRAM/

SUBROUTINE

RHSOLV

RHSOLV
RHSOLV

RHSOLV
RHSOLV

RHSOLV
RHSOLV

_mPS
MAPS
MAPS
MAPS
MAPS

RHSOLV

RHSOLV
BLKGEN

BLOCK

BLOCK

V

V

7-C.4

DATA

DIP
DIP
DIP
DIP
DIP
DIP
DIP
DIP
DIP
DIP
DIP
DIP

DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
OQG

MAK
MAK
MAK
MAK
MAK
MAK
MAK
MAK
MAK

MEC

RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS

BASE MAP-NAME

DIPCLS

DIPCLS
DIPGBC

DIPGBC
DIPLFW

DIPLFW
DIPSFW

DIPSFW

NETDATA
NETWKBD
NETWKSP

SOLDATA

BNDRY

BPOINT

DIPTNG
GLOBAL

GLOBAL
NETWK

ROTATE
SNGSPC

SPECPT

AICKWN
COL1
MATRXA
MATRXA
ROWIN1
ROW1
SYM1
SYM1
SYM1

MECHED

AICDIA
BLRHS
BLRHS
LAMBLIC
LAMBLIC
L_UNK
LMBKWN
MATRXB
MATRXB
ONSET
PIVMAT
PIVHAT

RHSHED
RHSIZE

RHSIZE

SECOND FORM

DATASET-NAME

CLOS-COND
CLOS-COND

COEFF-GEN-BC

COEFF-GEN-BC
LOCAL-FLOW

LOCAL-FLOW
SPEC-FLOW

SPEC-FLOW

GLOBAL
NETWK-BDC

NETWK-SPEC
GLOBAL

COMMON
BLOCK*

PROGRAM/
SUBROUTINE

Dynamic MAPS
/FILDIP/ MAPS

Dynamic MAPS
/FILDIP/ MAPS

Dynamic MAPS
/FILDIP/ MAPS

Dynamic MAPS

/FILOIP/ MAPS

Dynamic MAPS
Dynamic MAPS

Dynamic MAPS

Dynamic MAPS

BNDRY-CONDN-SPEC Dynamic MAPS
B-POiNTER Dynamic MAPS
BNDRY-CONDN-SPEC Dynamic MAPS
GLOBAL /NUM/ MAPS
GLOBAL /SYM/ MAPS
NETWK-SPEC Dynamic MAPS
GLOBAL Dynamic MAPS
SINGULARITY-SPEC Dynamic MAPS
SPECIAL-POINTS Dynamic MAPS

AIC-KNOWN
COLMAP

AIC-KNOWN
AIC-KNOWN

ROWMAP-INVERSE
ROWMAP

SYMMETRY
SYMMETRY

SYMMETRY

Dynamic _PS

Dynamic I,_PS

Dynamic KWNCTR
ICPUP,ISNGUP,IPOS KWNCTR

Dynamic MAPS
Dynamic MAPS

Dynamic MAPS
/NUM/ _,mPS

/SYM/ mAPS

/RUNIDS/ MAPSDATA-BASE-HEADER

AIC-DIAGONAL Dynamic MAPS
BLOCK-INFO /BLKINF/ RHSOLV
BLOCK-INFO NAICS RHSOLV

LAM-MAT Dynamic RHSOLV
LAM-MAT IMAG RHSOLV

LAMBDA-UNKNOWN IMAG RHSOLV

LAMBDA-KNOWN Dynamic MAPS
LAMBDA-KNUWN Dynamic KWNCTR

LAMBDA-KNOWN IROWUP,JPOS KWNCTR
ONSET-FLOW Dynamic _PS
PIV-MAT Dynamic RHSOLV
PIV-MAT IPOS RHSOLV

DATA-BASE-HEADER Dynamic MAPS
SOLUTION-DATA /CPOS/ RHSOLV

SOLUTION-DATA NRHS RHSOLV

7-C.5

DATA BASE

RHS
RHS
RHS
RHS
RHS
RHS
RHS

RHSX
RHSX
RHSX
RHSX
RHSX

RMS
RMS
RMS
RMS
RMS

MAP-NAME

RHSKWN
RHSUNK
RHSUNKX
RHSUNKX
RHSUPT
SNGKWN
SOLDAT

CNSTRI
CNSTR1
LMDPRT
MATRXC
RHSBLIC

AICBLK
AICBLK
BLIN
RECMAT
RECMAT2

DATASET-NAME

RHS-KNOWN
RHS-UNKNOWN
RHS-UNKNOWN
RHS-UNKNOWN
RHS-UPOATED
SINE-KNOWN
SOLUTION-DATA

CONSTRAINTS1
CONSTRAINTS2
LAMBDA-PART
MATRIX-C
RHS-MATRIX

AIC-BLOCKS
AIC-BLOCKS
BLOCK-INFO
REC-BLOCK
REC-BLOCK

COMMON
BLOCK*

Dynamic
Dynamic
Dynamic
IMAGE,IUP
Dynamic
Dynamic
Dynamic

Dynamic
Dynamic
Dynamic
Dynamic
Dynamic

Dynamic
IPOS
F. P.
Dynamic
Dynamic

PROGRAM/
SUBROUTINE

MAPS
MAPS
RHSOLV
RHSOLV
MAPS
MAPS
NAPS

NAPS

MAPS

MAPS
MAPS
MAPS

RHSOLV
RHSOLV
BLKGEN
BLOCK
BLOCK

V

r I

V

V

7-C.6

COMMON DATA

BLOCK* BASE

Dynamic DIP

Dynamic DIP
Dynamic DIP
DIPamic DIP

Dynamic DIP
Dynamic DIP
Dynamic DIP

Dynamic DIP
/FILDIP/ DIP
/FILDIP/ DIP

/FILDIP/ DIP

/FILDIP/ DIP

Dynamic DQG

Dynamic DQG
Dynamic DQG
Dynamic DQG

Dynamic DQG

Dynamic DQG
Dynamic DQG

/NUM/ DQG
ISYMI OQG

Dynamic MAK
Dynamic MAK
Dynamic MAK

Dynamic MAK
Dynamic MAK

Dynamic MAK

ICPUP,ISNGUP,IPOS MAK
/NUM/ MAK

/SYM/ MAK

/RUNIDS/ MEC

Dynamic RHS
Dynamic RHS

Dynamic RHS
Dynamic RHS
Dynamic RHS

Dynamic RHS

Dynamic RHS
Dynamic RHS

Dynamic RHS
Dynamic RHS
Dynamic RHS
IMAG RHS

IMAG RHS
IPOS RHS

THIRD FORM

MAP-NAME

DIPCLS

DIPGBC
DIPLFW
DIPSFW

NETDATA
NETWKBD
NETWKSP

SOLDATA

DIPCLS
DIPGBC

DIPLFW
DIPSFW

BNDRY
BPOINT
DIPTNG
NETWK

ROTATE

SNGSPC
SPECPT

GLOBAL
GLOBAL

AICKWN
COLt
MATRXA

ROWIN1

ROW1
SYM1

MATRXA

SYMI

SYMI

MECHED

AICDIA
LAMBLIC

LMBKWN
MATRXB

ONSET
RHSHED

RHSKWN
RHSUNK

RHSUPT
SNGKWN
SOLDAT

L_BLIC

LAMUNK
PIVMAT

DATASET-NAME

CLOS-COND

COEFF-GEN-BC
LOCAL-FLOW
SPEC-FLOW

GLOBAL
NETWK-BDC

NETWK-SPEC
GLOBAL

CLOS-COND
COEFF-GEN-BC

LOCAL-FLOW
SPEC-FLOW

BNDRY-CONDN-SPEC
B-POINTER
BNDRY-CONDN-SPEC
NETWK-SPEC

GLOBAL

SINGULARITY-SPEC
SPECIAL-POINTS

GLOBAL
GLOBAL

AIC-KNOWN
COLMAP

AIC-KNOWN
ROWMAP-INVERSE

ROWMAP

SYh_METRY
AIC-KNOWN

SYMMETRY
SYMMETRY

DATA-BASE-HEADER

AIC-DIAGONAL
LAM-MAT

LAMBDA-KNOWN

L_,IBDA-KNOWN
ONSET-FLOW

DATA-BASE-HEADER
RHS-KNOWN
RHS-UNKNOWN

RHS-UPDATED
SINE-KNOWN
SOLUTION-DATA

LAM-MAT
LAMBDA-UNKNOWN

PIV-MAT

PROGRAM/
SUBROUTINE

_PS
MAPS
MAPS
MAPS
MAPS
MAPS
MAPS
MAPS
MAPS
MAPS
MAPS
MAPS

MAPS
MAPS
MAPS
MAPS
MAPS
MAPS
MAPS
MAPS
MAPS

,MAPS
MAPS

KWNCTR
MAPS

MAPS

MAPS

KWNCTR
MAPS
MAPS

MAPS

MAPS

RHSOLV
MAPS

KWNCTR
MAPS

MAPS
_PS
MAPS

MAPS
MAPS
MAPS

RHSOLV
RHSOLV

RHSOLV

7-C.7

COt.IMON
BLOCK*

I RO_JUP,J POS
/BLKINF/
/cPos/
Dynamic
Oynamic
It, IAGE, iUP
_,JAICS
NRHS

Dynamic

Dynamic
Dynamic
Dynamic

Dynamic

Dynamic
Dynamic
Dynamic
F. P.
IPOS

DATA PROGRAH/

BASE I,IAP-NAME DATASET-NA_IE SUBROUTINE

RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS

RHSX
RHSX
RHSX
RHSX
RHSX

RMS
RMS
RMS
RMS
RHS

I,iATRXB LAhBDA-KNO_JN K_NCTR

BLRHS BLOCK-INFO RHSOLV
RHSIZE SOLUTION-UATA RHSOLV

PIV_IAT PIV-IIAT RHSOLV
RHSUNKX RHS-UNKNOWN RHSOLV

RHSUNKX RHS-UNKNO%IN RHSOLV
BLRHS BLOCK-INFO RHSOLV

RHSIZE SOLUTION-DATA RHSOLV

CNSTR1 CONSTRAINTSI i_APS
CNSTRI CONSTRAINTS2 NAPS
LMDPRT LANBDA-PART MAPS
MATRXC MATRIX-C MAPS
RHSBLIC RHS-MATRIX MAPS

AICBLK AIC-BLOCKS RHSOLV

RECMAT REC-BLOCK BLOCK
RECMAT2 REC-BLOCK BLOCK

BLIN BLOCK-INFO BLKGEN
AICBLK AIC-BLOCKS RHSOLV

If dynamic mapping is used for some or all of the elements of a dataset,

thus requiring no common block storage, it is indicated as such. See
section 13 of this document for details of dynamic mapping.

7-C.8

APPENDIX 7-D DATA BASE MASTER DEFINITIONS

The data base master definition listing of the DIP module has been deleted
from this document. It is produced from the PAN AIR tape during installation.

J
v

7-D.1

V

V

APPENDIX 7-E THE DIP FULL CONSTRAINTS TRANSCRIBER

7-E.1

_W

The full constraints transcriber takes the user-input boundary condition
data on the DIP data base, where it is stored in a fashion suitable for the
fairly arbitrary input format, and stores it on the RHSX data base in a form

suitable for use by RHS. The controlling routine for the constraints

transcription in general is DIPCST. If the boundary conditions for a network
are "Class 1" (that is, internal stagnation on thin impermeable surface),

DIPCTS computes the appropriate constraints and writes them to the CNSTR2 data

set (as well as writing a flag to the CNSTR1 data set that the boundary
condition is network-wide).

If the boundary conditions are not class i, DIPCTS calls DIPFUL, which
then controls the writing of the CNSTR data sets for that network. DIPFUL
first calls PREP, which finds out from DQG and DIP precisely which constraint

coefficients supplied by DIP are residing on the data base (and therefore not

necessarily zero). Certain constraints (b_, bT, and bN of equation (H.3.25)

of the Theory Document) reside on the COEF-GEN-BC data set of the DIP data

base. The constraint bo resides on the DIP SPEC-FLOW data set, (but on the

CLOS-COND data set if a closure condition is involved) while tT resides on the

DQG BOUNDARY-COND-SPEC data set. The local onset flow aU i (cf., equation

(H.3.22) of the Theory Document (Reference 1) comes from the DIP LOCAL-FLOW
data set.

Next, DIPFUL loops on each of the possible constraints. It reads the

appropriate constraints data, which may be smeared by DIP over all control

points on anedge, or over a column of panel center control points, into

/FILDIP/. The appropriate subroutine (CENTER for panel center control points,
EDGE for edge control points, and SPECIL for special control points) loops
over all points in the column or edge, computing their fine grid lattice
indices, and then calling PRCNST to process the constraints data for that

particular control point.

PRCNST then reads the CNSTR2 data set for that control point into /CSTDIP/.

At this point in the computation, that data set contains those constraint
coefficients which have been processed so far, while the rest are zero
(initially, all constraints are set to zero). PRCNST then calls NEWCST, which
transfers the value of the constraint under consideration from the holding

array in /FILDIP/ into /CSTDIP/. PRNCST then writes out /CSTDIP/, which has

one non-zero entry fewer than before, onto CNSTR2 data set.

It may occur that boundary conditions are not class 1, yet no constraints

are reported by DIP because the user-input contributions to the right-hand-side
is zero. In that case, no CNSTR2 data set is written, and it's absence in the

second or third overlay (subroutine CNSTR or CNSTRT) is assumed to mean that
all constraint values are zero. A warning message to that effect is then

printed out once for each network.

v

PRECEDING PAGE BLANK NOT FILMED __INI[NTtONA_LY BLANK

7-E.3

V

V

_ • I _ I I

APPENDIX 7-F THE UPDATE CAPABILITY

In case of either an IC update or a solution update (terms defined in
Section 7.2.3 of the User's Manual, Reference 2), the old RHS data base is not
used, but rather an entirely new RHS data base is created. Two restrictions
on the user result from the operation of RHS during update runs. The first is
the rather obvious one that the RHS data base designated by the user must not
exist before the execution of RHS. The second arises from the fact that DQG
is generally not re-run in a solution update, while RHS obtains the
right-hand-side tangent vectors t T from the DQG data base. Thus, a solution
update which involves changing the tangent vector t T is not permissible
unless DQG is re-run as well.

7-F.1

_w

V

V

8.0 MINIMAL DATA GENERATOR (MDG) MODULE

8.1 INTRODUCTION

The function of the MDG module is to compute average singularity values

and perturbation flow quantities at control and grid points. These are
interpolated from the singularity values at singularity locations (panel

center points and/or network edge midpoints). Singularity values include
source and doublet values. The perturbation flow quantities include the

average potential, average normal mass flux and average velocity. Data used
by post processing modules CDP, FDP and PDP is stored on the MDG permanent
data base. Three temporary data bases are used by MDG for intermediate data.

8.2 MDG OVERVIEW

8.2.1 Purpose of MDG

The MDG module copies global data from DIP, network, and panel geometry
data from DQG, and solution data from RH$ to the MDG data base. MDG

multiplies the IC (Influence Coefficient) matrices by the singularity matrices

and unsymmetrizes the results as flow quantities at control points. Separate

singularities are formed at grid points and control points. Complete control
point flow quantities are formed from the values produced in multiplying the
IC matrices, if they exist, Or from the boundary condition values if the IC

matrix did not exist for the control point. Potential splines are computed,

similiar to the doublet analysis splines. From values at the control points,
the potential splines produce average potential, normal mass flux, and average

velocity at grid points.

8.2.2 MDG Input/Output Data

8.2.2.1 Input

The input data required by the MDG module comes from MEC, DIP, DQG, _IAK,

and RHS data bases. The MEC data base furnishes names, account numbers,
status, and related information for all data bases. The DIP data base

provides global data. The DQG data base provides network, panel geometry,
control point, boundary condition, and splining data to MDG. The MAK data
base contains the IC matrices and directory to translate the MAG control point

indices to DQG control point indices. The RHS data base contains the
singularities stored in columns by solutions, and in rows or partial row
blocks stored by singularity index, and a directory to translate RHS

singularity indices to DQG global singularity indices. It also contains

partitioning and symmetry information needed in performing the post
multiplication of the IC'sties, unsymmetrizing, and for
unblocking the unknown singularities.

8.2.2.2 Output

Three temporary data bases are created dur(ng execution of _DG. The
MDGF data base is created and used throughout MDG processing. It contains the

error data set, control and grid point information for each panel, blocked

singularity data at grid points, blocked control point flow quantity data, and
potential spline data. The MDGM data base is used to form temporary

singularity products, then released when the unsymmetrized blocked product is

8.1

formed on the MDGCdata base. The ;4DGMdata base is used again to store the

blocked grid flow quantity data produced from the control point values and the
potential splines. The MDGC data base contains the intermediate IC values at

control points in blocks and the singularities at control points both blocked

by images and solutions. It is released after all permanent control point
data has been created, and block control point data is on the MDGF data base.

The MDG permanent data base contains several data sets. These include global,

network, solution data, and control point geometry, control point data, grid
point geometry, and grid point data.

Very little printed output is given by the MDG module. CPU usage is reported
at the end of each overlay of MDG. If any errors occur during execution of

MDG, error messages are printed as encountered and a summary of these errors
is listed at the completion of MDG. For an error free MDG run, a comment is

printed stating that the MDG module was successfully completed.

8.2.3 Data Base Interface

The MDG module creates a permanent data base named 14DG for use by the
PDP (Point Data Processor), the CDP (Configuration Data Processor) and the FDP

(Field Data Processor) modules. MDG also creates three temporary data bases
named MDGC, MDGF, and MDGM which are used for storing intermediate data. The

external input to MDG is from MEC, DIP, DQG, MAK and RHS data bases. Figure

8.1 illustrates the relationship between NDG and these data bases.

8.3. MODULE DESCRIPTION

The MDG module consists of seven main overlays. A short description of

these overlays follows. A tree diagram (Appendix 8-A) relates all overlays
and their subroutines.

The main function of MDG is to calculate the values of average

potential, average normal mass flux and average velocity at control points and

at grid points. As described in Appendix M of the PAN AIR Theory Document
(Ref. 1), these flow quantities are related in a linear fashion to the
singularity values coming from the module RHS. Hence, a matrix product of the

form [IC] • x is used to find each of these values. Here [IC] is the

matrix expressing the linear relationship. It is computed by the MAG

module, x is a vector of singularity values computed by the RHS module.

The above matrix multiplication gives the potential (#), normal mass

flux (w • n) and velocity (va) only at the center of each panel and/or at
the midpoint along a network edge. Values at the grid points and the actual

control points (displaced slightly by the DQG module) must also be found. The
MDG module interpolates these values to find the corresponding value of

potential, mass flux and velocity using quadratic splines at the actual
control and grid point locations. The spline coefficients are calculated by
various methods. Refer to Section 1.2 of the PAN AIR Theory Document

(Reference i) for more details on these methods.

V

8.2

8.3.1 Overall Structure

The main overlays of MDG are briefly summarized in this paragraph. The

top level MDG program, overlay (0,0), initializes the program variables. It

calls each of the seven overlays into execution in a sequence. If a fatal
error occurs during execution of any overlay, a skip is made to overlay (7,0)
named EASY which summarizes the errors. The overall structure of the MDG

module is illustrated in Fig. 8.1. The MDG functional decomposition and the

tree structure diagram are presented in Appendices 8-B and 8-A respectively.

V

8.3.2 Overlay Descriptions

8.3.2.1 (1,0) Overlay (OPDBI)

The program opens and checks all data bases to be used by MDG. If the
data bases are usable, MDG processing begins. The MDGX GLOBAL, SOLUTION-DATA,
and NET_ORK-SPEC datasets of the temporary data base MDGX are created from

data on the DIP data base, the DQG data base and RHS SOLUTION dataset. For
each network, panel points data is determined. This consists of the control

points and grid point data set for each panel. For each panel, geometry data
is obtained from the DQG PANEL-SPEC dataset and written to the MDG CP-GEOM and
GP-GEOM datasets. The panel points data is obtained from the DQG

COIJTROL-POINT-SPEC and SPECIAL-POINTS datasets. More details are given in
Appendix 8-F under the panel points library routines and Appendix 8-G panel

points library usage. The PANEL-POINTS dataset is written to the MDGF

temporary dataset for use in the down stream overlays (3,0), (4,0), and
(6,0). Figure 8.2 illustrates the execution and data flow for overlay (1,0).

8.3.2.2 (2,0) Overlay (PMPY)

This overlay stores singularities by blocks of images and solutions to

be used as input to the (3,0) overlay. The known singularities are available
in rows already unsymmetrized from the RHS SING-KNOWN dataset and stored on

the MDGC data base, BLOCKED-LAMBDA dataset. The unknown singularities are
created in blocks of maximum size, 100 singularity rows by 10 solution
columns. A separate direct dataset BLOCKED-L_BDA-MATRIX from RHS contains

information about the size and partitioning of these blocks. These blocks are

converted to unsymmetrized rows by writing partial rows onto a temporary
dataset ROW-BLOCK-LAHBDA dataset. They are read back into core to form full
rows which are reblocked into blocks for a single singularity row for images

and solutions, and placed the same BLOCKED-LAMBDA dataset created for known

singularities. The MAG singularity indices are converted to DQG global
singularity indices used as keys. Figure 8.3 illustrates the execution and

data flow for overlay (2,0).

8.3.2.3 (3,0) Overlay (SNGCP)

The third overlay converts BLOCKED-L_4BDA singularities at singularity

locations to values at panel grid points and at the control point locations.
The DQG B-SPLINE-SOURCE and B-SPLINE-DOUBLET datasets contain the continuous

splines vectors for a single grid point . The splines are stored as two
arrays, an index array which points to the singularity locations needed to

compute the singularity at the grid point, and a second array of weights to be
applied to the corresponding singularity values at singularity locations. The

absolute values of the spline weights lie in the range from 0 to 1, where a

8.3

value I represents an infinite weight. For doublet grid points a spline
vector exists for all grid point locations. For sources, spline vectors exist
only at the four panel corner points and the panel center point. To compute
source values at the edge midpoints the 5 panel source grid point values are
used in conjunction with the subpanel splines. With this splining a set of
library routines, called the table manager, is used to store the values at
singularity locations, so that multiple accesses to the disk are reduced for
the samesingularity values required by different splines, or for computing a
value at a grid point which has already beencomputedfor an adjacent panel.
Whenthe table is full the least recently used values are deleted from the
table. The table manageris described in Appendix 8-F under the table manager
library routines and Appendix 8-G under the table managerlibrary usage.
Values at control points are calculated using the 5 or 9 grid point values
obtained from the spline vectors for each panel. The computation converts the
reference coordinates to local coordinates by application of the the reference
to local coordinate transformation from the DQGPANEL-SPECdataset.
Multipling the local coordinates by the subpanel spline produces coefficients
which are multiplied by the 5 or 9 grid point values to give a value of the
singularity strength at the control point. Figure 8.4 illustrates the
execution and data flow for overlya (3,0).

8.3.2.4 (4,0) Overlay (AQCP)

Values of average potential, average normal mass flux, and the three

components of the average velocity will be referred to as flow quantities.
Potential and mass flux can be calculated from either the IC (Influence

Coefficient) matrices or from the boundary conditions imposed by the user.

Average velocity can only be calculated from the IC matrix. The IC matrix for

the average normal mass flux is the dot product of the VIC (Velocity Influence
Coefficient) matrix and the conormal at the control point. The storage of IC

matrices is known to MDG through the POP parameter written by DQG on the
BOUNDARY-COND dataset. For each network the availability of the IC matrices

in the MAK data base is also known from the method-of-velocity-computation

variable. The PDP parameter determines if the flow quantity for each control

point is obtained from the IC-matrix value or from the boundary condition
data. In processing, the network data is read and a loop over panel is

executed reading the MDGC PANEL-POINTS dataset to determine the control

points within each panel. For each control point the BNDRY-CONDN-SPEC data
is read to determine if the boundary condition data or the IC-matrix data will

be used as the value of the flow quantities at the control point. If the IC

data is used, the IC matrix is read together with singularity data, is post

multiplied, and unsymmetrized. If it is needed for any flow quantity, the
RHS-UNKNOWN values are read in and unsymmetrized. The control point

singularities are read from the CP-LAMBDA dataset for storage on the CP-DATA
dataset and possibly for calculating the values of the boundary condition used

in computing a flow quantity. The potential and mass flux computations are
essentially parallel. Both have special cases to check for stagnation
boundary conditions, in addition to a general boundary condition calulation

using the RHS values. For cases where the IC matrix exists, these values are

read directly from the IC-hATRICES dataset. All flow quantities and

singularities are blocked by images and solutions on the CP-BLOCK dataset for
use in splining with the potential splines in the (6,0) overlay. Figure 8.5
illustrates the execution and data flow for overlay (4,0).

V

8.4

8.3.2.5 (5,0} Overlay (BPSV)

Potential splines are created on network edges first. If an edge of a
network collapses, all points along the edge take on the value of the spline
at the network corner. A general algorithm is used to compute network edge
splines. On the interior all center point splines are unit splines weighted
infinitely to the center control point value. For interior corners and edge

midpoints another algorithm is applied which uses values from surrounding
center control point values. The weights applied to these values are
determined by doing a constrained least squares fit on the spline vector.

Figure 8.6 illustrates the execution and data flow for overlay (5,0).

8.3.2.6 (6,0) Overlay (GPQTY)

-V

This overlay obtains average flow quantities on the fine grid. All

data for a given network is assembled in memory. A spline data structure
which can extend data from the grid of panel center control points to the
course grid is built. It is an outer spline and is constructed in a fashion
similar to the continuous source analysis splines. That technique is

described in Appendix I of reference 1. The normal mass flux, velocity and

potential for control points is retrieved from the MDG database. The spline
data structure is used to spread normal mass flux and velocity over the entire

fine grid. The BP-SPLINE-VECTOR dataset is used to spread the potential over

the fine grid. The normal mass flux and potential may be computed by
stagnation if it is requested. The fine grid data is written to the MDG
database. Also the normal mass flux and velocity at edge control points are

revised to conform to grid point values. Figure 8.7 illustrates the execution

and data flow for overlay (6,0).

8.3.2.7 (7,0) Overlay (EASY)

If any fatal errors have occurred during the run of MDG, an error
summary is printed reading the MDGF ERROR dataset created by the library
subroutine SDMSRR for fatal SDMS errors or from the (4,0) overlay if a

boundary condition value cannot be calculated. The SDMS error processing is

described in Appendix 8-G under SDMS error library usage. The condition of
the MDG data base is written on the DATA-BASE-HEADER dataset of PiDG. Figure

8.8 illustrates the execution and data flow for overlay (7,0).

8.3.2 MDG Data Bases

The master definitions for the NDG, MDGC, MDGF, and MDGM data bases are

given in Appendix 8-D.

8.3.4 MDG Interfaces

Figure 8.1 sun_arizes the internal and external data interfaces between
MDG and other PANAIR modules (data bases).

8.3.4.1 External Interfaces

MDG receives its input data from the NEC, DQG, HAG (MAK data base), and
RHS modules. The MEC data base furnishes data base names, accounts, and
status information for all data bases. The DQG data base provides global,
network, panel geometry, control point, boundary condition, special points,

8.5

and spline data. RHS furnishes the solution data (also available from DQG),

singularity data, right hand side constraints, and columns maps to convert
from the MAG indices to the DQG singularity indices. From HAG comes the IC
matricies, symmetry data, and the row map to convert MAG indices to DQG
control point indices.

The output data consists of the HDG data base used by FDP, PDP and CDP

modules, it contains globaT, network, solution, control point geometry, grid
point geometry and the solution data for control and grid points. The

geometry data consists of coordinates, normal and tangent vectors, subpanel
splines for doublets, and moment matrices. The solution data consists of
average potential, average normal mass flux, sometimes average velocity, and

the source and doublet singularities.

8.3.4.2 Internal Interfaces

The MDGF data base is used to keep track of fatal errors during the MDG
run. In (1,0) overlay panel points data is generated and stored for use in

the (3,0), (4,0), and (6,0) overlays. In the (3,0) overlay the grid point

singularities are blocked and added to the GP-LANBDA dataset on MDGF. In the
(4,0) overlay the CP-BLOCK-DATA dataset is created on MDGF. The BP-SPLINE

dataset is written to MDGF in the (5,0) overlay and read by the (6,0)
overlay. If fatal errors occurred during the run the MDGF ERROR dataset is

read by the (7,0) overlay to produce the error summary.

The HDGM data base is used for reblocking the unknown singularities in
the (2,0) overlay. The HDGM data base is returned at the end of the (2,0)

overlay. It is used again in the (6,0) overlay to create the temporary

blocked grid point data from the final GP-DATA on the MDG data base is created.

The MDGC data base is created in the (2,0) overlay. It contains the
BLOCKED-LAMBDA singularities which are read by the (4,0) and (3,0) overlays.
t,IDGCis returned at the end of the (4,0) overlay.

8.3.5 Data Flow

The flow of data for each HDG overlay can be found by consulting
Figures 8.2 thru 8.8, Appendix 8-C and the glossaries of the
program/subroutines.

8.4 LOWER LEVEL FUNCTIONS

This section describes the general structure and purpose of the
subroutines used in MDG.

8.4.1 Functional Decomposition

See Appendix 8-B for a description of the HDG Functional Decomposition.

8.4.2 Subroutine Descriptions

V

ANALP

8.6

Computes potential splines for each grid point of a network.

AQCP Forms control point data for each point for average potential, mass

flux, average Velocity (if available), singularities, and local onset
flow.

BCDAT Obtains boundary condition data if required.

BLKS Forms blocked lambdas from RHS known singularities which are already

unsymmetrized.

BLUKSG Forms blocked unsymmetrized lambdas from RHS unknown singularities.

BPSV Forms potential splines (BP-SBLINES) similar to doublet analysis

splines for values taken from surrounding control points instead of

singularity locations.

CMPDSV Computes doublet singularity value from 9 panel grid point singularity

values using local coordinates and subpanel splines.

CMPSSV Computes source singularity value from 5 panel grid point source
singularity values using local coordinates and subpanel splines.

COrISRC Computes panel point values for a panel located either at the end of a

single row or column network or at a network corner.

CPCALC Computes flow values at control points from IC, Lambda matrix

multiplication, and unsymmetrizes the values.

CPFDCE Computes control point flow data on collapsed edges.

CPFDSS Computes control point flow data on smooth abutment segments.

CPPED2 Computes panel points on edge 2 of network.

CPPED4 Computes panel points on edge 4 of network.

CPPE13 Computes panel points on edges 1 and 3 of network in parallel for

single column case.

CPPE14 Computes panel points on edges 1 and 4 of network in parallel for

single row case.

CPPINT Computes panel points interior to a panel

CSCP Forms values of the singularity at control point locations for each

control point in panel.

CSSGP Applies B splines to calculate singularities at grid points from
surrounding singularity values.

DATPOT Provides data for analysis splines to perform constrained least squares
fit.

DCPGPS Determines control points and grid point sets from DQG data.

8.7

DFSKWCDefines the transformation from the reference coordinate system to a
skewedcoordinate system associated with a fine grid point.

DGPTLDefines grid point table location of array GPLOCwhich stores the 9
defining grid pointers to singularity data .

DINGPSDeterm,ines interior grid point set.

DTNGPSDefines interior grid point set for the default grid point set

consisting of panel points 1, 5, 8, 9.

DPANCP Defines panel control points by searching along a specified network

edge for a given panel and the network edge.

DPBSGP Defines panel B-spline grid points.

DQGSNG Determines the DQG global singularity indices for a block of unknown

singularities using the MIC column map.

EASY Provides error and accounting summary for MDG run, printing a list of
fatal errors if any occured, and writing MDG data base status informa-
tion to the MDG data base

EDGECP Revises the velocity and mornal mass flux at edge control points to

conform to grid point values.

FCPDAT Forms control point dataset from the DQG control-pt-spec dataset.

FCPGPG Forms control point and grid point geometry datasets.

FGLDAT Forms MDG global dataset .

FORNET Forms MDG network spec dataset.

FSAGP Forms singularity values at grid points for values not already
calculated, using the BP-splines and vectors of singularity values at

surrounding loca%ions.

FSGVEC Forms singularity matrix from singularity vectors for each solution and

image.

FSPSVC Forms subpanel spline vector

FSTBAD Adds deleted table entry to free space table.

FSTBDL Removes last free space to be used as location for table add.

GETSPT Reads the DQG special points data set into special points common block.

GPQTY

ICALC

Applies potential splines to compute flow quantity values at grid

points, stores potential, mass flux, velocities, and singularities at

grid points for each panel point set.

Computes and unsymmetrizes flow quantity values at control points using
the IC matrices.

8.8

INITCB Initializes the commonblocks /SOLLST/,/SYMM/ reading the RHS solution
dataset and forming the MDG solution dataset.

LATIND Transforms course panel grid points which exist at panel corner points
for any panel points into its corresponding fine grid point lattice.

LOCORD Computes local coordinates of a point given its coordinates in the

reference coordinate system together with the subpanel number in which
the point lies. The appropriate reference to local coordinate

transformation is applied to compute the local coordinate.

LSQPOT Defines the coordinate of a point used in the construction of the least

squares spline and defines the index of the singularity parameter or

control point located there.

MCPDAT Moves control point data obtained from the DQG control-pt-spec dataset
to the MDG /CPDAT/ common block.

NETEDG Calculates sp]ine vectors for network edges and corner points.

NETGEM Assembles the network geometry data.

OBPHI Obtains potential values for each control point for all RHS solutions
and images from either the boundary conditions, stagnation conditions
or the PHIIC matrix.

OBVA Obtains average velocity values for three components of velocity from

the product of the VIC and unsymmetrized singularity values and
computes the normal mass flux from the velocity values at each control

point where the VIC is defined

OBVANC Obtains va dot nc values at each control point for all RHS-solution
and images from either the boundary conditions, stagnation conditions,
or from the IC matrix.

OPCKDB Opens all data bases and checks their status through calls to CHKDB

OPDBI Checks data bases, initializes common blocks, forms network data, forms

panel point datasets for control and grid point geometry, and closes
data bases.

OPDBM Defines maps used in MDG third overlay, opens and closes data bases.

PMPY Unsymmetrizes and blocks known and unknown singularity values. These
are read from the RHS data base datasets SING-KNOWN and LAM-I_AT. After

processing, they are written to the MDGC BLOCKED-LAMBDA temporary
dataset.

POINT Determines the coordinates of any point from its fine grid point
lattice.

PTSKWC Computes the skewed local coordinates of a point.

PUTPPT Writes panel points dataset to data base from common blocks
/CPDAT/,/GPSET/.

8.9

RHSVALObtains and unsymmetrizesRHSunknownlambdavalues from RHSdata base .

RNDITMReadsnetwork data and initializes table managerroutines.

RPI Readspanel data information.

SCOLPPComputespanel points data for a single column network.

SDMSRRProcesses SDMSerrors occuring during MDGexecution by writing error
message,setting fatal error flag and writing an error data set for
finaQ error summary.

SNGCGPComputessingularity at control and grid points from values at
surrounding locations.

SPANCPSearches network edge to see if extra control points exist.

SPLAP Performs least squares fit to determine spline vector for a specified
point in an analysis network.

SPLCPComputesmeshpoint spline data.

SPLCPVEvaluates a single entry in the spline data structure.

SPLCPWComputesupstreamweighting factors for spline construction.

SPLCPXConstructs a spline data structure to spread center control point data
to the fine grid. The spline data structure is similar to the
continuous source analysis splines built by the Defining Quantities
Generator (DQG)module in subroutine ANALS. This is an outer spline
which is described in section I of reference 1.

SPLTRNTransforms three-dimensional coordinates of singularity or control
point into the local two-dimensional coordinate system for least
squares fit.

SROWPPComputespanel points data for a single column network.

STCPVStores control point flow and singularity data for each solution and
image on MDGCP-DATAdataset.

STGP Stores grid point data generated using potential splines for each image
and solution for all flow types.

STOGPSStores blocks of grid points singularities for output in the (6,0)
overlay where blocks are formed by imagesand solutions for each grid
point set.

TBADDAdds newentry to table by searching for its location in tile key table
and returning the location in the table of the addeddata.

TBDELTFromleast recently used (LRU) counter, determine the LRUentry and add
this as the new freespace entry.

8. i0

V

V

TBINIT Initialize the table managerby clearing entries whencalled with
appropriate arguments, or initialize individual tables for later
processing.

TBSRCHFinds location of entry in table by comparing key value input against
values in key table. If entry is not found, a value of -1 is returned
as the location.

UNIPOTComputesa spline vector of unit length for each control point index
and writes it to the BP-SPLINEdataset.

USFIMGUnsymmetrizessingularities at singularity locations for 4 imagesand •
blocks themby imagesand solutions.

USTIMGUnsymmertizessingularities at singluarity locations for 2 imagesand
blocks themby imagesand solutions.

VECUNVComputesBPspline vector at a grid point from values at surrounding
control point locations.

VSPREPSpread the panel center (or panel center control point) data to the
whole fine grid.

VSPRETSpreads the panel center velocity data to the whole fine grid.

WNSPRDSpreadsthe panel center normal massflux data to the whole fine grid.

WRBL For use in unblocking LAMMAT matrices of singularities -the partial
rows are formed for each row in a block of rows and temporarily written
to the data base.

WTLSQ Computes weighting factors for least squares fit.

XPSPEC Extends the panel specifications data read from the MDG-PANEL-SPEC
dataset on the DQG database.

XIETAV Computes XI and ETA vectors which define the local two-dimensional
coordinate system.

8.11

V

o
e.

r_

L
o E
L S

c3
v

c.0

s-

0+Is-
r

o

o

(..5

x

X

v

y

_3

(.J

C
0

(3.1
,Y

_J

eO
_3

!

S-

._...

b.

8.13

PRECEDING PAGE BLANK NOT FILMED II__INT_Tt0_/%L'_ BL/U_

MDG

Overlay (I,0)

PROGRAM OPDBI

Header Data Sets_

DQG, RHS, DIP, J

MAK, MEC /

DIP GLOBAL)

SOLUTION-DATA

<I0001NETWK-SPEC

T

il

°°°1CONTROL-POINT

SPEC

MDGF

PANEL-POINTS)

°°°1PANEL-SPEC

8.14

Subroutine

OPCKDB

Subroutine

FGLDAT

Subroutine

INITCB

Subroutine

FORNET

Subroutine

DCPGPS

__ Subroutine

FCPGPG

l
i,

I

Figure 8.2 -Execution and Data Flow of Overlay

MDG GLOBAL

MDG

SOLUTION-DATA

MDG

NETWORK-SPEC

MDGF

PANEL-POINTS

I

MDG CP-GEOM

MDG GP-GEOM

(1,0)

V

1
1

1
1
1

MDG

Overlay (2,0)

PROGRAM PMPY

MAK 1ROWMAP SYMMETR

I MDGF ERROR)

{

RHS

SING-KNOWN

MAK COLMAP

RH'S

BLOCK-INFO_

RHSLAMBDA-UNKNOWN

MAK COLMAP "_

BLKS
MDGC 1

BLOCKED-LAMBDA)

MDGM

If ' r_" L iOW" BLOC K-MATR IJ

t; BLOCKED-LAMBDA)

Figure 8.3 -Execution and Data Flow of Overlay (2,0)

8.15

MDG
Overlay (3,0)
PROGRAMSNGCGP

IDQG PANEL-SPEC

MDGF _ /

PANEL-POINTS J

MDGC

OPDBM

RNDITM

RPI

CSSGP

STOGPS

CSCP _ MDGC

V

MDGF

GP'LAMBDA 1

CP-LAMBDA I

8.16

Figure 8.4 -Execution and Data Flow of Overlay (3,0)

MDG

Overlay

PROGRAM

(4,0)

AQCP

Li CI,o' 1NETWK-SPEC

MDGF

PANEL-POINTS

BNDRY-COND-SP

CP-LAMBDA

_I MAK
ROWMAP-INVERS

ubroutin(

BCDAT

IIMDGF 1ERROR

l
ubroutln_

_1 RHSVAL

i

IC-LAMBOA"..... Subrouti n

• I O_H,I\

_ !ROWMAP kji I __ MDGF)

Subroutin ERROR

I o,_,I/_J
ISubrouttne_

i/

I °_VA"CI
'_HS -_11 , .

:!!B DA-KNOWN F L_ ubr°utin MOGF

L, '-_oA-,-,,',,<,',OWNj"] s,'_p,, _-_O_K-OATA

Figure 8.5 -Execution and Data Flow of Overlay (4,0)
8.17

V

MDG

Overlay (5,0)

PROGRAM BPSV

L ETWK's

PEC 1
ICONTROL-PT-SPEC

JPANEL-CORNE_COORD 7

o0o
ANEL-CORNER-COORD._

AVALP

NETEDG

MDGF

ERROR 1

DQG

-PT-SPEC SLAP

MDGF

-SPLINE-VECTOI

DQG

ONTROL-PT-SPEC

G

ONTROL-PT-SPEC

8-181Figure 8.6 -Execution and Data

UNIPOT

SLAP

Flow of Overlay

-SPLINE-VECTO

P-SPLINE-VECTO1

(s,o)

V

r

>-

i_[
m.

=r,

m

m.

<

m

m m m

>'I
T

<

=m

<

>.
<
,.j

©

i
<

<

I
E-

!

_5

v

8.19

V

IIMDGFERROR

MDG

Overlay

PROGRAM

(7,0)

EASY

I Error I

__MDG "I
JDATA-BASE-HEADE V

Figure 8.8 -Execution and Data Flow of Overlay (7,0)

8.20

V

APPENDIX 8-A TREE STRUCTURE

The tree structure diagram of the MDG module has been deleted from this
document. It is, however, available on the installation tape.

8-A.1

V

-V _

APPENDIX 8-B MDG FUNCTIONAL DECOMPOSITION

The functional decomposition of the MDG module is presented here. The
decomposition labels are given in the order of their execution and therefore
may not be alphabetic,

8-B.I

V

V

Ao Form global data, initialize global common block and process network

control point and grid point (OPDBI) Overlay (1,0)
A. Open and Check Data Bases (OPCKDB)
B. Form Global Data (FGLDAT)

A. Read Global Data
B. Form Network List Data

C. Put MDG Global Data

D. Compute Reflection Matricies
C. Initialize Global Common Blocks (INITCB)

A. Extract Solution Data from RHS Data Base

B. Form /SOLLST/ Common Block
C. Write MDG Solution Data

D. Form Network Data (FORNST)

A. Read DQG NETWK-SPEC dataset
B. Form MDG NETWK-SPEC dataset

C. Put MDG NETWK-SPEC dataset

E. Determine Control Points and Grid Points Set (DCPGPS)

A. Compute Panel Points Edges 1 and 3 (CPPE13)
A. Get Special Points

C. Initialize CP, GPSET Count
D. Define Interior Grid Point Set (DINGPS)

B. Check for CP on Midpoint of Edge 4 (FCPDAT)

E. Define Panel Control Points (CPANCP)
F. Define Grid Point Set 2

G. Put Panel Point (PUTPPP)

B. Compute Panel Points Edge 2 (CPPED3)
H. Compute Panel Points on First Panel
A. Get Special Points (GETSPT)
B. Initialize CP GPSET Count
C. Define Interior Grid Point Set (DINGPS)

D. Define Panel Control Points (DPANCP)

E. Define Grid Point Set 2 PTS 2,6
F. Put Panel Points (PUTPPP)

G. Compute Single Row/Col Panel Points (COMSPC)

C. Compute Panel Points Edge 4 (CPPED4)
A. Get Special Points (GETSPT)
B. Initialize CP GPSET Count

C. Define Interior Grid Point Set (DINGPS)
D. Define Panel Control Points (DPANCP)
E. Put Panel Points (PUTPPT)

D. Compute Panel Points Interior (CPPINT)
A. Define Interior Grid Point Set (DINOPS)

B. Fo_,1 Control Point Data (FCPDAT)

C. Put Panel Points (PUTPPT)

E. Compute Single Row Panel Points (SROWPP)

A. Compute Single Row/Col Panel Points (COMSRC)

B. Compute Single Row/Col Panel Points (COMRRC)
C. Get Special Points Edge 1, Edge 3 (GETSPT)

PRECED|NG PAGE BLANK NOT FILMED

8-B.3

_GE_INTENIIONA_LY BLANK

Bo

8-B .4

F_

D. InitializeCP, GEPSET_ Count

E. Compute Panel Points Edge 1, 3
A. Define Interior Grid Point Set (DINGPP)

B. Define Panel Contro] Points (DPANCP)

C. Define Grid Points Set 2, PTS 4,7
D. Put Panel Points (PUTPPT)

F. For Last Column Compute the Panel Points (OMSRC)

Compute Single Col Panel Points (SCOLPP)
A. Compute Panel Points on First Row Panel (COMSRC)

B. Compute Panel Points on First Column PaneI(COMSRC)

C. Get Special Points Edge 2, Edge 4 (GETSPT)
D. Initialize CP, GPSET Count

E. Compute Panel Points Edges 2 and 4 (CPPE24)
A. Define Interior Grid Point Set (DINGPS)

B. Define Panel Control Points (DPANCP)

C. Define Grid Point Set 2, PTS 2,6
D. Put Panel Points (PUTPPT)

F. Compute Single Row/Col Panel Points (COMSRC)

Ft Form Control Point and Grid Point Geometry (FCPGPG)
A. Get Panel Data

A. Get DQG PANEL-SPEC Data
B. Get MDG PANEL-POINTS

B. Add Data to CP-GEOM

A. Determine if GRIDPT is a Control Point

B. Move Data from /CPDAT/

C. Move Data from /PANDAT/
C. Write CP-GEOM

A. Form Key
B. Put GP-GEOM

D. Define CP-GEOM Data

A. Define GP-COORDINATES
A. Determine Offset in Panel Coordinates

B. Move Panel Coord to /GPGEOM/ Coordinates

C. Store Grid Point Sequence
E. Write GP-GEOM

A. Form Key from 1st Grid Point
B. Put GP-GEOM

G. Close Data Base

Read, Unsymmetrize, and Block Singularity Values(LAMBDA) Overlay (2,0)

A. Define Maps and Read Matrix Information
A. Open Data Base and Define Maps

A. Define Maps for MIC Data Base

B. Define Maps for RHS Data Base
C. Define Maps for MDGC Data Base

D. Define Maps for MDGF Data Base

E. Define Maps for MDGM Data BAse
B. Read MAG Symmetry

A. Get MIC Symmetry
B. Form /SYMM/
C. Form /MAGPAR/

..... . a,r --

k.J

Co Unsymmetrize and Block LAMBDAS
A. Block L_4BDAS from KNONN-SINGULARITIES (BLKS)

A. Determine Singularity Index
A. Determine Update Type

B. Set Update Type to Non-Updatable
C. Set Update Type to Updatable
D. Get COL-MAP

B. Get RHS SING-KNOWN

C. Form Blocked LAMBDA (KNOWN)

A. Determine Block Offset

B. Move Unsymmetrized Images
• C. Determine Number of Solutions Per Block

D. Define Number of Images
E. Define BLOCK-SIZE

F. Put Blocked LAMBDA

B. Re-Block LAMBDAS from UNKNOWN-SINGULARITIES {BLUKSG)
A. Get BLOCK-RHS-INFO

B. Determine DQG-SING-INDEXES (DQGSNG)
A. Determine BLock Row Start

B. Determine ROW-NUM, Update Type
A. Form Global ROW-NO

B. Define Row No. Non-Updatable

C. Define Update Type

D. Define Row No. Updatable

E. Define Update Type
C. Get MAG COL-MAP

D. Store DQG SING-INDEX

C. Unsymmetrize L_,IBDA-MATRIX Blocks
A. Get LAMBDA MATRIX IMAGE 1

B. Unsymmetrize Two Images (USTIMG)

A. Move ARRLAM to ARRLPP, ARRLPM, ARRLMP
B. Read LAMBDA-MATRIX IMAGE 2

C. Unsymmetrize Ist (PP) Image
D. Substract ARRLAM from ARRLMP and Divide

E. Subtract ARRLAM from ARRLPM and Divide by Two

D. Unsymmetrize Four Images (USFIMG)

A. Move ARRLN,I to ARRLPP, ARRLAM, ARRLMP, ARRLMM
B. Get LAMBDA-MATRIX

C. Compute Images
C. Move ARRLAM to ARRPP

D. Write ROW-BLOCK-LAMBDA (WRBL)
A. Move ARRLPP to RBL_4B
B. Move ARRLAM to RBLAMB
C. Move ARRLI4P to RBLAMB

D. Move ARRL_ to RBL_4B
E. Move ARRLPM to RBLAMB

F. Form ICE

G. Put ROW-BLOCK-LAMBDA
E. Form ROW-ARRAY from Row Blocks

A. Get ROW-BLOCK-LAMBDA

B. Determine Offset in Row Array
C. Move ROW-BLOCK to ROW-ARRAY

8-B.5

Fo Re-block and Output BLOCKED-LAFIBDA dataset
A. Determine ROW-ARRAY Offset

B. Form BLOCKED-LAMBDA Data

C. Form Key Set and State Values
D. Put BLOCKED-LAMBDA dataset

Ca Obtain Singularities at Control and Grid Points (SNGCGP) Overlay (3,0)

A. Open Data Bases and Define Maps (OPDBM)
A. Open Data Bases MDGC, MDG, MDGF, DQG
B. Define r.lapSequence

B. Read Network Data and Initialize Table Manager (RNDITM)
A. Get DQG NETWK-SPEC Data
B. Determine ROW-COL Information

C. Determine Network Type and Panel Grid Points
A. Determine Network Type
B. Define Network Corners

C. Define Panel B-SPLINE Grid Points (DPBSGP)
A. Define GP Set for Doublet Network
B. Define Number of Grid Points to be 9

C. Put Corner Points in GP Set for Source Network
D. Put Panel Center Grid Points in GP Set for Source

Network

E. Define Number of Grid Points to be 5

D. Initialize Table Manager

A. Form Calling Argument for S-ARRAY
B. Initialize Table for S-ARRAY (TBINIT)

C. Form Calling Argument for GP-ARRAY
D. Initialize Table for GP-ARRAY (TBINIT)

Read Panel Information (RPI)

A. Get DQG PANEL-SPEC DATA
B. Get PANEL-POINTS DATA

D. Compute Singularities at Spline Grid Points (CSSGP)

A. Initialize for Singularity Type
A. Define Source Grid Points

B. Define Doublet Grid Points

C. Define Last Singularity Type
B. Check if Singularity Grid Point in Table

A. Form Key Values for Table
B. Search Table for Grid Point Value (TBSRCH)

C. Get B-SPLINE Data Set
A. Get B-SPLINE Source

B. Get B-SPLINE Doublet

D. Form Singularity at Grid Points (FSAGP)
A. Search for SING-INDEX in Table
B. Read BLOCKED-LAMBDA

C. Add Arrays to Table

D. Form Singularity Vector (FSGVEC)
A. Initialize Singularity Vector to Zero (ZERO)

B. Define SNG-VECTOR Entry

E. Multiply Spline and Singularity Vectors
F. Store Grid Point Values in Table

E. Define Grid Point Table Location (DGPTL)

A. Define Singularity Location in GP-ARRAY Table
B. Define Panel Grid Point
C. Define Last Source Grid Point

D. Define Last Source GP-ARRAY Location

Cu

V

8-B.6

j

Eo

Fg

F. Form Subpanel Spline Vector (FSPSVC)
A. Determine Table Location

B. Move Table Values to Singularity Vector

Store Grid Point Singularities (STOGPS)
A. Search for Grid Point

A. Set FONND False

B. Set FOUND True

C. Define GP-ARRAY Location

B. Compute GP from Subpanel Spline SPSPL

A. Determine Subpanel of Grid Point

B. Compute Local Coordinates
C. Compute Source GP-VALUE (CMPSSV)

D. Add Computed Grid Singularities to Table (TBADD)

C. Format GP-LAMBDA
A. Initialize SRC, DBLT Strengths to Zero
C. Get Offset in LAMBDA and GP-ARRAYS

D. Define Source Strength
E. Move GP-ARRAY to SRC-LAMBDA

F. Define Doublet Strength
G. Move GP-ARRAY to DBLT-LAMBDA

E. Get and Replace GP-L_v_BDA
A. Get GP-LAMBDA (ESGET)

B. Replace GP-LAMBDA (ESGET)
D. Put GP-LAMBDA (ESPUT)

Compute Singularities at Control Points (CSCP)

A. Compute Local Control Point Coordinates (LOCORD)
A. Define Matrix Lengths
B. Translate Reference Coordinate by SUBPAN Origin

C. Multiply A-Matrix With Translated Reference
Coordinates (CAB)

B. Compute Source Control Point Values (CMPSSV)

C. Compute Doublet Control Point Values (CMPDSV)
D. Store CP-LAMBDA

A. Form Key Values

B. Compute Singularity Lengths
A. Get CP-LAMBDA (ESGET)

B. Replace CP-LAMBDA (ESREP)
C. Put CP-LAMBDA (ESPUT)

v

Do Obtain Average Quantities at Control Points (AQCP)

A. Open Data Bases and Define Maps
A. Open Data Bases (DBOPEN)
B. Define Maps

B. Read Network and Panel Data
A. Read NETWORK-SPEC Data (ESGET)
B. Read Panel Points Data (ESGET)

C. Get Boundary Condition Data (BCDAT)
A. Get DQG BNDRY-COND-SPEC-DATA (ESGET)
B. Get MIC ROW-MAP-INVERSE (ESGET)

C. Determine RHS-VLAUE (RHSVAL)

A. Initialize Right Hand Side Values (ZERO)
B. Get MAG Row Map (ESGET)
C. GEt RHS-UNKBOW (ESGET)
D. Move RHS Values to BCVALU

8-B.7

Da

Eo

Fo

Gt

E. Symmetrize RHS-Values
A. Define Scale Factor

B. Initialize Unsymmetrized Array to Zero

C. Compute Unsymmetrized Values
D. Replace Unsymmetrized Value in BCVALU

D. Set Fatal Error

A. Print Fatal Error f_essage

B. Write Fatal Error Message
E. Get CP-L_IBDA Data

A. Initialize Singularities to Zero

B. Get Singularities of Each Type
Obtain PHI-AVE Quantities (OBPHI)

A. Compute PHI-AVE for Stagnation BC

A. PHI-AVE by UPPER SURFACE ANALYSIS
B. PHI-AVE by LOW SURFACE ANALYSIS

B. Calculate PHI from BC

A. Check if PHI is Available from Non-Stagnation Boundary
Condition

A. Check Boundary Condition for Zero Entries

B. Set B.C. Flag
B. Decrement Boundary COndition
C. Get PHI from B.C.

D. Print Fatal Error Message
E. Write Fatal Error Message

C. Compute PHI from IC Matrix (ICALC)

Obtain VA, VANC, from VIC (OBVA)

A. Compute RHS Index

B. Compute Velocity from IC Matrix (ICALC)

Obtain VANC Only (OBVANC)

A. Compute VANC for Stagnation

A. Compute VANC by Upper Surface Analysis
B. Compute VANC by Lower Surface Analysis

B. Calculate VANC from BC

A. Check if VANC is Available from Non-Stagnation
Boundary Conditions
A. Check Boundary Condition for Zero Entries

B. Set B.C. Flag

B. Decrement Boundary Condition
C. Get VANC from B.C.

D. Print Fatal Error Message

E. Write Fatal Error Message
C. Get IC-LAMBDA

A. Compute RHS Index

B. Compute VANC from IC Matrix
Store Control Point Values (STCPV)
B. Get ONSET-FLOW RHS-DB

C. Form CP-DATA

D. Put CP-DATA (ESPUT)

V

V

8-B.8

II

Jo

H.

E. Form CP-BLOCK-DATA
A. Put PHI CP-BLOCK-DATA (ESPUT)
B. Put WANC CP-BLOCK-DATA (ESPUT)

C. Put VA-X CP-BLOCK-DATA (ESPUT)

D. Put VA-Y CP-BLOCK-DATA (ESPUT)
E. Put VA-Z CP-BLOCK-DATA (ESPUT)

Compute Control Point.Flow Data on Smooth Abutment Segments (CPFDSS)

A. Set up Data on Segment Length
B. Initialize Arrays
C. Get Control Point Data and DQG Spline Vector (ESGET)
D. Find Control Point Index Which Corresponds to Singularity

Parameter Index

E. Write Fatal Error Hessage

C. Get Control Point Block Data (ESGET)

F. Accumulate Data to Output Arrays
G. Write Block Data for Null Control Point on Edge of Smooth

Abutment (ESPUT)

Compute Control Point Flow Data on Collapsed Edges (CPFDCE)
A. Define Lattice Indices 1st Point

B. Define Lattice Increments
C. Get Control Point Index

D. Clear Flow Data Array
E. Get Blocked Row Data for 1st Point
F. Get Control Point Index Edge Midpoint

G. Write Flow Data for Null Control Point

Close Data Bases (PACLOS)

"V"

8-B.9

Eo Compute BP Spline Vectors (BPN) Overlay (5,0)

A. Open Database and Define Maps (PAOPENIDSMAP/SVMAP/ENDMAP)
B. Get NETWK-SPEC Data (ESGET)

C. Compute Doublet Analysis Potential Spline (ANALP)
A. Initialize BP-SPLINE Data

B. Calculate Network Edge Spline Vectors (NETEDG)
A. Compute Lattice Indices for First Corner Point (LATIND)

A. Get CONTROL-PT-SPEC Data
B. Define Unit Values

C. Move Control Point Data

B. Compute Spline Vector for First Corner Point (SPLAP)
• A. Compute LSQ Data for Surrounding Points (DATPOT)

A. Initialize

A. Initialize Number of Points
B. Initialize Reference Point

B. Define Lattice Indicees

A. Compute Lattice Indices for Point
B. Determine New Lattice Indices

C. Increment Counter

D. Define LSQ Data for Point (LSQPOT)
A. Get CONTROL-PT-SPEC
B. Define Unit Values

C. Move Control Point Data

F. Define XI, ETA and ZETA Vectors (XIETAV)
A. Define Lattice Coordinates of Point

B. Compute Coordinate of Point
C. Define XI and ETA Vectors
D. Define ZETA Vector

D. Compute Magnitude of ZETA Vector
C. Normalize ZMAQ by Taking Fourth

Root

D. Normalize ZETA Vector

E. Define Zero Vector

G. Compute Coordinate Transformation (SPLTRN)
A. Define Vector from Two Points

B. Define XIBAR Component

C. Define ETABAR Component

D. Define ZETBAR Component
E. Define Factor for Scaling Two

Dimensional Coordinate

A. Define Unit Factor

B. Defing Factor
F. Define Two Dimensional Coordinate

G. Program Error in Selection of XI and
ETA Vectors

A. Increment Error Count
B. Take Error Exit

C. Print Messages

H. Compute Weights (WTLSQ)
Ao

B.
D.

E.
F.

Define Vector from Origin to Point

Compute Weight

Compute Two Dimensional Radius Squared
Normalize Weight
Define Constrained Quadratic Least

Squares

8-B. i0

Fo

B. Perform Constrained Quadratic Least Squares Fit

(CQLSF)

C. Spline Error
A. Increment Error

B. Take Error Exit
C. Print Messages

D. Clear Spline Vector

D. Print Warning Messages

E. Accumulate Spline Vector Contributions (VECUNV)
A. Initialize Index Array

A. Take Error Exit
E. Define New Component of Union Vector .

A. Increment Numer of Components
B. Take Error Exit
C. Define Union Vector (ESPUT)

C. Compute Lattice Indices

D. Write BP-SPLINE-VECTOR

F. Compute Lattice Indices of Column Edge Midpoint
(Corner) (LATIND)

G. Compute Spline Vector Row Edge Midpoint (SPLAP)

C. Compute Unit Potential Spline Vector
A. Compute Lattice Indices of Center Point
B. Form Unit BP-SPLINE (UNIPOT)

D. Get Arrays of Corner and Edge Midpoints

B. Copy Columns Two Through Five into Columns One Through
Four

C. Get Next Column of Corner Points

F. Compute Spline Vector for Corner Point (SPLAPO

D. Print Fatal Error_Message
E. Write Error Data Set

A. Form Error Information

B. Put MDGF Error Data
C. Take Fatal Error Exit

Obtain Average Data at Grid Points (Overlay (6,0))

A. Open Data Base and Define Maps
A. Open Data Bases

B. Define Maps

B. Get Network Specification Data
C. Determine BC Stagnation Option
D. Asse_le Network Geometry Data (NETGEM)

A. Initialize
B. Get Panel Points Geometry Data from MDGF
C. Form Grid of Panel Center Control Points

D. Form Fine Grid Geometry Data for Network
E. Compute Spline Data for Entire Network (SPLCP)

A. Define Fine Grid Dimensions

B. Define Spline Vectors for Mesh Points
C. Adjust Splines for Edge Mesh Points Along any

Collapsed Edges
D. Evaluate Panel Center Spline Vectors

8-B.11

Gm

El

Fo

G,

HI

Assemble Flow Data for Center Control Points (CPFLOW)
A. Initialize

B. Get Flow Data for Center Control Points from MDG

C. Store VIC Velocity Components and Normal Perturbation Mass
Flux

D. Read Potential Data from Edge and Additional Control Points
Compute Flow Data at Grid Points (VSPRED)

A. Spread Normal Mass Flux Data (WNSPRD)
B. Spread Velocity Data (VSPRET)
Compute and Store Average Flow Data at Grid Points (STGP)
A. I_itialize

B. Form Grid Point Set Sequence

C. Get Singularity Values for Grid Points in the Set
D. Assemble Singularity Data for Grid Points
E. Compute Averae Perturbation Potential and Normal Mass Flux

for the Grid Points

A. Determine Fine Grid Row and Column Indicies

B. Get BP-Spline Vectors from MDGF
C. Compute Potential Using Spline Vectors

D. Compute Potential and Normal Mass Flux for Lower
Surface Stagnation Solution

C. Compute Potential and Normal Mass Flux for Upper

Surface Stagnation Solution
F. Assemble VIC Velocity Data for Grid Points

Compute Flow Data at Edge Control Points (EDGECP)
Ae

B.
C.

D.

Eo

Form and Initialize Loop Control Table
Get Loop Control Parameters from Table
Read Edge Control Point Data from HDG

Compute VIC Velocity and Normal Mass Flux from
Corresponding Grid Point Values
Store Control Point Data in MDG

I. Close Data Bases

Print Error and Accounting Information (Overlay (7,0)) (EASY)
A. Read Error Dataset (ESGET)

B. Print Error Summary
C. Formulate Accounting Summary

D. Print Accounting Summary
E. Write Accounting Summary

B. Write DB-HEADER

C. Close and Release MDGF-DB (PACLOS)

D. Close MDG-DB (PACLOS)

8-B.12

APPENDIX 8-C

DATA BASE COMMUNICATIONS CHART

The Data Base Communications Chart is presented in three forms. Each form is
alphabetized by columns, from left to right. The first form has a column
order of Data Base, Dataset Name, Map Name, Common Block, and
Program/Subroutine. The second form has a column order of the Data Base, Map
Name, Dataset Name, Common Block, and Program/Subroutine. The third form has
a column order of Common Block, Data Base, Map Name, Dataset Name, and
Program/Subroutine. Thus a person can get a cross reference on a data element
by knowing either the Dataset Name, Map Name or Common Block name.

8-C.i

V

V

",,._./

DATA BASE

DIP
OQG
DQG
OQG

DQG

DQG

FIRST FORM

DATASET NAME _P__NAME

GLOBAL
GLOBAL

CONTROL-PT.SPEC CPSPECGLOBAL
GLODQG

MDG-PANEL.SPEC PANELS

NETWK-SPEC NETWK

PANEL-SPEC
PANELS

DQG SPECIAL-POINTS SPECPT
MAK MAG-PANEL.OATAMAK
MDG SYMMETRY MAG-PAN

CP-GEOM MAGSYMM
MDG GLOBAL CPFGEOM

MOG GLOBMD
MDG GLOBAL
MDG GP-GEOM GLOBMID

. .. GPGEOM
MAG-PANEL.DATA " MOGPAN

MDG NETWORK-sPECHOG
MDGF SOLUTION.DATA NETWKS

MDGF ERROR MDGSOL
ERR

PANEL-POINTS PANPTS

RHS

DATA BASE

MDGC

MDGC

NDGC
MDGM

MAK
MAK

RHS
RHS

RHS

RHS

SOLUTION.DATA
SOLDAT

DATASET NAME klAP NAME

BLOCKED-LAI,IBDA BLKLAM

IC-LAMBDA ICLAMB

ERROR
ERR

ROW-BLOCK-MATRIX RBLMAT

COLMAPO

SYMMETRY COL3

BLOCK-INFO SY_MAP
LAM-MAT BLRHIN

LAHMAP
LAMBDA-KNOWN LAMKWN

LAMBDA-UNKNOWN LAMUNK

COMMON

/GLOBDT/
Dynamic.

/GLOBDT/

/GPGEOM/
/PANDAT/

/NETOAT/
Dynamic*

IPANDAT/
Dynamic*

Dynamic*

/PANPKw/
/SY_mET/

/CPGEOM/
/GLOBDT/
Dynamic*

/NETLST/
/GPGEOM/
/PANPKW/

ynamic*

SOLLID/

/MDGERR/
/CPDAT/
/GPSET/
DYnamic*

/SOLL/D/
/SOLLST/

COMMON

BLOCKS

/BLKLAM/
Dynamic.

/ICLAM/
DYnamic*

/MDGERR/
/BLA_B/
Dynamic*
Dynamic*
/SYI,_ET/

/BLKIFo/
Dynamic*

/MAGAP/
Dynamic*

/MAGAR/

PROGRAM/

OPCKDB
OPCKDB

OPCKDB
OPCKDB

OPCKDB

OPCKDB

OPCKDB

OPCKDB
OPCKDB
OPCKDB
OPCKDB

OPCKDB
OPCKDB
OPCKO8

OPCKDB
OPCKDB

OPCKDB

OPCKDB

INITCB

PROGRAM/

SUBROUTINE

PNPy

PMP Y

Pt,Ipy
PFIPY

PMP y
PMPY

Pt,IPy

PMPy
PMPY

PMPY

PRECEDh'_G PAGE BLANK NOT FILMED
.... ,,_ /_ ,_

8-C.3

D_ATA BASE

DQG

OQG

DQG
DQG

OQG

MDGC

MDGC

MDGF

MDGF

DATASET NAME

NET_VK-SPEC

PANEL-SPEC

CONTROL-PT-SPEC
B-SPL INE-DOUBLET

B-SPLINE-SOURCE

CP-LAMBDA

BLOCKED-LANBDA

PANEL -POINTS

GP-LAMBDA

DATA BASE

DQG

DOG

MDG
MDG
MDGC
MDGF

MDGF
MDGF
MAK

MAK
MAK
RHS
RHS
RHS
RHS
RHS

D_ATASET NAME

NETWK-SPEC

BNDRY-CONDN.SPEC

CP-DATA
CP-DATA

CP-LAMBDA

PANEL-POINTS

ERROR

CP-BLOCK-DATA
IC-MATRICES

ROWMAP-INVERSE
ROWMAP

SING-KNOWN

LAF4BDA_UNKNOWN
RHS-KNOWN

RHS-UNKNO_N
ONSET-FLOW

• LZ

OverTay (3,0)

MAP NAME

NETWK

PANELS

CPSPEC
SPL!NE

SSPLINE

CPLMB

BLKLAM

PANPTS

GPLAM

COMMON

/NETDAT/
Dynamic*

/PANDAT/
Dynamic*
Dynamic*

/BSPLIN/
Dynamic*

/BSPLIN/
Dynamic*

/CPLAMB/
Dynamic*

/LAMBLK/
Dynamic*

/CPDAT/

/GPSET/
Dynamic*

/GPBLAM/
Dynamic*

MAP NAME

NETWK

BNDRY

CPDATA
CPDATA
CPLMB

PANPTS

ERR

CPBLKD
ICMAT

ROWIN3
ROW3

SNGKNN

LAMUNK
SKWN

SUNK

RHSOSF

COMMON

BLOCK

/NETDAT/
Dynamic*
/BCVALU/
Dynamic*

/DATACP/
namic*
namIc*

/CPDAT/

/GPSET/
Dynamic*

/MDGERR/
Dynamic*

/MAGPAR/
Dynamic*

Dynamic*

Dynamlc*
Dynamic*

Dynamic*
Dynamic*

Dynamic*
Dynamic*

PROGRAM/

SUBROUTINE

OPDBM

OPDBM

OPDBI,I

OPDBM

OPDBM"

OPDBM

OPDBM

OPDBM

OPDBM

PROGRA_I/

SUBROUTINE

AQCP

AQCP

AQCP

AQCP
AQCp

AQCP

AQCP

AQCP
AQCP

AQCP

AQCP

AQCP
AQCP
AQCP

AQCp
ACQp
AQCP

V

8-C.4

._,_

OQG
DQG
DQG

CONTROL-PT.SPEC CPSPEC
PANEL'CORNER.COORDSCOORDS.GENNET'_K.SPEC

NETWK

ERROR
ERR

B-SPL INE-VECTOR BPSVEC

COMMON
BLOCK

DYnamic.

Dynamic*
/NETDAT/
gYnamt¢*

/HDGERR/
/BPSPLI

PROGRAM/

BPSV
BPSV
BPSV

BPSV
BPSV

DQG

DQG

MDG

HOG

HDGF

MDGF

HDGF
MDGF

HDGF

MAP NAME

HDG-PANEL-SPEC PANELS

NETWK-SPEC
NET_K

CP-DATA
CPDATA

GP-DATA

COHMoN
BLOCK

IGPSET/
Dynamic,
/NETDAT/
Dynamic,
/DATACP/
Oynamlc.

GPDATA
/DATGP/
DYnamic.

PANEL-POINTS PANPTS
/CPDAT/
IGPSET/

BP'SPLINE-VECTOR SPSVEC Dynamic.
/BPSPL/

CP-BLOCK-DATA CBBLKD Dynamic.
GP-LANBDA Dynamic.GPLAM
ERROR /GPBLAN/

ERR Dynamic.
/MDGERR/

PROGRAH/

GPQTy

GPQTy

GPQTY

GPQTY

GPQTy

GPQTy

GPQTY
GPQTy

GPQTy

MDG
HDGF DATA-BASE-HEADER

ERROR DBHEAD
ERR

COt,_fON
BLOCK

/RUNIo/

/MOGERR/

PROGRAM/

EASY
EASY

8-C.5

DATA BASE

DIP

DQG
DQG

DQG

DQG

DQG
MAK

MAK
MDG

MDG

MDG
MDG

MDG
MDG

MDG
MDGF

MDGF

RHS

DATA BASE

MDGC

MDGC

MDGC
NDGH

MAK
MAK
RHS
RHS
RHS

RHS

MAP NAME

GLOBAL
CPSPEC

GLODQG
NETWK

PANELS

SPECPT

MAG-PAN

MAGSYMM
CPFGEOM
GLOBMD

GLOBMID
GPGEOM

NETWKS

MDGPAN
MDGSOL

ERR

PANPTS

SOLDAT

MAP NAME

BLKLAM

ICLAMB

ERR
RBLMAT

COL3

SY_,_IAP

BLRHIN
LAMMAP

LAMKWN

LAHUNK

SECOND FORM

Overlay (1,0)

DATASET N_E

GLOBAL
CONTROL-PT-SPEC
GLOBAL

NETWK-SPEC

MDG-PANEL-SPEC

SPECIAL-POINTS

HAG-PANEL-DATA

SYMMETRY
CP-GEOM

GLOBAL

GLOBAL
GP-GEOM

NETWORK-SPEC
HAG-PANEL-DATA

SOLUTION-DATA

ERROR
PANEL-POINTS

SOLUTION-DATA

Overlay (2,0)

DATASET NAME

BLOCKED-LAMBDA

IC-L_BDA

ERROR

ROW-BLOCK-MATRIX

COLMAPO

SYMMETRY
BLOCK-INFO

LAM-MAT

LAMBDA-KNOWN

LAMBDA-UNKNOWN

COMMON PROGRAM/
BLOCK SUBROUTINE

/GLOBDT/ OPCKDB

Dynamic* OPCKDB
/GLOBDT/ OPCKDB
/NETDAT/ OPCKD8
Dynamic*
/PANDAT/ OPCKDB

/GPGEOM/
Dynamic* OPCKDB

/PANPKW/ OPCKDB

/SYMMET/ OPCKDB
/CPGEOM/ OPCKDB
/GLOBDT/ OPCKDB

Dynamic*
/NETLST/ OPCKDB

/GPGEOM/ OPCKDB

Dynamic* OPCKDB
/PANPKW/ OPCKDB
/SOLLID/ OPCKDB

/MDGERR/ OPCKOB

/CPDAT/ OPCKDB
/GPSET/

Dynamic*
/SOLLID/ INITCB

/SOLLST/

COMMON PROGRAM/
BLOCKS SUBROUTINE

/BLKLAM/ PMPY
Dynamic*

/ICLAM/ PMPY

Dynamic*
/NDGERR/ PMPY
/BLAMB/ PMPY

Dynamic*

Dynamic* PMPY
/SYMMET/ PMPY

/BLKIFO/ PMPY

Dynamic* PMPY
/MAGAP/ PMPY

Dynamic*
/MAGAR/ PMPY

V

8-C.6

V

DQG

DQG

DQG
DQG

DQG

HDGC

MDGC

HDGF

MDGF

NETWK

PANELS

CPSPEC
SPLINE

SSPLINE

CPLMB

BLKLAM

PANPTS

GPLAM

DQG

DQG

flOG
tIDG

MDGC

MDGF

HOGF

HDGF
MAY,

MAX
MAK

RHS
RHS

RHS
RHS
RHS

NETWK

BNDRY

CPDATA

CPDATA

CPLHB

PANPTS

ERR

CPBLKD
ICHAT

ROWIN3
ROW3

SNGKWN
LAHUNK
SKWN
SUNK

RHSOSF

Overlay (3,0)

NETWK-SPEC

PANEL-SPEC

CONTROL-PT_SPEC
B-SPLINE-DOUBLET

B'SPLINE-SOURCE

CP-L_.IBDA

BLOCKED-LAHBDA

PANEL-POINTS

GP-LAHBDA

Overlay (4.0)

COMMON

BLO__CKS

/NETDAT/
Dynamic,

/PANDAT/
Dynamic,
Dynamic*

/BSPLIN/
Dynamic*

/BSPLIN/
DYnamic*

/CPLAMB/

Dynamic*

/LAHBLK/
Dynamic*

/CPDAT/

IGPSET/
Dynamic*

/GPBLAM/
Dynamic,

NETWK-SPEC

8NDRY-CONDN.SPEC

CP-DATA
CP-DATA

CP-LAMBDA

PANEL-POINTS

ERROR

CP-BLOCK.DATA
IC-_TRICES

ROWHAp. INVERSE
ROWHAp

SING-KNOWN

LAHBDA-UNKNO_N
RHS-KNOWN

RHS-UNKNOWN
ONSET-FLOW

COMMON
BLOCK

/NETDAT/
Dynamic*

/BCVALU/
DYnamic,

/DATACP/
DYnamic*

DYnamic*

/CPDAT/
/GPSET/

Dynamic*

/HOGERR/ AQCP
Dynamic*
/MAGPAR/ AQCp
Dynamic* AQCP

UPDCPKNUKICT AQCP
Dynamic* AQCP

Dynamic* AQCP

DYnamic* AQCp
DYnamic* AQCP

Dynamic, AQCP

Dynamic* ACQP
Dynamic* AQCP

PROGRAM/

OPDBH

OPDBM

OPDBM

OPDBM

OPDBN

OPDBM

OPDBH

OPDBH

OPDBM

PROGRAm/

AQCp

AQCP

AQCP

AQCp

AQCP

AQCp

8-C.7

DATA BASE

DQG

DQG

DQG

NDGF
MDGF

MAP NAME

CPSPEC
COORDS-GEN
NETWK

ERR
BPSVEC

Overl a_ (5,0)

DATASETNAME

CONTROL-PT-SPEC
PANEL-CORNER-COORDS
NETWK-SPEC

ERROR
B-SPLINE-VECTOR

COMMON
BLOCK

Dynamic*
Dynamic*
/NETDAT/
Dynamic*

IMDGERR/
IBPSPLI

PROGRAM/
SUBROUTINE

BPSV
BPSV
BPSV

BPSV

BPSV

DATA BASE

DQG

DQG

MDG

MDG

MDGF

MDGF

MDGF
MDGF

MDGF

MAP NAME

NETWK

PANELS

CPDATA

GPDATA

PANPTS

SPSVEC

CBBLKD
GPLAM

ERR

Overlay (6,0)

DATASET NAME

NETWK-SPEC

MDG-PANEL-SPEC

CP-DATA

GP-DATA

PANEL-POINTS

BP-SPLINE-VECTOR

CP-BLOCK-DATA
GP-LAMBDA

ERROR

COMMON

BLOCK

/NETDAT/
Dynamic*
/GPSET/

Dynamic*
/DATACP/

Dynamic*

/DATGP/
Dynamic*

/CPDAT/

/GPSET/
Dynamic*

/BPSPL/

Dynamic*

Dynamic*
/GPBLAM/

Dynamic*

/HDGERR/

PROGRAM/
SUBROUTINE

GPQTY

GPQTY

GPQTY

GPQTY

GPQTY

GPQTY

GPQTY
GPQTY

GPQTY

DATA BASE

MDG

MDGF

MAP NAME

DBHEAD
ERR

Overlay (7,0)

DATASET-NAME

DATA-BASE-HEADER
ERROR

COMMON

BLOCK

/RUNID/
/MDGERR/

PROGR_4/
SUBROUTINE

EASY
EASY

8-C.8

CONHON

BLOC___/K
/GLOBDT/ DIP
/GLOBDT/ DQG
/GPGEoH/ DQG
DYnamic. DQG
/NETDAT/ DQG
Dynamic.

/PANDAT/ DQG
Dynamic. DQG
/PANPKW/ HAl(
/PANPKW/ HAK
/CPGEOH/ HOG
/GLOBDT/ HDG
Dynamic.

/NETLST/ HDG
/PANPKW/ HDG
/GPGEOH/ HDG
Dynamic. HDG
/SOL LID/ HDG

/HDGERR/ _GF
/CPDAT/ HDGF
/GPSET/
Dynamic.

/SOLLID/ RHS
/SOLLST/

COHHON
BLOCKs

IBLKLAN/
Oynamfc.
/ICLAH/
Dynamic.

/HDGERR/

/BLAHB/
Dynamic.

/BLKIFO/
Dynamic.
/HAGAP/
Dynamic.
/HAGAR/

HDGc

MDGC

HDGC

t4DGH

HAK
HAK

RHS
RHS
RHS

RHS

GLOBAL
GLODQG
PANELS
CPSPEc
NETWK

PANELs
SPECPT
HAG-PAN
t4AGSYHN
CPFGEoH
GLOBHD

GLOBHID
HDGPAN
GPGEON
NETWKS
HDGSOL

ERR
PANPTS

GLOBAL
GLOBAL

HDG'PANEL.SPEc
CONTRoL-PT.SPEC
NETWK-SPEC

HDG'PANEL.SPEC "
SPECIAL-POINTS
HAG'PANEL-DATA
SW4HETRY_
CP-GEOH
GLOBAL

GLOBAL

NAG-PANEL.DATA
GP-GEOH

NETWORK.SPEc
SOLUTION.DATA

ERROR

PANEL-POINTS

SOLDAT
SOLUTION-DATA

BLKLAi4

ICLAHB

ERR

RBLHAT

COL3
SYHNAp

BLRHIN
LAHNAP
LANK N •

LAHUNK

BLOCKED-LAMBDA

IC-LANBDA

ERROR

ROW'BLOCK-NATRIX

COLI,IApo
SYHNETRY

BLOCK-I_FO
LAH-HAT
LAHBOA-KNOWN

LAHBDA-UNKNowH

PROGRAH/

OPCKDB
OPCKDB
DPCKDB
OPCKDB
OPCKDB

OPCKDB
OPCKDB
OPCKDB
OPCKDB
OPCKDB
OPCKDB

OPCKDB
OPCKDB
OPCKDB
OPCKDB
OPCKDB

OPCKDB
OPCKDB

INITCB

PROGRAM/

PHPy

Pt4Py

PHPY

PHPY

PHPY
PHPY

PHPy
PHPy
PHPy

PHPy

8-C. 9

COMHoN

/NETDAT/
Dynamic.
/PANDAT/
DYnamic,
Dynamic*
/BSPL IN�
DYnam_c*
/B SPL IN�
DYnamic*

/CPLAHB/
Ynamfc*
LAHBLK/

Dynamic*

/CPDAT/
/GPSET/
DYnamic.
/GPSLAM/
DYnamic.

OQG

DOG

DQG
DQG

DQG

HDGC

NDGC

NET_K

PANELS

CPSPEC
SPLINE

SSPLZNE

CPLHB

8LKLAH

PANPTS

(;PLAN

NET14K-SPEC

PANEL-SPEC

CONTROL-PT.SPEC
B-SPLINE-DOUBLET

B-SPLINE-SOURCE

CP-LAHDDA

BLOCKED-LANBDA

PANEL-POINTS

GP-LANBDA

COMMoIJ

/NETDAT/
Dynamic.
/BCVALU/
DYnamfc*
/DATAcP/
@namic*

Dynamic*

/CPDAT/
/GPSET/
Dynamic.

/I'IDGERR/ HDGF
Dynamic* HDGF
AIAGPAR/ HAK
DYnamic.

UPDCPK_UKICT
DYnamic* M_,K
Dynamic* HAK
Dynamic* RHS
Dynamic, RHS

nam_c* RHS
namfc* RHS

Dynamic. RHS

8-C.i0

DOG

DQG

HDG
HDG

HDGC

HDGF

NETWK

BNDRY

CPDATA
CPDATA

CPLHB

PANPTS

ERR
CPBLKD
ZCMAT

.ROWZN3
RO_3
SNGKWN
LANUNK
SKiN
SUNK
RHSOSF

NETWK-SPEC

BNDRY-cONDN.SPEC

CP-DATA
CP-DATA

CP-LAZ,IBDA

PANEL-POINTS

ERROR

CP'BLOCK-DATA
IC-_TRIcEs

ROWA_P-INVERsE
ROWMAp
SENG-KNOWN

LAHBDA-UNKNOWN
RHS-KNDwN
RHS-UNKNOWN
ONSET-FLOW

PROGRAH/

OPDBH

OPDBH

OPDBN
OPDBH

OPDBH

OPDBH

OPDBH

OPDBH

OPDBH

k,

PROGRAN/

AQCP

AQCp

AQCp
AQCP

AQCp

AQCP

AQCP
AQCP
AQGp

AQCP
AQCP
AQCp
AQCP
AQCP
AQCp
ACQp
AQGp

Overlay (5,0)

COMMON
BLOCK DATA BASE MAP NAME DATASETNAME

Dynamic* DQG CPSPEC CONTROL-PT-SPEC BPSV
Dynamic* DQG COORDS-GEN PANEL-CORNER-COORDS BPSV
/NETDAT/ DQG NETWK NETWK-SPEC BPSV
Dynamic*

/MDGERR/ MDGF ERR ERROR BPSV
/BPSPL/ MDGF BPSVEC B-SPLINE-VECTOR BPSV

PROGRAM/
SUBROUTINE

Overlay (6,0)

COMMON PROGRAM/
BLOCK DATA BASE MAP NAME DATASET NAME SUBROUTINE

/DATACP/ MDG CPDATA CP-DATA GPQTY
Dynamic*

/GPSET/ DQG MDG-PANEL-SPEC PANELS GPQTY

Dynamic*

/NETDAT/ DQG NETWK NETWK-SPEC GPQTY
Dynamic*

/DATGP/ MDG GPDATA GP-DATA GPQTY
Dynamic*

/CPDAT/ MDGF PANPTS PANEL-POINTS GPQTY
/GPSET/
Dynamic*
/BPSPL/ MDGF SPSVEC BP-SPLINE-VECTOR GPQTY
Dynamic*
Dynamic* MDGF CBBLKD CP-BLOCK-DATA GPQTY
/GPBLAM/ MDGF GPLAM GP-L_BDA GPQTY
Dynamic*
/rIDGERR/ MDGF ERR ERROR GPQTY

Overlay (7,0)

COMMON PROGRAM/
BLOCK DATA BASE MAP NAME DATASET-NAME SUBROUTINE

/RUNID/ MDG DBHEAD DATA-BASE-HEADER EASY

/MDGERR/ MDGF ERR ERROR EASY

V

Dynamic mapping is used for some or all elements of a dataset thus
requiring no common block storage. See section 13 of this document for

details of dynamic mapping.

8-C.II

V

APPENDIX 8-D MASTER DEFINITION

The data base master definition listing of the MDG module has been deleted

from this document. It is produced from the PAN AIR tape during installation.

8-D.I

V

APPENDIX 8-E SYMMETRIZATION

8-E.I

The PAN AIR Theory Document (Reference I) shows how the cost of

solutions to the potential flow problem can be significantly reduced in the
case that the configuration (and/or flow) is symmetric about some plane called

a plane of symmetry (POS). When flow symmetry exists, the singularity

parameters provided by RHS and the IC matricies provided by MAG are linear
combinations of values on either side of the plane of symmetry. However, for

the evaluation of the pressures, forces, and moments on the configuration by
module PDP and CDP, it is necessary to use the values of singularlty

parameters and flow quani:_ties at the actual points on the configuration.

This process of obtaining the values of parameters at the points from the

linear combinations of parameters (symmetrized parameters) is referred to as
unsymmetrization. A general algorithm for unsymmetrizing l, 2 or 4 distinct
images is given.

The known singularities from RHS are already unsymmetrized. Quantities

unsymmetrized by MDG are the unknown singularities stored on the RHS aata base
and the symmetrized flow quantity values obtained by multiplying symmetrized

singularities by symmetrized IC matrix values. The latter flow quantities are
potential, normal mass flux, and average velocity. The unsymmetrized

quantities stored by MDG have not been scaled in sign when reflected across
the POS.

There are potentially four quadrants defined by up to two planes of

symmetry. (For visualization consider the x-z plane as the first POS and the
x-y plane as the second POS.) If no POS exists, or there is no flow asymmetry

with respect to either POS then there is only one distinct image. If flow

asymmetry exists with respect to only one POS then there are two distinct

images. If flow asymmetry exists with respect to both POS, four distinct
images exist.

MDG stores data on the CP-DATA and GP-DATA datasets by distinct images
and solutions. However, throughout its internal processing, unsymmetrized

quantities are stored in blocks, by images, for each solution with a maximum

of 36 quantities per block; for one distinct image up to 36 solutions, for two

distinct images up to 18 solutions, and for four distinct images up to 9
solutions, respectively for each block of data.

,,j

8-E.3

The general algorithm is as follows:

Data Definition:

U unsymmetrized quantities indexed by distinct image and
solution

F scale factor equal to I/2 raised to the number of planes of

symmetry

S symmetrized quantities indexed by distinct image and solution

SIGN a four by four matrix defined as

SIGN(I,J) = l if I=l or J=l or I+J=6
= -I otherwise

Execution sequence:

Initialize U to zero

For each distinct image I do

For each solution K do

For each distinct image J do

Retrieve S(J,K)

U(I,K) = U(I,K) + F * SIGN(I,J) * S(J,K)

Enddo on distinct image J

Enddo on solution K

Enddo on distinct image I

V

V

8-E.4

V

",w_ I

APPENDIX 8-F MDG LIBRARY FUNCTIONAL DECOMPOSITION

This functional decomposition of the subprograms, which are used in

different levels of the MDG module, is presented here. These subprograms are
used only in the MDG module of the PAN AIR system and, so, physically resiae
in the module.

_j

8-F.l

V

"_.jJ

CMPDSV

Ao

C.
D.

MDG Library - General

Compute Doublet Singularity

Multiply Subpanel Doublet Spline and Singularity Vector

Compute MV

Store Doublet Singularity

CMPSSV

A.

B.
C.

Compute Source Singularity Value

Multiply Subpanel Source Spline and Singularity Vector
Compute Source Singularity at Point

Store Source Singularity

ICALC Compute IC Values at Control Point

Ao

B.
C.

D.
E.

F.
G.

H.

Clear Result Array (ZERO)
Define Updatability and Known Indicies for Partition
Get Pointer of IC Row

Define Pointer to Singularity Vector

Get Partition of Singularities

Compute Inner Produ_ct of IC Row and Singularity Vector
Accumulate Contribution to Result Array and Unsymmetrize

Fatal Error/IC Row and Singularity Vector

k j

PRECEDING PAGE BLANK NOT FILMED

8-F.3

TBADD

Ao

B.
C.

D.
E.

F.

MDG Library - Table Manager

Add to Table

Determine Table Number
Increment REF-COUNT

Get Free Space Table

Add Entry to Table

Add Key to Table Data
Print Errors

V

TBDELT

Ao

B.

C.
D.

Delete Least Recently Used from Table

Initialize Smallest
Set Smallest

Delete Key Table Entry

Move Key Up One

TBINIT

AI

B.

C.
D.

E.
F.

TBSRCH

Ao

B.
C.

D.
E.

Initialize Table Manager for Table

Edit Inputs

Define Key Table and Initialize Ref-Count
Initialize Number of Table Entries

Initialize Free Space Table
Print Error Message
Set Error Return Code

Search Table for Entry

Determine Table Number

Determine Number of Table Entries
Set Not Found

Binary Search on Key Entries
Print Errors

FSTBAD

Ao

B.
C.

D.
E.

F.
G.

H.

Free Space Table Add

Initialize Merge Flag
Check for Merge
Increment Block Count

Increment Number of Free Space Sets

Change Last Location
Define New Free Space Loc, NUM-BLKS = l

Merge Blocks of Free Space
Define Free Space Block

8-F.4

MDG Library - Table Manager

FSTBDL

Ao

B.
C.

D.
E.

Free Space Table Delete

Define Free Space Location
Define Last Location

Decrement BLOCK-COUNT
Decrement NUM-LOCS

Define Last Location

DPANCP

Ao

B.
C.

D.
E.

Define Panel Control Points

Define PANEL POINTS

Search of Panel Corner Points (SPANCP)

Form Control Point Data for Corner Points (FCPDAT)

Form Control Point Data for Edge Midpoint (FCPDAT)

Form Control Point Data for Center Point (FCPDAT)

DINGPS

Ao

B.
C.

D.
E.

F.

Define Interior Grid Point Set

Set IPNROW equal to PANEL-ROW
Set IPNCOL equal to PANEL-COL
Set number of GPSETS to one

Set number of points in set to four
Define grid point set I points 1,5,8,9

Define panel fine grid point

FCPDAT

Ai

B.

C.
D.

Form Control Point Data

Define CP Lattice Key

Get CONTROL-PT-SPEC DATA (ESGET)
Move Data to /CPDAT/
Take SDMSRR

GETSPT

Ao

B.
C.

D.

MCPDAT

Ao

B.

C.
D.

E.

Get SPECIAL-POINTS

Form Key

Get Special Points (ESGET)
Get Special Points (ESGET)
Take SDMS Error Exit (SDMSRR)

Move Data to /MCPDAT/

Increment CP Count

Move Subpanel Number
Move CP+INDEX

Move CP-COORDS
Move Panel Points Number to CPANPT

8-F.5

PUTPPT

A.
B.

MDGLibrary - Table Manager

Put Panel Points

Form Key
Put Panel Points (ESPUT)

SPANCP

Ae

B.
C.

Search for Panel Corner on Edge

Set Flag and Initialize
Determine Row/Col Parameters

Compare Points

SDMSRR

Ae

B.
C.
D.

E.
F.

G.

SDMS Error Exit

Set Fatal Flag
Increment Fatal Error Count
Print Fatal Error Diagnostic
Form MDGERR Data

Form Non-Fatal MDG Error Data
Increment Total Error Count

Put MDGF-ERRORData !ESPUT) _

_ I

V

8-F.6

V

APPENDIX 8-G MDG LIBRARY USAGE

8-G.I

_J

rr_

W

8-G.I Panel Points Library Usage

In order to determine the control points and grid point sets for each panel in
a network, a separate set of routines were written in the MDG (l,O) overlay

for use in the MDG (3,0), (4,0), and (6,0) overlays by reading the MDGF data
base PANEL-POINTS dataset. These routines consist of both general and special
purpose applications to generate panel points data for different network

configurations. The general routines define the default grid point set (panel
points 1,5,8,9) as shown below:

4..... 7.....3
I I

8 9 6
I !

l..... 5.....2

These routines also process control point data from the DQG CONTROL-SPEC

dataset, getting special points from DQG for a network edge, moving the
control point data to the output buffer, executing an SDMS ESPUT of the panel

points data, searching for special points on an edge, getting center control
point data, and computing the panel points for a single panel network, single
row or column network. Other routines handle special cases such as single row

or single column network, calculating the control points for parallel edges
simultaneously, or the case for networks consisting of two panel rows or
columns. The control point data for each panel is contained on the /CPDAT/

common block and consists of the number of control points contained in the
pane!, the DQG control point index, the control point coordinates, the

subpanel number of the control point, the panel point number, the fine grid

row lattice, and column lattice of each control point. The grid point data
contains: the fine grid lattices of the first panel point in each grid point

set used as key values for grid point data stored in the overlays (3,0) and
(6_0). It also contains the number of grid point sets, the number of grid

polnts in each grid point set and the panel point numbers of the grid points
in the sequence.

PRECEDING PAGE BLANK NOT FILMED

8-G.3

8-G.2 Table Manager Library Usage

The table manager is a family of programs designed toprovide a_ in,core

storage of data associated with splining operations in the MDG (3,0) and (6,0)

overlays (although it is more general in its implementation). Use of the
table manager is started by a call to TBINIT with arguments (l,l,l,O). This
clears out previous table information and initializes the table manager to

begin processing. For each table used subsequent calls to TBINIT are made
telling the name of the table, number of entries to be contained in the table
(must be less than maximum allowable, or an error occurs), number of keys

required to retrieve an item from the table (maximum of 5 allowed), and size
of a cell in the table (maximum size is 36). Because of the fixed dimensions

of the common block arrays used in the table manager only two tables are

allowed. This is the maximum currently used by MDG. After initialization the
tables are considered empty and reference counts are set to zero. Hereafter,
each addition (TBADD call) or search for an entry in the table (TBSRCH)

increments the global reference count of the entry if found. This count
determines the least recently used entries for the table which will be deleted
when the table is full. The actual tables of data are stored by the user and

_assed to the table manager as a formal parameters in calls to TBADD and
TBSRCH. Data in the table is stored through the TBADD routine and is not

moved which in the table, except by the user, or through deletion when the
table is full. In order to search for an entry in the table a keytable is

kept in sorted order by ascending keys. Each time an add is made the entry
point of the table data is returned as the formal parameter ILOC. This is the

same entry returned on a call to TBSRCH, but ILOC is equal to -l if the entry
is not found in the table. When the table is full the table manager

internally calls TBDELT from TBADD which searches through all reference counts
until the smallest value is found. Another internal call to FSTDBL deletes

this entry from the keytable (KEYTBL common block) and a call to FSTBAD is

made adding the location of the newly deleted item as the new free space
location (FREESP common block). In its current implementation only one item

is deleted when the table is full, but the FSTDBL routine is designed to

accommodate multiple deletions from the table which would be more efficient
when a large number of table entries are initialized. When entries are added

to or deleted from the keytable, the length of the table or equivalently the
number of entries in the table is updated. The common blockTBDAT has global

information formed in the call to TBINIT about the key size, cell size, and
maximum number of entries.

8-G.3 SDMS Error Processing

In MDG after each call to a data base using the SDMS calls ESGET, ESPUT,

ESREP, DESGET, DESPUT, a check is made on the value of NERR in common block
SDMSER which reflects the status of the SDMS call. If the status reflects a

fatal error for further MDG processing, SDMSRR is called passing to it the

value of NERR, the number of keys used in the SDMS call and their values, and

an MDG assigned map number, the location in the program from which the call is
made, and which overlay the call is being made from. SDMSRR increments the
count of fatal errors contained in NFERR and sets FATAL true in the FATAL
common block. SDMSRR writes a record on the error dataset with the

information passed to it through the formal parameter list. In the last MDG
overlay (7,0) the ERROR dataset is read and a summary of errors is printed.

V

V

8-G.4

9.0 POINT DATA PROCESSOR (PDP) MODULE

9.1 INTRODUCTION

The PDP module is a post processor of the PAN AIR system. It presumes

the existence of a solution to the potential flow problem and computes

perturbation and total surface flow quantities from these data.

Data bases from three PAN AIR modules are required to run PDP. These

are the MEC (Module Execution Control), DIP (Data Input Processor) and the MDG

(Minimal Data Generator) data bases. The MEC data base contains locational
information of all data bases, the DIP data base describes the surface flow

options selected by user and the MDG data base provides PDP the configuration

geometry and the solution data.

The PDP module consists of a top level program which calls three main

overlays. The first overlay checks the status of all data bases required by
PDP and processes network specifications and global data. The second overlay

computes average and difference velocities at each control and grid point of
the selected networks and writes these data in a temporary data base. The

third overlay reads these data to compute velocities, mass flux, pressure
coefficients and local Mach numbers on selected surfaces (upper, lower, upper

minus lower, lower minus upper and average). The computed data is printed out

and/or stored in the PDP data base depending upon user selections.

Details of computation of surface flow quantities is given in Section N
of the PAN AIR Theory Document (Reference l). The structure and format of the

user input data for surface flow properties computation is described in
Section 7.6.1 of the PAN AIR User's Manual (Reference 2).

9.2 PDP OVERVIEW

9.2.1 Purpose of PDP

PDP computes perturbation and total mass flux, velocity, potential and

pressures and local Mach numbers at user selected point types (panel center,
edge midpoint, and additional control points, fine grid points and points

arbitrarily defined by user) and surfaces. The pressures and local Mach
numbers are computed for isentropic, linear, second order, reduced second

order and slender body approximations, depending upon user selection.

9.2.2 PDP Input/Output Data

9.2.2.1 Input

Input data to PDP module comes from the MEC, DIP and MDG data bases.

The MEC data base provides data base names, account number under which each
data base resides on disk, date of creation and the status of the data bases,

whether complete or incomplete. The DIP data base provides the user selected

options for the PDP module. These options include the total number of cases

of options for PDP, networks, solutions velocity computation and correction
meChods to be used and the pressure rules selected.

The MDG module provides PDP with network geometry, source and doublet

singularity strengths, perturbation potential, pertubation normal mass flux

9.1

and perturbation velocity computedfrom the IC (Influence Coefficient)
matrices. The geometry data consists of network specifications, coordinates
of panel control and grid points and doublet spline matrices for subpanels.
The potential, velocity and mass flux data provided by MDGare the average
values.

9.2.2.2 Output

The surface flow properties (velocities, mass flux, pressure

coefficients, local Mach numbers, etc.) computed by PDP for control, grid and

arbitrary points are printed and/or stored in the PDP permanent data base for
later retrieval by the PPP module. Selection of each item in the output data,

whether it should be printed and/or stored in the data base or not to be

computed, is controlled by user specifications residing on the DIP data base.

The printed output consists of an estimate on disk storage required for

the PDP run, a summary of global options, a list of computation options
selected by the user for each case, surface flow properties data selected for

printing for each velocity computation method, velocity correction scheme and

surface selected by the user.

The PDP permanentdata base provides glOb_l_data, user options for each

case, network specifications for the configuration and surface flow properties

for control and grid points of the selected networks. Computed flow data for
arbitrary points are only printed out and not stored in the PDP data base.

9.2.3 Data Base Interfaces

The MEC, DIP and MDG data bases provide input data to the PDP module.

The MEC data base gives the name, account number, date of creation and other
locational information for each data base. The DIP data base provides the

user options for PDP. The MDG data base provides the global data, solution
information, network geometry data, singulatities and perturbation values for

velocity, potential and normal mass flux for control and grid points.

PDP creates a temporary data base named PDPT which saves intermediate

data computed in the second overlay COMVEL for use in the third overlay
FLPROP. This temporary data base contains average and difference perturbation
velocities and gradients of doublet strength as computed in COMVEL along with

the minimal set of data for control and/or grid points obtained from the MDG

data base.

Figure 9.1 illustrates the relationships between PDP and all used data

bases.

9.3 MODULE DESCRIPTION

9.3.1 Overall Structure

The main overlays and their subroutines are briefly summarized in this

paragraph. The functional decomposition of PDP is given in Appendix 9-B and a
subroutine tree structure diagram is presented in Appendix 9-A. Figure 9.2

illustrates the top level structure of the PDP module.

V

V

9.2

V

9.3.2 Overlay Descriptions

A summary description of each overlay of the PDP module is given in the

following paragraphs.

9.3.2.1 PDP - Overlay (0,0)

The top level overlay (Figure 9.3) of PDP initializes program variables,

data bases and controls access to the three primary overlays.

It calls Overlay OPDBI to check the status of DIP and MDG data bases, and

defines the necessary data base maps. Then for each case of user requested
options, the module calls into execution the two overlays COMVEL and FLPROP in

that order. After processing the last case of options, it writes the
DATA-BASE-HEADER dataset of the PDP data base, if generated.

9.3.2.2 OPDBI Overlay (l,O)

The second level overlay OPDBI (Figure 9.4) reads the MEC data base to

retrieve run and problem identification (RID and PID). It checks the DIP and
MDG data bases for completeness and if found unusable, returns a fatal error

flag to the main overlay for end of execution. If the DIP and MDG data bases

are found complete, OPDBI processes global data and network specifications

from the MDG data base and user options from the DIP data base. It generates

the PDP data base (if selected by user) and writes GLOBAL abd NETWK-SPEC
datasets. While processing the user option cases, OPDBI estimates the disk

storage requirements for each case and prints out this information along with
the total for the run.

9.3.2.3 COMVEL Overlay (2,0)

The second overlay COMVEL (Figure 9.5) computes the gradients of

perturbation potential and doublet strength and then the perturbation average

and difference velocities at each control and grid point from a minimal set of
data from the MDG data base. Details of velocity computation can be found in

Section N.l of the PAN AIR Theory Document (Reference l). The computations

are performed panel by panel along each column of a network selected by user.
This is done for each distinct image, i.e., across a plane of configuration

symmetry with asymmetric flow (see description of input record G4 in Section 7
of Reference 2). The gradient of the perturbation potential and the average

velocity are computed only if the boundary condition method of velocity
computation is selected by user. If the user selects the VIC (Velocity

Influence Coefficient method), the average velocity at each point of a panel
is obtained from the MDG data base.

COMVEL stores the computed data along with singularity values,

perturbation potential, perturbation normal mass flux, etc., as obtained from

the MDG data base in the PDPT temporary data base.

9.3.2.4 FLPROP Overlay (3,0)

The third level overlay FLPROP (Figure 9.6) prints global and surface flow
options data, defines all necessary maps for PDP data base, calls program

PANPTS (Overlay 3,1) to compute surface flow data at control and grid points

v 9.3

and calls programARBPTS(Overlay 3,2) to computethese data at arbitrary
points.

9.3.2.4.1 PANPTS Overlay (3,1)

This secondary overlay PANPTS (Figure 9.7) retrieves the velocity data from

PDPT data base and computes the perturbation and total surface flow quantities
for each surface selected by the user (UPPER, LOWER, UPLO, LOUP and AVERAGE).
Table 9.1 lists these data items. All vector components in the table are in

the reference axis system.

From the perturbation average and difference velocities for each point of

a panel, PANPTS computes the perturbation and total velocities for each
selected surface, corrects these by the user selected correction schemes (SAI,

SA2 or NONE, see records SFlOb and Gll, Section N.3 of Reference l) and then
uses the velocities in computing perturbation, total and total normal mass

flux, pressure coefficients and local Mach numbers for isentropic, linear,

second order, reduced second order and slender body rules (see Section N.4.2
of Reference l).

These data are printed and/or stored in the PDP data base depending upon
user selections.

9.3.2.4.2 ARBPTS Overlay (3,2)

The secondary overlay ARBPTS processes points arbitrarily defined by the user

by providing the network identification, panel row and column indices and

coordinates. Program ARBPTS reads these data from DIP data base dataset
'ARBITRARY-POINTS'. For each arbitrary point, the program assembles the

geometry and flow data for the grid points of the specified panel by accessing
the PDP data base. The given point is then projected onto the panel surface

and the index of the subpanel where the projected point lies, is computed.
The surface flow quantities are then computed at the point by linear

extrapolation of the values at the three grid points forming the subpanel.

The computed flow data, the user specified coordinates and the program

computed coordinates are then printed out.

9.3.3 PDP Data Bases

A permanent data base named PDP is created by the module if selected by

the user. PDP also creates a temporary data base named PDPT for intermediate

storage of data. The Master Definitions of PDP and PDPT data bases are
described in Appendix 9-D.

9.3.4 PDP Interfaces

9.3.4.1 System Interfaces

The PDP module is accessed through MEC by user control cards and a system

procedure file generated by MEC. This interface is described in Sections l.O
and 2.0 of this document.

9.3.4.2 External Interfaces

The MEC, DIP and MDG data bases are the source of input data for the PDP

module. The PDP permanent data base, if generated, is used by the PPP module.

V

9.4

v

9.3.4.3 Internal Interfaces

The PDPT temporary data base is used by PDP as a scratch file for storing
intermediate data.

The interface between the overlays and subprograms is defined by a tree

structure diagmam in Appendix 9-A.

9.3.5 Data Flow

During execution, data flows between programs, subprograms and the data

bases. Figure 9.2 depicts this activity. Subprograms may also communicate

with each other by using labelled common or subroutine formal parameters.

Information concerning data flow in this manner can be found by consulting the
glossaries of the subprograms which are of interest. Section l, Paragraph 1.4
of this document can be consulted for more detailed information of the use of

the tools available for analysis of data flow. Also, Appendix 9-C has been

included to aid analysis of data flow between PDP and its data bases.

9.4 LOWER LEVEL FUNCTIONS

The following paragraphs present the functional decompositions

(hierarchial structure) of the overlays and their subprograms and purposes of

each subprogram.

9.4.1 Functional Decomposition

See Appendix 9-B for a description of the PDP functional decomposition.

Section l, Paragraph 1.4.1 of this document can be consulted for information
on the use Of the functional decomposition.

9.4.2 Subroutine Descriptions

ANALOP

Analyzes a case of user options to find disk storage requirement.

ANALYZ

_eads GLOBAL and options data from DIP data base and analyzes all the

user option cases.

ARBFLO

_omputes flow quantities at an arbitrary point by calling subroutine
EXTPLT.

CMPORG

Defines origin of a give subpanel and translates the coordinates of a

point in the subpanel to the subpanel coordinate system.

CPGPFL

_omputes flow properties at control and grid points and prints out
the data and/or stores the data on PDP data base.

CPVEL
Computesaverage and difference velocities at control points.

DATAGP
--_etermines what grid point sets (singularity data from MDG)need to

be in core and then assembles the the data by calling subroutine
RDGPDT

DATMOV
Transfers grid point geometry and velocity data from commonblock
/PANBLK/ to /GPDATA/.

EDGFLO

_Frocesses control points (edge midpoint and additional) on network

edges for computing surface flow properties.

EDGVEL

--Frocesses control points (edge midpoint and additional) on network

edges for computing average and difference velocities.

EXTPLT

_omputes a flow quantity (either vector or scalar) at an arbitrary

point by linear extrapolation of the values at the vertices of the

subpanel where it lies.

FNDSUB

--Frojects an arbitrary point onto the given panel, determines the

subpanel where the point lies and then computes the subpanel unit
normal vector and its area.

FLXSRF

Computes perturbation, total and total normal mass flux on selected
surfaces.

GEOGP

--Determines what grid point sets (geometry data from MDG data base)
need to be in core and then assembles the data by calling subroutine
RDGPGM.

GPGEOM
Computes additional grid point geomtry data needed by PDP. These
include normal and conormal vectors and doublet subpanel spline
matrices.

GPVEL

Computes the average and difference velocities at grid points of

panels.

KAPVEC

Computes the KAPPA vectors (a 9 by 3 matrix) given the subpanel index

and the skewness parameters for subpanel vertices.

V

9.6

V

V

_7

LAYOUT

Prints out a summary of the global and case options data selected by
user.

LOADVL

Loads computed surface flow quantities into common blocks for

convenience in printimg or storing in the PDP data base. Common

blocks /PNTCTL/ is used for data to be printed and /FLQNT/ for data
to be stored.

MAPDIP

Defines all SDr,ISmaps for DIP data base datasets needed by PDP.

MAPt_DG

_efines all SDMS maps for MDG data base datasets needed by PDP.

MAPDPT

_efines all SDMS maps for the PDP temporary data base (PDPT).

MAPPDP

_efines all SDMS maps for all PDP data base datasets.

NETFLO

_rocesses control and grid points data from the PDPT data base for

networks except for edge control points in order to compute pressures
and other surface flow data.

PANSRF

Xssembles the geometry and flow data for the nine grid points of a

panel by reading the PDP dataset 'FLOW-QUANT'.

PDPGEN

_enerates the PDP data base and writes network specifications data

(dataset NETWK-SPEC) and global data (dataset GLOBAL).

PNTHDR

_rints output header lines (run identification, problem

identification, user identification, etc.).

PNTRPT

_Frints report on user selected surface flow quantities from data in
common block /PNTCTL/.

PNTSUB

_rints subheader lines for identification of point type, network,
solution, image, velocity computation and correction method, and

pressure computation options.

PTGEOM

_Tomputes normal and conormai vectors at a point on a subpanel and the

inner product of the normal and the transpose of the conormal vectors.

PTLSRF

Computes perturbation and total potential at a point on a surface.

9.8

RDCPVL
Readscontrol point data from the PDPtemporary data base dataset
CP-VELinto commonblock /CPDATA/.

RDGPDT

_eads grid point velocity and singularity data from the MDG data base

dataset GP-DATA into common block /GPDATA/.

RDGPGM

Reads grid point geometry data from MDG data base dataset GP-GEOM
into common block /GPDATA/.

RDGPVL

Reads grid point velocity data from PDP temporary data base (PDPT)
dataset GP-VEL into common block /GPDATA/.

RDSRF

Reads and processes user optiOns data for a case from the DIP dataset
SURF-FLOW.

REFMAT

_#omputes matrix for transformation from reference axis to subpanel

local coordinate system.

REQPNT
Frints estimate on disk storage requirements for the PDP run.

RESGP

Restores grid point data from common block /PANBLK/ into /GPDATA/ for

a panel.

RESTORE

Restores surface flow quantities (velocity, mass flux, pressures,
local Mach numbers, etc.) from common block /TEMPQN/ into /PNTCTL/.

SAICOR
_Tomputes stagnation to ambient velocity correction by the first

method (see Section N.3.1 of Reference l).

SUBSPL

Computes doublet subpanel spline matrix for a subpanel.

TRNMAT

_omputes transformation matrix from the reference axis to another

coordinate system (e.g., where the X axis is the uniform onset flow
direction).

VELCOR

_omputes SAI and SA2 velocity corrections (see Section N.3 of
Reference l).

VELSRF

Computes perturbation and total velocities on a surface.

V

VORCTY
Computesthe corticity angle for a wake surface.

9.9

TABLE9.1 - List of Surface Flow Quantities

DIP
Index* Headings Quantity

2
2
2
3
3
3
4
4
4
5
6
7
7
7
8
8
8
9

IO
II
12
12
12
12
12
13
13
13
13
13
14
14
14
15

16

16
17

18
19

X
Y
Z
PWX
PWY
PWZ
WX
WY
WZ
WMAG
WN
PVX
PVY
PVZ
VX
VY
VZ
VMAG
PHI
PHIT
MLISEN
MLLINE
MLSECO
MLREDU
MLSLEN
CPISEN
CPLINE
CPSECO
CPREDU
CPSLEN
GMUX
GMUY
GMUZ
PSI

SINGS
SINGD
SPDMAX
SPDCRT
CPVAC
CPClSN
CPCLIN
CPCSO
CPCRSO
CPCSB

Point, x-coordinate
Point, y-coordinate
Point, z-coordinate
Perturbation mass flux, x-component
Perturbation mass flux, y-component
Perturbation mass flux, z-component
Total mass flux, x-component
Total mass flux, y-component
Total mass flux, z-component
Total mass flux, magnitude
Total mass flux, normal component
Perturbation velocity, x-component
Perturbation velocity, y-component
Perturbation velocity, z-component
Total velocity, x-component
Total velocity, y-component
Total velocity, z-component
Total velocity, magnitude
Perturbation potential
Total potential
Local Mach number, isentropic
Local Mach number, linear
Local Mach number, second-order
Local Mach number, reduced second-order
Local Mach number, slender body
Pressure coefficient, isentropic
Pressure coefficient, linear
Pressure coefficient, second-order
Pressure coefficient, reduced second-order
Pressure coefficient, slender body
Doublet strength gradient, x-component
Doublet strength gradient, y-component
Doublet strength gradient, z-component
Angle between average velocity and surface vorticity
vectors (degrees)
Singularity strength, source
Singularity strength, doublet
Maximum total speed
Critical speed
Pressure coefficient, vacuum
Critical pressure coefficient, isentropic
Critical pressure coefficient, linear
Critical pressure coefficient, second order
Critical pressure coefficient, reduced second order
Critical pressure coefficient, slender body

V

See a description of user input record SFIO in Section 7 of the PAN AIR
User's Manual (Ref. 2). The last five parameters in this table (the

critical pressure coefficients) are not user selectable; instead, the PDP

modules computes and prints these (except for arbitrary points) for

subsonic flow if the corresponding pressure rules are selected by the user.

9.10

v

MEC MEC

©

DIP PDP PDP PPP

®

MDG MDG PDPT

(D - Data base directory information

(_) - User input surface flow options

(_) - Global, network specification, control and grid point

geometry and singularity data

(_) - Control and grid point velocities, singularities,

perturbation potential, and geometry data

(_) - Global and network specification data and surface

flow quantities

Figure g. 1 Data Base Relationships

"v _ 9.11

PDP

Overlay(O,O)

Initialize and
:all other Overlays

i

L_

OPDBI

Overlay(I,0)

Open data bases

Analyze options

T
DIP

Input

options

MEC

Data base

Informa-
tion

I0_ksto_ageF_

,f
ir

COMVEL

Overlay(2,0)

Compute Average
and diffe_ence

ve?oci ties

r 'I

MDG

ieometry
lelocitfe._
singuqar-_

I

%

FLPROP

Overlay(3,0)

Compute surface

flow properties

PDPT

_Icbal
lecmetry
_-irgulat-

MDG

Network

geometry

PDP

Surface
fl ow

V

ISur_ace'l°w_

9.12

Figure 9.2 - PDP Structure and Data Interfaces

Program PDP

Overlay(O,O)

PDP

Data-Base-HeaderII

Subroutine I
RDSRF

DIP

SURF-FLOW

Figure 9.3 - Structure and Data Flow of Overlay (0,0)

. 9.13

I MEC _.
DATA-BASE-HEADER

OPDBI

Overlay(I,0)

I

I MDG

GLOBAL,

SOLUTION-DATA

I DIP

SURF-FLOW

GLOBAL-FLO-PROP

Subroutine

ANALYZ

Subroutine

PDPGEN

Subroutine

MAPPPP

1MDG

NETWK-SPEC

MDG 1

NETWK-l
SPECJ

Subroutine

ANALOP

Subroutine

REQPNT

Disk Storage I

Figure 9.4 - Structure and Data Flow of Overlay(I,0)

9:14

k_/
Program
COMVEL

Overlay(2,0)

MDG

NETWK-SPEC
CP-GEOM 1

Subroutine

EDGVEL

Subroutine

GEOGP

ISubrouti ne
RDGPGM

r

Subroutine

DATAGP

Ir°neio

Subroutine

GPVEL

Subroutine

CPVEL

Figure 9.5 - Structure and Data Flow of Overlay(2,0)

9.15

IIMDG

NETWK-SPEC

Program

FLPROP

Overlay(3,0)

Program

PANPTS

Overl ay(3,1)

SURF-OPTIONS

i

i
Program

ARBPTS

Overlay(3,2)

,_,

Subroutine

PANSRF

Subroutine

RDGPVL

Subroutine

NETFLO

Subroutine

RDCPVL

LC PDPT I

P-VEL]

,

Subroutine

CPGPFL

Subroutine

EDGFLO

I

Subroutine

RDCPVL

QUAINTPDP I

FLOW, I

W

Figure 9.6 - Structure and Data Flow of Qverlay (3,0)
9.16

APPENDIX 9-A TREE STRUCTURE

The tree structure diagram of the PDP module has been deleted from this
document. It is, however, available on the installation tape.

; 9-A.I
v

_ m

APPENDIX 9-B PDP FUNCTIONAL DECOMPOSITION

The functional decomposition of the PDP module is presented here. The
decomposition labels are given in the order of their execution and therefore

may not be alphabetic.

_ 9-B.I

'V

V

2

v

A

B

Initiate Program Execution
A Initialize variables

B Initiate program start (PRGBEG)
C Initiate SDMS (ISDMS)

Check data bases and initialize - Overlay (I,0) Program OPDBI

A Open MEC data,base (DBOPEN)
B Get run identification information

A Define MEC header dataset map (DSMAP, SVMAP, ENDMAP)
B Get MEC header dataset (ESGET)

C Check data bases required by PDP
A Check DIP data base (CHPADB)
B Check MDG data base (CHPADB)
C Generate PDPT data base (CHPADB)

D Open data bases and define SDMS maps
A Open DIP and MDG data bases (PAOPEN)
B Define SDMS maps for DIP datasets (MAPDIP)
C Define SDMS maps for MDG data base (MAPMDG)
D Analyze and print resource requirements (ANALYZ)

F Check and generate PDP data base, write "GLOBAL" and "NETWK-SPEC"
datasets (PDPGEN)

G Close DIP and MDG data bases (PACLOS)
H Close MEC data base (DBCLOS)
Open DIP, MDG and PDP data bases and defined needed SDMS maps
A Open DIP, MDG
B Define needed DIP maps (MAPDIP)
C Define needed MDG maps (MAPMDG)
D Open PDP data base (PAOPEN)

Read and analyze surface flow options data (RDSRF)
A Read DIP dataset "SURF-FLOW" (ESGET)

B Determine image list for each network

C Determine velocity computation options selected
D Determine velocity correction options selected

E Form PDP option-index vector
A Get from reference table the start and end position of an

item in the index vector

B Flags these word appropriately (0, l, 2, or 3)

C Determine flags to indicate print and data base storage
D Flag local Mach number option elements, if selected

F Find number of surfaces selected

Open PDPT data base (PAOPEN)
Define SDMS maps for PDPT data base (MAPDPT)

Compute average and difference velocities at points - Overlay (2,0)-
Program COMVEL

A Analyze point types selected
B Get network data

A Get index and ID

B Read MDG dataset "NETWORK-SPEC" (ESGET)

C Process edge control points, if selected (EDGVEL)

D Get geometry data from MDG data base
A Read control point geometry data (ESGET)

B Get grid point geometry data (GEOGP)

9-B.3

PRECEDING PAGE BLANK NOT FILMED B_GE_INIENIIONAI_,Ly BLANK

F

Get singularity and velocity data for point
A Get for grid points (DATAGP)
B Get for control points from MDG data base (ESGET)

Compute and write the average and difference velocity data to PDPT
data base

A Form grid points in panel (GPVEL)
A Assemble (rata for the grid points

B Compute additional geometry data required (GPGEOM)

C Compute subpanel local coordinates for a point (CMPORG)
D Assemble the perturbation potential and doublet strength

matrix for the panel (PANMAT)

E Compute and accumulate average velocity by the boundary

condition method for all subpanels where the point lies

A Compute gradient of potential at point (COMGRD)

B Compute the first terms of the equation for average
velocity (CAB}

C Compute and accumulate average velocity at the point

for the subpanel

F Compute and accumulate difference velocity at the point for
all subpanels where the point lies
A Compute gradient of doublet strength (COMGRD)
B Compute the first terms of equation (CAB)

C Compute and accumulate difference velocity at point

for the subpanel
G Compute average (for all subpanels where the point lies) of

the velocities

H Compute gradient of doublet strength in reference axis (CAB)

I Write grid point data onto PDPT dataset "GP-VEL"

B Compute average and difference velocities at center control

points and write to PDPT data base dataset (CPVEL)
A Compute additional geometry data for the control point

A Compute conormal and inner product of normal and
transpose of cornormal vectors (PTGEOM)
A Initialize error code to zero

B Compute conormal vector (CAB)

C Compute sub/super inclination of subpanel (rIP)
D Increment error count, if any

E Compute inner product of normal and transpose of
conormal vectors (CAB)

B Compute transformation matrix for subpanel local to
reference axis (REFMAT)

A Compute unit V vector
A Compute vector cross product of unit normal

B

C

and compressibility vector (CROSS)
Normalize V vector (UNIVEC)

Define new V vector if normal vector is

parallel to compressibility vector
Normalize V vector

Compute unit vector U perpendicular to V and
normal vectors (CROSS)

Compute first term of matrix
A Find scale factor

B Compute unscaled first column (CAB)
C Scale and form first column (CAB)

9-B.4

; /

_m

B

C

D

D Compute second column of matrix

A Find scale factor

B Compute unscaled column
C Scale and form second column

E Compute third column of matrix
A Find column factor

B Compute, scale and form third column
F Error exi t

C Define subpanel local coordinate system and tranform

point coordinates in reference axis to subpanel local

system (CMPORG)

Compute first part of the first term for equations defining

average and difference velocities
Form doublet strength matrix (gxl) for panel (PANMAT)
A Determine column, row and point number
B Get average perturbation potential and doublet

strength values for point
C Form elements of matrix

Compute average perturbation velocity by the boundary
condition method
A Compute gradient of potential (COMGRD)
B Compute first term of equation (CAB)
C Compute the three components of velocity
Compute perturbation difference velocity at the point
A Compute gradient of doublet strength at point (CAB)
B Compute first term of the difference velocity equation

(CAB)
C Compute the three components of velocity
Compute gradient of doublet strength in reference axis
Reflect coordinates, velocities, gradients of doublet
strength and normal vector for image (IMAGE)
Write computed data to PDPT data base dataset CP-VEL (ESPUT}

Compute surface flow properties data - Overlay (3,0), Program FLPROP

A Print global and surface flow case option data (LAYOUT)
B Define SDMS maps for PDP dataset FLOW-QUANT and write SURF-OPTIONS

datasets

A Define SDMS maps (DSMAP, SVMAP, ENDHAP)
B Write SURF-OPTIONS dataset for this case (ESPUT)

C Compute constant quantities dependent on solution only
D Compute flow properties at panel points - Overlay (3,1), Program

PANPTS
A Get network index
B Get network specifications data from MDG data base (ESGET)
C Compute flow properties at network edges (EDGVEL)

A Form and initialize loop control table
B Get loop control parameters from table for the edge
C Get and process velocity data for control point from

PDPT data base (RDCPVL)

D Compute and output flow quantities at the point on edge
(CPGPFL)
A Select average perturbation velocity at point (B.C. or

VIC)

B Compute perturbation and total potential on surface
(PTLSRF)

_" 9-B.5

9-B.6

C Computeperturbation and total velocities on surface
(VELSRF)

D Computemass flux (perturbation, total and total
normal) on surface

E Computevelocity correction (SAI and SA2) (VELCOR)
A Computeperturbation velocity componentin the

compressibility axis direction (VIP)
B ComputeSAI (stagnation to ambient correction number

one)
A Computemassflux along compressibility direction
B Computecorrection to velocity (SAICOR)

C ComputeSA2correction (stagnation to ambient
correction number2)
A Multiply perturbation mass flux by the ratio of

perturbation velocity and perturbation massflux
magnitudes to get total velocity

B Computecorrection to velocity
F Computelocal Machnumbersand pressure coefficients

(COMPRS)
A Computeperturbation and local incremental onset flow

velocities along user preferred direction
B Computemaximumand critical speed and total velocity
C Computepressure coefficients

A for isentropic rule
B for second order rule
C for reduced secondorder rule
D for slender body rule
E for linear rule

D Compute local Mach numbers
A for i sentropfc and second order rules
B for reduced second order rule
C for slender body rule
D for linear rule

G Save the computed flow quantities for the point on the
upper and lower surfaces in common block /TEMPQN/

H Restore the computed flow quantities for the point to
common block /COMPQN/ and compute vorticity angle
A Restore data
B Compute total mass flux and magnitudes of total

velocity and total mass flux (VIP)
C Compute vorticity (VORCTY)

I Load flow quantities data into print and data base buffers
(common blocks /PNTCTL/ and /FLQNT/) (LOADVL)

J Produce printed output (PNTRPT)
A Initialize program variables
B Prepare and print header lines for new page of output,

if necessary (PNTSUB)

C Print flow quantities data from common block /PNTCTL/
D Save the indices for the current solution, network,

image and point type
K Write flow quantities data to PDP data base dataset

FLOW-QUANT, if data base storage is selected (ESPUT)
Compute flow properties for the network points (except on edges)
(NETFLO)
A Determine row and column indices for grid points in panel

- i

V

V

Read and process grid point data from PDPT data base

dataset GP-VEL (RDPVL)

Determine row and column indices for control point

Read and process control point data from PDPT dataset
CP-VEL (RDCPVL)

Compute and output flow quantities at the points {CPGPFL)

A
B
C

F

G

H

Select average perturbation velocity at point (B.C. or VIC)

Compute perturbation and total potential on surface (PTLSRF)

Compute)perturbation and total velocities on surface(VELSRF

Compute mass flux (perturbation, total and total normal) on
surface

Compute velocity correction (SAI and SA2) (VELCOR)
A Compute perturbation velocity component in the

compressibility axis direction (vIP)

B Compute SAI (Stagnation to Ambient correction number
one)

A Compute mass flux along compressibility direction
B Compute correction to velocity (SAICOR)

C Compute SA2 correction
A Multiply perturbation mass flux by the ratio of

perturbation velocity and perturbation mass flux
magnitudes to get total velocity

B Compute correction to velocity
Compute local Mach numbers and pressure coefficients
(COMPRS)
A Compute perturbation and local incremental onset flow

velocities along user preferred direction
B Compute maximum and critical speed and total velocity
C Compute pressure coefficients

A for isentropic rule
B for second order rule
C for reduced second order rule
D for slender body rule
E for linear rule

D Compute local Mach numbers
A for isentropic and second order rules
B for reduced second order rule

C for slender body rule
D for liear rule

Save the computed flow quantities for the point on the

upper and lower surfaces in common block (TEMPQN)
Restore the computed flow quantities for the point to

common block /COMPQN/ and compute vorticity angle
A Restore data

B Compute total mass flux and magnitudes of total

velocity and total mass flux (VIP)
C Compute vorticity (VORCTY)

Load flow quantities data into print and data base buffers

(common blocks /PNTCTL/ and /FLQNT/) (LOADVL)

Produce printed output (PNTRPT)

A Initialize program variables

B Prepare and print header lines for new page of output,
if necessary (PNTSUB)

9-B.7

E

F

C Print flow quantities data from common block /PNTCTL/
D Save the indices for current solution, network, image

and point type
K Write flow quantities data to PDP data base dataset

FLOW-QUANT, if data base storage is selected (ESPUT)
E Compute flow properties at arbitrary points - Overlay (3,2),

Program ARBPTS °
A Define map for DIP dataset 'ARBITRARY-POINTS', if

first-time execution
B Get arbitrary points specification data (ESGET) from DIP

data base
C Get network dimensions data from MDG dataset 'NETWK-SPEC'

(ESGET)
D Assemble flow data from PDP data base for given panel where

the arbitrary point may lie (PANSRF)
A Initialize data arrays to zeroes (ZERO)
B Compute fine grid row and column indices for needed

grid data blocks
C Read dataset 'FLOW-QUANT' of PDP data base for a grid

block (ESGET)
D Compute panel unit normal vector

E Save network and panel row and column indices
F Determine subpanel where the arbitrary point lies (FNDSUB)

A Initialize error code to zero
B Compute projection of point on panel surface
C Compute parameters needed to determine the subpanel

number

D Compute subpanel index
E Assemble coQrdinates of the subpanel vertices and

compute subpanel unit normal vector
F If point lies outside panel, set error code to I.

G Compute and print flow properties at the arbitrary point
(ARBFLO)
A Initialize print and data base arrays
B Compute flow quantities at point by linear

extrapolation of the values at the subpanel vertices
(EXTPLT)

C Load computed data into print and data base arrays
(LOADVL)

D Print computed flow data for the arbitrary point
(PNTRPT)

Close and return temporary data base, PDPT (PACLOS)

Initiate end of program execution
A Close DIP and MDG data bases, write PDP header dataset

DATA-BASE-HEADER and close PDP data base (PACLOS)
B Announce end of execution (PRGEND)

V

9-B.8

APPENDIX9-C DATABASECOMMUNICATIONSCHART

The Data Base Communications Chart is presented in three forms. Each form

is alphabetized by columns, from left to right. The first form has a column

order of Data Base, Dataset Name, Map Name, Common Block, and
Program/Subroutine. The second form has a column order of Data Base, Map

Name, Dataset Name, Common Block, and Program/Subroutine. The third form has

a column order of Common Block, Data Base, Map Name, Dataset Name, and

Program/Subroutine. Thus a person can get a cross reference on a data element

by knowing either the Dataset Name, Map Name or Common Block name.

_" 9-C.I

DATA
BASE DATASET HAME
D-I-F- ARBITRARY-POINTS

DIP GLOBAL-FLO-PROP

FIRST FORM

MAP NAME
DIPARBPT

DIPGLBFL

DIP SURF-FLOW DIPSRFOP

MEC DATA-BASE-HEADER

MDG CP-DATA

MDG CP-GEOM

MECMAP

MDGCPDAT

MDGCPGEM

PiDG GLOBAL MDGGLOBL

MDG GP-DATA MDGGPDAT

I,IDG GP-GEOM MDGGPGEM

MDG NETWORK-SPEC MDGNETFIP

PDP DATA-BASE-HEADER

PDP FLOW-QUANT

PDP GLOBAL

PDP NETWK-SPEC

PDP SURF-OPTIONS

PDPT CP-VEL

PDPT CP-VEL

PDPHDR

FLQNTMAP

GLOBMAP

NETMAP

OPTNMAP

CPVEL

GPVEL

CO_40N
BLOCK*
7X-R-B-GTO/

/PDGLOB/

/PDOPT/

/RUNIDS/

/CPDATA/

/CPDATA/

/PDGLOB/

/GPDATA/

/GPDATA/

/NETSPC/

/RUNIDS/

IFLQNT/

/PDGLOB/

/NETSPC/

/PDOPT/

/CPDATA/

/GPDATA/

PROGAP4/
SUBROUTINE
MAPDIP
ARBPTS

MAPDIP
RDSRF

MAPDIP
RDSRF

OPDBI

MAPMDG
COMVEL
EDGVEL
MAPMDG
COMVEL
EDGVEL
MAPMDG
ANALYZ
MAPMDG
RDGPDT
MAPMDG
RDGPGM
MAPMDG
ANALYZ
COMVEL
PANPTS
ARBPTS

MAPPDP

FLPROP
MAPPDP

FLPROP
CPGPPL
PANSRF

MAPPDP

PDPGEN

MAPPDP

PDPGEN
MAPPDP

FLPROP

MAPDPT
RDCPVL
CPVEL
MAPDPT
GPVEL

J

9-C.3

PRECEDING PAGE BLAN}(NOT FILMED B_r_-.C,'_ IN'[_J_I_ _,/UtK

DATA

BASE

DIP

DIP

MEC

MDG

MDG

MDG

IIDG

MDG

MDG

PDP

PDP

PDP

PDP

PDP

PDPT

PDPT

DIPGLBFL

DIPSRFOP

MECMAP

MDGCPDAT

MDGCPGEM

MDGGLOBL

MDGGPDAT

MDGGPGEM

MDGNETMP

PDPHDR

FLQNTMAP

GLOBMAP

NETMAP

OPTNMAP

CPVEL

GPVEL

SECOND FORM

DATASET N_4E
ARBITRARY-POINTS

GLOBAL-FLO-PROP

SURF-FLOW

DATA-BASE-HEADER

CP-DATA

CP-GEOM

GLOBAL

GP-DATA

GP-GEOM

NETWORK-SPEC

DATA-BASE-HEADER

FLOW-QUANT

GLOBAL

NETWK-SPEC

SURF-OPTIONS

CP-VEL

CP-VEL

COMMON
BLOCK*
7X'R'TG O/

/PDGLOB/

/PDOPT/

/RUNIDS/

/CPDATA/

/CPDATA/

/PDGLOB/

/GPDATA/

/GPDATA/

/NETSPC/

PROGAM/
SUBROUTINE
MAPDIP
ARBPTS

MAPDIP

RDSRF

MAPDIP
RDSRF

OPDBI

MAPMDG
CONVEL
EDGVEL
MAPMDG
COMVEL
EDGVEL
MAPMDG
ANALYZ
MAPMDG
RDGPDT
MAPMDG
RDGPGM
_APMDG
ANALYZ
COMVEL
PANPTS
ARBPTS

/RUNIDS/ MAPPDP
FLPROP

/FLQNT/ MAPPDP
FLPROP
CPGPPL
PANSRF

/PDGLOB/ MAPPDP
PDPGEN

/NETSPC/ MAPPDP
PDPGEN

/PDOPT/ MAPPDP
FLPROP

/CPDATA/ MAPDPT
RDCPVL
CPVEL

/GPDATA/ MAPDPT
GPVEL

V

9-C.4

THIRD FORM

COMMON DATA PROGRAM/
BLOCK* BASE MAP NAME DATASET NAME SUBROUTINE
_0/ _ _ _ITB'_'R-AIT_7_TINTS MAPDIP

ARBPTS

/CPDATA/ MDG MDGCPDAT CP-DATA MAPMDG
COMVEL
EDGVEL

/CPDATA/ MDG MDGCPGEM CP-GEOM MAPMDG
COMVEL
EDGVEL

/CPDATA/ PDPT CPVEL CP-VEL MAPDPT
RDCPVL
CPVEL

/FLQNT/ PDP FLQNTMAP FLOW-QUANT MAPPDP
FLPROP
CPGPPL
PANSRF

/GPDATA/ MDG MDGGPDAT GP-DATA MAPMDG
RDGPDT

/GPDATA/ MDG MDGGPGEM GP-GEOM MAPMDG
RDGPGM

/GPDATA/ PDPT GPVEL CP-VEL MAPDPT
GPVEL

/NETSPC/ MDG MDGNETMP NETWORK-SPEC MAPMDG
ANALYZ
COMVEL
PANPTS
ARBPTS

/NETSPC/ PDP NETMAP NETWK-SPEC MAPPDP
PDPGEN

/PDGLOB/ DIP DIPGLBFL GLOBAL-FLO-PROP MAPDIP
RDSRF

/PDGLOB/ MDG MDGGLOBL GLOBAL MAPMDG
ANALYZ

/PDGLOB/ PDP GLOBMAP GLOBAL MAPPDP
PDPGEN

/PDOPT/ DIP DIPSRFOP SURF-FLOW MAPDIP
RDSRF

/PDOPT/ PDP OPTNMAP SURF-OPTIONS MAPPDP
FLPROP

/RUNIDS/ MEC MECMAP

/RUNIDS/ PDP PDPHDR

DATA-BASE-HEADER

DATA-BASE-HEADER

OPDBI

MAPPDP
FLPROP

*Dynamic mapping (see Section 13 of this document for details) is used for all
or some of the keys for each data set, thus requiring no common block storage
for the keys.

9-C. 5

v

V

APPENDIX 9-D MASTER DEFINITION

The data base master definition listing of the PDP module has been deleted

from this document. It is produced from the PAN AIR tape during installation.

' 9-D.I

I0.0 CONFIGURATION DATA PROCESSOR (CDP) MODULE

I0.I INTRODUCTION

The CDP module is a post procesor for the PAN AIR system. It presumes

the existence of a solution to the potential flow problem and converts the

data describing that solution into forces and moments. The module may compute
added mass coefficients instead of forces and moments.

Data bases from three PAN AIR modules are required to run CDP. These
are the Module Execution Control (MEC) data base, which controls the sequence
of module execution, the DATA Input Procesor (DIP) data base, which desribes
the force and moment options desired by the user, and the Minimal Data
Generator (MDG) data base. The MDG data base provides input data for the
forces and moment computations. Output from CDP, in the form of the CDP data
base, is used by the Print Plot Processor (PPP) module.

The CDP module consists of a top level program which calls four main
overlays to compute forces and moments. The first overlay checks the status
of all the data bases required by CDP and analyzes the global data. The
second overlay computes forces and moments for a particular case. The third
overlay computes the component of the force on a thin surface due to the
infinite velocity at the leading edge. The fourth overlay transforms the
forces and moment data from the reference axis system to the selected axis
systems, and writes the results on the CDP data base and/or on the output
listings. The fifth overlay computes and displays added mass coefficients.
It may be executed instead of the second, third and fourth overlays. The
results can be accumulated over sets of user options, called cases.

10.2 CDP OVERVIEW

10.2.1 Purpose of CDP

Given an existing solution, CDP will compute forces and moments or added
mass coefficients on portions of a configuration, transform these according to
user requests, and print or store in the data base the transformed results.

10.2.2 CDP Input/Output Data

The CDP module requires access to the data bases brom three PAN AIR
modules in order to execute. These are the MEC, the DIP and the MDG data
bases.

The MEC data base provides run, problem and user identification in

addition to current data base identification.

The DIP data base provides user problem descriptions of global flow

properties and user requests for surface force and moments.

The MDG data base provides global data, network specificiations, control

point data, control point geometry, grid point data, grid point geometry and
solution data.

V

I0. I

CDP output data consists of printed output and the CDP permanent data base

which is used by the Print Plot Processor (PPP) module. Output data is

controlled by user specifications which reside on the DIP data base. The

printed output may provide a summary of user options, resource estimates, user
requested results and errors and diagnostics. The CDP permanent data base

provides case options, network specifications, edge force coefficients, and
force and moment coefficients for panels, networks, configuration and network

edges. Added mass coefficients for selected portions of the configuration may
also reside on the data base.

10.2.3 Data Base Interface

The CDP module creates a temporary data base which saves data computed in

the second overlay COPMPFM and the third overlay LEDGF. The third overlay
reads doublet strengths from the temporary data base. The fourth overlay
GENOUT accesses the temporary data base in order to produce the final output.

The temporary data base provides force and moment coefficients, edge forces

and moments, panel areas, and doublet strength.

I0.3 MODULE DESCRIPTION

lO.3.1 Overall Structure

The high level module design is described in this paragraph. The lower

level subroutines are described in Paragraph I0.4. The functional

decomposition of CDP is illustrated in Appendix lO-B. The overall structure

of CDP is depicted in Figure lO.l.

10.3.2 Overlay Descriptions

I0.3.2.1 CDP Overlay (0,0)

The top level overlay initializes the data base and other program

parameters. It calls overlay OPDBI, to check the satus of the data bases and
to initialize global data, and defines the necessary data base maps. Then, to

compute forces and moments for each case of user requested options, the module
calls the three overlays COMPFM, LEDGF AND GENOUT. The forces and moments for

the reference coordinate system are computed in COMPFM. Edge forces are

computed in LEDGF. The overlay GENOUT transforms the forces and moments data

to user requested axis systems and writes the information on the CDP data base
and the output file. To compute and display added mass coefficients, the
module calls the fifth overlay AMCOEF.

I0.3.2.2 OPDBI Overlay (l,O)

The second level overlay OPDBI (Figure I0.2) reads the MEC data base to
retrieve run and data base identification. It checks the data bases for

completeness. Then the module reads global data from the DIP and MDG data

bases, and it calculates parameters required to reflect input configurations

across planes of symmetry.

V

V

I0.2

10.3.2.3 COMPFM Overlay (2,0)

The second level overlay COMPFM (Figure I0.3) computes forces and moments

from minimal data from the MDG data base and stores the results on the CDP

temporary data base. The computations are performed panel by panel along a

given column. The minimal data for a particular panel is assembled from four
data sets which are keyed by the panel's four corner points.

I0.3.2.4 LEDGF Overlay (3,0)

The second level overlay LEDGF (Figure I0.4) computes edge forces and
moments from minimal data from the MDG data base and stores the results on the

CDP temporary data base. The computations are performed panel by panel along

a given edge. The panel corner point geometry is extrapolated from the fine
grid geometry.

I0.3.2.5 GENOUT Overlay (4,0)

The second level overlay GENOUT (Figure I0.5) prints out the computed
forces and moments data and stores t_e data in the CDP data base for later

retrieval. For each panel, the forces and moments are retrieved from the CDP

temporary data base and transformed into the requested axis systems. The
results are written to the CDP permanent data base and the line printer. This

i_ also done for forces calculated along the edge.

I0.3.2.6 AMCOEF Overlay (5,0)

The second level overlay AMCOEF (Figure I0.6) computes and displays added

mass coefficients. The computations are performed for an individual panel and
displayed for sums of panels as selected by the user. Displayed coefficients

are printed or written to the CDP permanent data base.

10.3.3 CDP Data Base

The permanent data base CDP is created by CDP for used by the Print Plot
Processor (PPP) module. The Master Definition is described in Appendix lO-D.

I0.3.4 CDP Interfaces

10.3.4.1 System Interfaces

The CDP module is assessed by user control cards or a procedure file

generated by the MEC module.

I0.3.4.2 External Interfaces

The MEC data base, the DIP data base and the MDG data base are input

vehicles for the CDP module. The CDP permanent data base and the output

listing are the output vehicles for CDP.

10.3

10.3.4.3 Internal Interfaces

The interfaces between the overlays and the subprograms is defined by a

tree structure diagram in Appendix lO-A.

I0.3.5 Data Flow

The flow of execution is depicted in Figures I0.7 and I0.8. During

execution, data flows between subprogram and data bases. Figures I0.7 and
I0.8 depict this activity. Subprograms may also communicate with each other

by using labeled common or formal parameters. Information concerning data
flow in this manner can be found by consulting the glossaries of the

subprograms which are of interest. Section l, Paragraph 1.4 of this document
can be consulted for more detailed information of the use of the tools

available for analysis of data flow. Also, Appendix lO-C has been included to
aid analysis of data flow between CDP and its data bases.

I0.4 LOWER LEVEL FUNCTIONS

The following paragraphs present the functional decompositions

(hierarchial structure) of the overlays and their subprograms and give the

purpose of each subroutine.

10.4.1 Functional Decomposition

See Appendix lO-B for a description of the CDP functional decomposition.

Section l, paragraph 1.4.1 of this document can be consulted for more detailed

information of the use of functional decomposition.

I0.4.2 Subroutine Descriptions

The subroutines used in the CDP module which do not reside on the PALIB

library or the SDMS library are described below. Also refer to the tree
structure in Appendix lO-A.

AINVERS

Computes the inverse of the coefficient matrix (A matrix) used in

velocity calculations.
ANALYZ

Reads and sets up global data.

ASPADA

Assembles geometry and surface flow data for a particular panel.

I0.4

BCXFER

Transfers data from blank common to a local storage area.

BLOCK

Assembles four 3 x 3 matrices into a single 6 x 6 matrix.

CASEPG

Writes the case summary page,

CEFDIR

Computes a unit vector in the direction of the edge force.

CELPAR

Computes the edge limit parameter which is a measure of the degree of
singularity of the velocities at the panel column edge,

CEPRDB

Accumulates'and stores the edge forces and moments.

CFIGAM

Computes the added mass coefficients for a configuration.

COLAM

Computes the added mass coefficients for a column of panels.

COMPRS

Computes selected pressure coefficients and local Mach numbers for a
point on a specified surface,

CORREC

Determines a correction factor to be used for edge force calculations.

CPAGEQ

Computes various panel quantities which are functions of geometry.

CPPRDB

Accumulates panel forces and moments and generates the CDP data bases
and printed output.

10.5

FLOCHK

Checksthe doublet distribution near the edges of networks to see if
they follow patterns established for the 2-D flat plate cases from
which edge force corrections have been developed.

GENFM

Computesforce and momentcoefficients in the reference axis system.

GLOBPG

Writes the global summary page.

INTAM

Performs the surface integration required to compute added mass

coefficients for a panel.

LOADBC

Assembles data from the MDG module in blank common arrays. The data is

sufficient to compute added mass coefficients for a column of panels.

MAPCDP

Defines selected SDI4S maps for the CDP data base.

MAPCDT

Defines selected SDMS maps for the CDT data base.

MAPDIP

Defines selected SDMS maps for the DIP data base.

HAPMDG

Defines selected SDMS maps for the MDG data base.

NETWAM

Computes added mass coefficients for a network.

OUTPAM

Outputs added mass coefficients to the OUTPUT file or the CDP permanent

data base.

PANLAM

Computes added mass coefficients for a panel.

10.6

V

PNTGLOB

Prints CDP global data.

PNTHDR

Prints CDP report header.

PNTOPT

Prints the CDP case options data as the first page for each case.

PNTRPT

Prints forces and moments data for panels, columns, networks,
configurations and edges.

PNTSUB

Prints a new page of the report.

PRINAM

Prints added mass coefficients on the OUTPUT file.

PVEL

Computes perturbation velocities for the specified surface.

RCASFM

Reads and analyzes options for the current case.

REFLAM

Adjusts added mass coefficients for a panel to correspond to the
correct image.

REFLFM

Reflects a force and its corresponding moment about given planes of

symmetry.

SAICOR

Computes the SAI correction on velocity.

SCAL_4

Scales added mass coefficients.

10.7

SPACER

Characterizes panel spacing used near a network edge.

TRANAM

Translates the added mass coefficients of a panel to alternative axis

systems.

TRNMAT

Computes the transformation matrices for moving from the reference axis

system to a user requested axis system.

TRNSFM

Transforms the force and moment data for a particular panel to a user

selected axis system.

UNLDBC

Retrieves the MDG data from blank common arrays which is required to

compute added mass coefficients for a panel.

VELCOR

Computes user selected corrections on velocity.

VELOC

Computes difference and average panel velocities.

XFERBC

Transfers data from a local storage array to a blank common array.

V

I0.8

v

r_

l,

l,

m,,"

r_

r'_

r_

x

m,,-

10.9

T
O_

f,=,
=,_

!

v,

V

N

>-

..J

Z

m

:D

(U

L

L_

L

!

(U

S..

-v,,.

L_

I0.I0

m:

u_

z

o

..J

u9

z

._J

u_

c_

z

cD

04

CD

K.

u_

!

o

CD

I0.II

L

r_

W

,...,,,

W

r'L

-r-

W

(..}

l.i

,.,,..

(..)

m,-

:L.

(..)

m,,,

r"',

I,I

C_

'Z

(.J

I.

(:}..

(._)

!

i=m
,m,,-

i,

I0.12

Z

bJ
C_m

)--

O.
m_

Z

CI.

mm

bJ

am

m_

O.

Z

)--

Z

mm

..J

C.O

)-.

O.

"r"

Z

OO

C/l

H'-

Z

O.

O.

m_

Z

O.

Z

O.

Z

m_

_m

)--

OO

_--

Z

A

%..

4.)

5.-

t_

O.

(.=)

!

t_

.s,.-

b-

I0.13

10.14

i

f.j

X

r,,,"

.w,--,,.

CD

v

"Z

O

U

I,,.

a.

!

i,

v

DATA-BASE-HEADER
OPDBI

=

NETWORK-SPEC

T

ANALYZ I
i
!

l
i

¥
RCASFM

GP-GEOM
CP-DATA ..]

GP-DATA -I

GP-GEOM

CP-GEOM ..]

CP-DATA

PANEL-DIF-VELOC

PANEl-GEOMETRY

FORCE-MOM-COEFF

PANEL-AREAS

.]
-[

dLEAD-EDGE-FORCE

_____Data Flow

.........Execution Flow

COMPFM

LEDGF

f
i
i

I

GENOUT

CPPRDB

Y

PANEL-GEOMETRY
FORCE-MOM-COEFF

PANEL-AREAS
PANEL-DIF-VELOC

LEAD-EDGE-FORCE

CASE-OPTIONSNETWK-SPEC

PANEL-FORCE-MOMENT

NETWK-FORCE-MOMENT

CEPRDB [
!

LEAD-EDGE-COEFF

NET-FOR-MOM-EDGE

G

,ouTI co,,_o_ I

Figure 10.7 - Data Execution Flow for Forces and Moments

10.15

DATA-BASE-HEADE_I
OPDIBI

V

GLOBAL-FLOW-PROP

SURF-FAM _

GLOBAL

_N SURF'FAM

ETWORK-SPEC

GP-GEOM _I
GP-DATA

DATA FLOW

.............EXECUTION FLOW

ANALYZ

!

T

RCASFM

T

AMCOEF

CASE-OPTIONS
NETWK-SPEC d J

ADDED-MASS-COEF-_I CDP I

DATA
!
!

REPEAT IF MORE CASES
J

!

1
|
i

CDP

DATA-BASE-HEADER_ _

V

Figure 10.8 - Data Execution FIow for Added Mass

10.16

Coefficients

APPENDIX IO-A TREE STRUCTURE

The tree structure diagram of the CDP moule has been deleted from this
document. It is, however, available on the installation tape.

_-J lo-A. 1

APPENDIX IO-B FUNCTIONAL DECOMPOSITION

The functional decomposition of the CDP module is presented here. The
decomposition labels are given in the order of their execution and therefore
may not be alphabetic.

"-_ IO-B.I

V

= _ _

A

v

Initiate Program Execution
A Initialize
B Initiate Program Start
C Initiate SDMS

B Overlay (I,0), Program OPDBI - Check Databases and Initialize Global Data
A Open MEC Database ,
B Get Run Identification Information

A Define MEC Header Map
B Get MEC Header Dataset _

C Check Databases Required by CDP
A Check DIP Database
B Check MDG Database
C Check CDP Temporary Database

D Open Databases and Define SDMS Maps
A Open DIP and MDG Databases
B MAPDIP - Define SDMS _aps for DIP Datasets (see label CB)
C MAPMDG- Define SDMS MAps for MDG Datasets (see label CC)

E ANALYZ - Analyze Datasets and Setup Global Data
A Initialize
B Read Global Data
C Determine Database/Print Option

A Obtain DIP Option Data
B Set CDP Print Flag
C Set CDP Database Flag

D Check Permanent CDP Databases
E Form the Image Index Array

A Initialize
B Set Images 2, 3, 4 Equivalent to Image 1
C Set Image 2 EQuivalent to Image 1 and Set Image 3 -

Equivalent to Image 4
D Set Image 3 Equivalent to Image 2 and Set Image 4

Equivalent to Image l
E Set Image 2 Equivalent to Image l
F Set Image 4 Equivalent to Image l

F Compute transformation Matrix for images
A Compute for First and Second Quadrants
B Get Third Reflection Matrix

F Close DIP and MDG Databases

C Open Databases and Define SDMS Maps
A Open DIP and MDG Databases
B MAPDIP - Define DIP Maps

A Initialize
B Select Maps for DIP Database Datasets

A Define Global Flow Properties Map
B Define Surface Forces and Moments Map
C Define Case Map
D Define Global Solution Number Map

C MAPMDG Define MDG Maps
A Initialize
B Select Maps for MDG Database Datasets

A Define GLobal Map
B Define Network Specifications Map

IO-B.3

pRECeDING pAGF- BLAbi_ HOT FILMI_D
,GL 1L)"_. _.. INTENTLO,JdA_Y BLANK

C

D
E
F

G

H

I

J

Define Control Point Geometry Map
Define Grid Point Geometry Map
Define Control Point Data Map
Define Grid Point Data Map
Define Solution Map
Define Grid Point COordinates Map
Define Control Point Geometry Sub Map
Define Control Point Data Sub Map

D Open CDP Permanent Database
E MAPCDP - Define SDMS Maps for CDP Datasets

A Define Map for Dataset CASE-OPTIONS
A Define Map Name
B Define Static Maps for Keys and Elements
C End Map Definition

B Define Map for Dataset NETWK-SPEC
A Define Map Name
B Define Combination Static and Dynamic Map for Keys and

Elements
C End Mapping

C Define Map for Dataset PANEL-FORCE-MOMENT
A Define Map Name
B Define Static Map for Keys and Elements
C End Mapping

D Define Map for Dataset LEAD-EDGE-COEFF
A Define Map Name
B Define Combination Static and Dynamic Maps for Keys and

Elements

C End Mapping
E Define Nap for Dataset NETWORK-FORCE-ELEMENT

A Define Map Name
B Define Combination Static and Dynamic Maps for Keys and

Elements
C End Mapping

F Define Map for Dataset CONFIG-FORCES
A Define Map Name
B Define Combination Static and Dynamic Maps for Keys and

Elements
C End Mapping

G Define Map for Dataset NET-FOR-MOM-EDGE
A Define Map Name
B Define Combination Static and Dynamic Maps for Keys and

Elements
C End Mapping

H Define Map for Dataset DATA-BASE-HEADER
A Define Map Name
B Define Combination Static and Dynamic Maps for Keys and

Elements
C End Mapping

Read Forces and Moments Options a.d Prepare Temporary Database
A RCASFM - Read Forces and Moments Options for Case and Analyze

Requirements
A Initialize
B Read Surface Forces and Moments Data on DIP
C Get Global Solution List
D Set Edge Force Flag

IO-B.4

L

V

v

E Rearrange Data in Vectors
A Arrange Pressure Rule Requests
B Generate Print Request Vector
C Generate Database Request Vector
D Generate Axis System Vectors
E Generate Computation Options Vectors

F Print Output Requirements for this Case.
A Print Options Selected
B Estimate Resources

A Read Network Data and Options
B Print Resource Estimates

Open CDP Temporary Database
MAPCDT - Define SDMS Maps for CDPT Datasets
A Define Map for Dataset FORCE-MOM-COEFF

A Define Map Name
B Define Static Map for Keys and Elements
C End Mapping

B Define Map for Dataset LEAD-EDGE-FORCE
A Define Map Name
B Define Static Map for Keys and Elements
C End Mapping

C Define Maps for Dataset PANEL-AREAS
A Define Map Name
B Define Static Map for Keys and Elements
C End Mapping

E Define Map for Dataset DATABASE-HEADER
A Define Map Name
B Define Static Map for Keys and Elements
C End Mapping

Overlay (2,0), Program COMPFM - Compute Forces and Moments for the RCS
A Initialize for the Current Case
B Obtain Network Images, Options and Data

A Decipher Network Images
B Read Network DAta and Options

C Get Geometry and Minimal Data
A Construct Key Sets
B Read Grid Point Geometry Dataset
C ASPADA - Assemble Panel Geometry and Data

Initialize
Assemble Vector for Grid Point Correspondence
Assemble Grid Point Geometry for I st Solution
A Assmeble Doublet Strength Integral Vector
B Assemble Grid Point Doublet Integrals

A Assemble Doublet Far Field Integral
B Assemble Doublet Dipole Moment Integral
C Assmeble Normal Cross Product Moment Integral

C Compute Panel Conor_al Vectors
D AINVERS -Compute A' for Velocity Calculation

A Initialize
A Zero Local Storage
B Set Flags for Triangular Panel

B Form A Matrix
C Modify Conormal
D Form A"I

"_ IO-B.5

IO-Bo6

D

E

F

E Reset A-I for Triangular Panel
F ComputePanel Area and VolumeFlow

D AssembleGrid Point Minimal Data
A AssmbleMassFlux
B AssembleDoublet Singularity
C AssembleSource Singularity
D AssemblePotential
E AssembleAverage Velocities

Obtain Minimal Data for this Solution
A ReadGrid Point MDGDatabaseDataset
B Get Local Onset Flow from MDGDataset
C ASPADA-AssemblePanel Minimal Data (see label ECC)
ComputePanel Velocities
A VELOC- ComputeDifference Velocities

A Initialize
B ComputeVelocities at Panel Corner Points
C Compute Velocities at Edge Midpoints

D Compute Velocities at Panel Center
E Reset Velcoity for a Collapsed Edge

B VELOC - Compute Average Velocities (see label EEA)
C Write Doublet to CDT-DB

D Write Edge Midpoints to CDT-DB
GENFM - Generate Forces and Moments
A Initialize

A Zero Local Storage
B Set Constants
C Set Requested Surface Indicator
D PVEL - Computer Perturbation Velocity

A Compute Velocity on Upper Surface
B Compute Velocity on Lower Surface

E Compute Corrected Velocity
A Compute the Magnitude of Local Onset Flow
B Compute Total Velocity
C Compute the Magnitude of Total Velocity
D Compute the Total Mass Flux
E Compute the Magnitude of Total Mass Flux
F VELCOR - Perform the Velocity Correction

A Compute the Component of Perturbation
Velocity in the Freestream Velocity Direction

B Compute SAI Correction
A SAICOR - Compute Correction to Total

Velocity by Newton's Method

Compute Constant Quantities
Set X-Component of Total Velocity

Compute Increment to X-Component
of Velocity by Newton's Method
Compute New Value of Total Velocity

Repeat Iteration
Branch Out to Loop

Generate Informative Message
Correct X-Component of Total
Velocity

Compute Correction to X-Component of
Perturbation Velocity
Compute Magnitude of Total Velocity

V

z

B

A Compute Corrected Velocity by Method 1
(Mulitply Perturbation Mass Flux by the
Ratio of Perturbation Velocity and
Perturbation Mass Flux)

B Compute Corrected Velocity by Method 2
A Compute Ratio of Densities (Local

to Freestream) °
B Compute Velocity Correction

(Multiply Perturbation Mass Flux
by Ratio of Densities)

Compute Upper and Lower Force and Moment
A Compute Surface Mass Flux
B Compute blomentum Transfer Terms

A CQmpute Momentum Flux
B Compute Momentum Transfer Term for Force
C Compute Momentum Transfer Term for _oment

A Compute Term Under Summation
B Cross Summation Term with Momentum Flux
C Combine Terms

C Compute Pressure Coefficient
A Get Grid Point Geometry and Velocity
B Compute Total Velocity
C Compute Magnitude of Total Velocity
D C0MPRS - Perform Pressure Coefficient Computation

A Compute Perturbation and Local Incremental

C

Onset Flow Velocities Along User Preferred
Direction
A Save Uniform Onset Flow Vector and

Magni%ude
B Save Compressibility Vector and

Magnitude

C Transform Perturbation Velocity
D Transform Local Incremental Onset Flow

Velocity
E Transform Uniform Onset Flow Velocity
F Find DLTAE and DLTAE2
Compute Maximum and Critical Speed and Total
Velocity, Squares of Perturbation and Local
Incremental Onset Flow Velocities
A Compute Maximum Speed
B Compute Critical Speed
Compute Pressure Coefficients
A Compute for Isentropic Approximation

A Compute Pressure Coefficient in
Flow

B Compute Pressure Coefficient at
Vacuum Condition

B Compute for Second Order Approximation
A Compute CPSO
B Compute Corresponding Pressure

Coefficient at Vacuum Condition
C Compute for Reduced Second Order

A Compute Pressure Coefficient in
Flow

IO-B.7

G

H

D

B Compute Corresponding Pressure

Coefficient at Vacuum Condition

D Compute for Slender Body Approximations
A Compute Pressure Coefficient in

Flow

B Compute Pressure Coefficient at
Vacuum Condition

E Compute for Linear Approximation
A Compute Pressure Coefficient in

Flow

B Compute Pressure Coefficient at
Vacuum Condition

Compute Local Mach Numbers

A Compute for Isentropic Approximation
B Compute for Reduced Second Order

C Compute for Slender Body Approximation
D Compute for Linear Approximation

E Retrieve Pressure Coefficients

D Compute Pressure Terms

A Compute Pressure Terms for Force
B Compute Pressure Terms for Moment

A Compute First Term
B Compute Second Term

C Combine Pressure Terms in Moment Coefficient
E Compute Surface Force and Moment

C Compute Force and Moment for Requested Surface
A Combine Force and Moment from Current Surface
B REFLEM - Reflect Force and Moment

A Initialize
A Compute Scaling Constant
B Retrieve Input Image Force and Moment

B Get Force and Moment from Previous Image
C Transform Force to Next Image
D Compute Moment Under Current Reflection

A Compute Second Term
B Compute Third Term
C Combine All Terms

E Return Transformed Force and Moment
Store Forces and Moments on CDPT
Rearrange Data for Next Panel in Column

Overlay (3,0), Program LEDGF - Compute Leading Edge Forces
A Edge Preparation

A Check for Valid Edge Request
B Analyze Panel Spacing and Required Corrections

A Assemble Geometry Required to Check Spacing

B SPACER - Check Panel Spacing

C CORREC - Compute Correction Factor
B Get Geometry for Panel

C CPAGEQ - Compute Associated Geometric Quantities

A Assemble Panel Geometry

B Compute Edge Length and Edge Tangent
C Compute Panel Normal

D Compute Edge Normal
E Get Edge Midpoint

IO-B.8

G

Get Doublet Strength
Perform Computations
A CEFDIR- ComputeEdgeForce Direction
B CELPAR- ComputeEdgeParameter
C ComputeEdgeForce Magnitude
D ComputeEdge Force and Moment
Write EdgeForce and Momentto TemporaryDatabase

Overlay 14,0), ProgramGENOUT- Transform to RequestedAxis Systems and

Write Forces and Moments on CDP Database and Output File
A Initialize

A Set Constants
B Zero Network Accumulated Data

C PNTGLOB - Print CDP Global Data

A PNTHDR - Print Header Lines

A Increment Output Page Number by One

B Write First Output Line - Program Announcement
C Write Second Line - Problem Identification

D Write Third Line - Run Identification

E Write Fourth Line - User Identification

F Initialize Line Count Appropriately
B Print Networks Information

C Print Solution Information

D Print Symmetry Information
E Print Mach Number, CALPHA and CBETA

A Print Mach Number

B Compute CALPHA and CBETA

C Print CALPHA and CBETA

D PNTOPT - Print CDP Case - Options Data
A Print Page Header

B Print Number of Networks, Velcoity Options and Surface
Selection Data

C Print Information on Selected Axis Systems
D Print Global Reference Values

E Print Local Reference Values

F Print Solution Information

E Write CDP Case Options
TRNMAT - Compute Transformation Matrices for Selected Axis Systems
A Initialize Transformation Matrix to Zeroes

B Get Index for the Axis from the List

C Compute Matric Constant Terms
A Use Angle of Attack and Sideslip
B Use Input Euler Angles
C Perform Computation

D Compute First Column of Matrix
E Compute Second Columne of Matrix
F Compute Third Columne of Matrix
Write Network Specification Dataset
CPPRDB - Compute Panel Forces and Moments and Produce Print and
Database Output
A Initialize

A Zero Local Storage
B Get Panel Areas

C Include Any Edge Forces

lO-B.9

E
A
B
C
D
E
F
G
H

IO-B.IO

B Read Forces and Moment Data for the Panel in the Reference Axis
System from the CDPT Database

C TRNSFM - Transform Forces and Moments
A Transf6rm Panel Forces and Moments and Store in Temporary

Arrays TEMPF and TEMPM
B Restore to PANFOR and PANMOMArrays

D Accumulate Forces and Moments Data
E PNTRPT - Print Panel Forces and Moments

A PNTSUB - Print New Page of Report
A Increment Output Page Number by 1
B Write Standard CDP Header
C Write Header for Network, Solution, Image

Identification, etc.
D Print Subheaders for Report
E Save Solution, Network, Image Indices

B Prepare Option Names and Data
A Process Option Names For Printing
B Scale Forces and Moments

C Print Forces and Moments Data
A Print Individual Panel Data
B Print Column Sum Data
C Print Network Sum Data
D Print Configuration Sum DAta
E Print Panel Edge Data
F Print Network Edge Data
G Print Accumulated Data

D Save the Solution, Network, Image and Option Indices
F Store Panel Forces and Moments in the CDP Database

A SCALFM - Scale Forces and Moments To Be Written
B Write Data

G Output Column Sum of Forces and Moments Data
A Get Accumulated Data

B PNTRPT - Print Column Sum (see label GDE)
C Store Columne Sum in CDP Database

A SCALFM - Scale Forces and Moments To Be Written

B Write Data

H Accumulate Forces and Moments Data for Network

I Output Network Sum of Forces and Moments
A Get Accumulated Data for Network
B PNTRPT - Print Network Sum (see label GDE)
C Output Network Sum to CDP Database

A SCALFM - Scale Forces and Moments To Be Written
B Write Data

CEPRDB - Compute and Store Edge Forces and Moments
Obtain Edge Flag
Zero Edge Arrays _
Get Number of Panels
Read Edge Forces and Moments
Transform Edge Results
Accumulate Edge Results
PNTRPT - PrYnt Edge Forces and Moments for Panel _see label GDE}

Store Panel Edge Forces and Moments on Database
A SCALFM - Scale Forces and Moments To Be Written
B Write Data

V

H

I

J
K

I PNTRPT - Print Total Edge Forces and Moments (see label GDE)
J Store Total Edge Forces and Moments on Database

A SCALFM - Scale Forces and Moments To Be Written
B Write Data

Output Configuration Sum
A PNTRPT - Print Configuration Sum (see label GDE)
B Store Configuration Sum on Database

A SCALFM - Scale Forces and Moments To Be Written
B Write Data

Output Accumulation Sum
A PNTRPT - Print Accumulation Sum (see lable GDE)
B Store Accumulation Sum on Database

A SCALFM - Scale Forces and Moments To Be Written
B Wri te Data

Return and Close CDPT Database

Close DIP, MDG and CDP Database

End Program
Overlay _5,0) Program AMCPEF - Compute Added Mass Coefficients
A Initialize

A GLOBPG - Write Global Summary Pa_e
B Zero Accumulation Total
C Initiate Blank Common

B CFIGAM - Compute Configuration:Total "
A CASEPG - Write Case Summary Page
B Write Case Options Dataset
C Zero Configuration Total
D Write Network Specifications Dataset

E NETWAM - Compute Network Total
A Initialize

A Zero Network Total

B Set Blank Common Array Dimensions

C Add Array to Blank Common
B LOADBC - Load Blank Common with MDG Data

A Store Geometry Data in Blank Common
A Set Fine Grid Keys
B Get Geometry Data
C XFERBC - Store Moment Matrices in Blank Common
D XFERBC - Store Panel Center in Blank Commen

B Store Solution Data in Blank Common
A Retrieve Panel Lower Grid Point Sets

B Retrieve Panel Upper Grid Point Sets

C Realign Grid Point Sets
D XFERBC - Move Data to Blank Common

E Shift Grid Point Data

C COLAM - Compute Column Total
A Zero Column Total

B PANLAM - Compute Panel Coefficients
A UNLDBC - Unload Data from Blank Common

A BCXFER - Retrieve Geometry Data

B BCXFER - Retrieve Solution Data

C Align Solution Data

IO-B.II

C
D

B INTAM- Perform Integration
A Initialize
B ComputeSurface Potential
C ComputeSurface Matrices
D Add Surface Matrix Contribution
REFLAM- Reflect Coefficients
A ComputeReflection Constants
B Perform AddedMassReflection
TRANAM- Translate Coefficients
A ComputeTransformation Matrices
B Translate Coefficients to NewAxis System
SCALAM- Scale Coefficients
OUTPAJ_- Output Panel Total
A PRINAM- Print AddedMassCoefficients
B Write AddedMassCoefficients

C Increment ColumnTotal
D OUTPAM- Output ColumnTotal

A PRINAM- Point AddedMassCoefficients
B Write AddedMassCoefficients

D Increment Network Total
E Delete Array from Blank Common
F OUTPAM- Output Network Total

A PRINAM- Print AddedMassCoefficients
B Write AddedMassCoefficients

F Increment Configuration Total
G OUTPAM- Output Configuration Total

A PRINAM- Print AddedI,lass Coefficient
B Write AddedMassCoefficients

Increment Accumulation Total
OUTPAM- Output Accumulation Total
A PRINAM- Print AddedMassCoefficients
B Write AddedMass Coefficients

V

iO-B.12

APPENDIX lO-C DATA BASE COMMUNICATIONS CHART

The data base communications chart is presented in three forms. The first
form has a column order of Data Base, Dataset Name, Map Name, Common Block,
and Program/Subroutine. The second form has a column order of Data Base, Map
Name, Dataset Name, Common Block, and Program/Subroutine. The third form has
a column order of Common Block, Data Base, Map Name, Dataset Name, and
Program/Subroutine. Thus a person can get a cross reference on a data element
by knowing either the Dataset Name, Map Name or Common Block.

IO-C.I

DATA
BASE

CDP

CDP

DATASET NAME

ADDED-MASS-COEF-DATA

CASE-OPTIONS

CDP DATABASE-HEADER

CDP CONFIG-FORCES

CDP

CDP

PANEL-FORCE-MOMENT

LEAD-EDGE-COEFF

CDP NETWK-SPEC

CDP NETWORK-FORCE-MOMENT

FIRST FORM

MAP NAME

ADDMASSCO

OPTNMAP

DRMAP

CONFIMAP

PANEL_IAP

EDGEMAP

NETSPCMAP

NETWKMAP

COMMONBLOCK

/KEYLIST/

/CASES/

/SOLS/

/NETWK/

/ACCUM/

/RUNIDS/

/CASES/

/ACCUM/

dynamic

/CASES/

/NETWK/

/LEGEOM/

/AACUM/

/PANDAT/

/CASES/

dynamic

/CASES/

/NETWK/

/CASES/

/ACCUM/

/FMACCU/

PROGRam/
SUBROUTINE

OUTPAM

RCASFM

CDP

GENOUT

CPPRDB

CEPRDB

GEHOUT

CPPRDB

CDPT FORCE-MOM-COEFF

PRECEDING PAGE BLANK NOT F;LMED

COEFFMAP /CASES/

/LEGEOM/

/ACCUM/

/PANDAT/

COMPFM

I0-C.3

tinGE It) ':-C. _INTENTIONA_LY BLANK

DATA
BASE

CDPT

DATASET-NAME

LEAD-EDGE-FORCE

CDPT PANEL-AREAS

MAP-NAME

EDGEMAPT

AREAMAP

COMMON-BLOCK

/CASES/

/EDGSIN/

dynamic*

/CASES/

/PANDAT/

PROGRAM/
SUBROUTINE

LEDGF

COMPFM

CDPT PANEL-DIF-VELOC VELDMAP dynamic* COMPFM

LEDGF

CDPT PANEL-GEOMETRY PAGEOHAP dynamic* COMPFM

DIP GLOBAL GLOBNVMRHS

DIP GLOBAL-FLOW-PROP GLOBALPRO

DIP SURF-FAM CASEMAP

DIP SURF-FAM SURFAM

MDG GLOBAL MDGGLOBAL

MDG NETWORK-SPEC NETSPEC

MDG CP-GEOM CPGEOM

/CASES/

/CASES/

/CASES/

/ACCUM/

/CASES/

/SOLS/

IACCUMI

INETWKI-

INETWKI

INETWKI

dynamic*

LEDGF

RCASFM

ANALYZ

ANALYZ

RCASFM

ANALYZ

RCASFM

V

10-C.4

DATA

BASE DATASET-NAME MAP-NAME COMMON-BLOCK

PROGRAM/

SUBROUTINE

MDG

MDG

MDG

MDG

MDG

HDG

IdDG

CP-GEOM

CP-DATA

GP-DATA

SOLUTION-DATA

GP-GEOM

CP-GEOM

CP-DATA

GPGEOM

CPDATA

GPDATA

SOLDATA

GPCOORDS

CPCOORDS

CONDATA

/CASES/

/PGEOM/

/GLOBAL/

/CASES/ "

dynamic*

/CASES/

/MINDAT/

/GLOBAL/

/PGEOId/

/SOLS/

/PGEOM/

/LEGEOM/

/CASES/

/LEGEOM/

/CASES/

/GLOBAL/

/CPVEL/

COMPFM

COMPFM

COMPFM

LEDGF

LEDGF

LEDGF

I0-C.5

DATA
BASE

CDP

MAP NAME

ADDMASSCO

SECOND FORM

DATASET-NAME

ADDED-MASS-COEF-DATA

COMMON
BLOCK

/K EYLI ST/

PROGRAM/
SUBROUTINE

OUTPAM

V

dynamic

CDP

CDP

CDP

CDP

CDP

CDP

CDP

I0-C.6

OPTNMAP

DRMAP

CONFIMAP

PANELMAP

EDGEMAP

NETSPCMAP

NETWKMAP

CASE-OPTIONS

DATABASE-HEADER

CONFIG-FORCES

PANEL-FORCE-MOMENT

LEAD-EDGE-COEFF

NETWK-SPEC

NETWORK-FORCE-MOMENT

/CASES/

/SOLS/

/NETWK/

/ACCUM/

/RUNIDS/

/CASES/

/ACCUM/

dynamic*

/CASES/

/NETWK/

/LEGEOM/

/AACUM/

/PANDAT/

/CASES/

dynamic*

/CASES/

/NETWK/

/CASES/

/ACCUM/

/FMACCUI

RCASFM

CDP

GENOUT

CPPRDB

CEPRDB

GENOUT

CPPRDB

DATA

BASE MAP NAME DATASET-NAME

COMMON

BLOCK

PROGRAM/

SUBROUTINE

CDPT

CDPT

CDPT

CDPT

CDPT

COEFFMAP

EDGEMAPT

ARE_4AP

VELDMAP

PAGEOMAP

FORCE-MOM-COEFF

LEAD-EDGE-FORCE

PANEL-AREAS

PANEL-DIF-VELOC

PANEL-GEOMETRY

/CASES/

/LEGEOM/

/ACCUM/

/PANDAT/

/CASES/

/EDGSlN/

dynamic*

/CASES/

/PANDAT/

dynami c*

dynamic*

COMPFM

LEDGF

COMPFM

COMPFM

LEDGF

COMPFM

LEDGF

DIP

DIP

DIP

DIP

MDG

GLOBNVMRHS

GLOBALPRO

CASEMAP

SURFAM

MDGGLOBAL

GLOBAL

GLOBAL-FLOW-PROP

SURF-FAM

SURF-FAM

GLOBAL

/CASES/

rCASES/

ICASES/

/ACCUM/

/CASES/

/SOLS/

IACCUr.11

/NETWK/

/NETWK/

RCASFM

ANALYZ

ANALYZ

RCASFM

ANALYZ

I0-C.7

DATA

BASE MAP NAME DATASET-NAME

COMMON

BLOCK

PROGRAM/

SUBROUTINE

MDG

MDG

MDG

MDG

MDG

MDG

MDG

MDG

MUG

NETSPEC

CPGEOM

GPGEOM

CPDATA

GPDATA

SOLDATA

GPCOORDS

CPCOORDS

CONDATA

NETWORK-SPEC

CP-GEOM

CP-GEOM

CP-DATA

GP-DATA

SOLUTION-DATA

GP-GEOM

CP-GEOM

CP-DATA

/NETWK/

dynamic*

/CASES/

/PGEOM/

/GLOBAL/

/CASES/

dynamic*

/CASES/

/MINDAT/

/GLOBAL/

/PGEOM/

/SOLS/

/PGEOM/

/LEGEOM/

/CASES/

/LEGEOM/

/CASES/

/GLOBAL/

/CPVEL/

RCASFM

COMPFM

COMPFM

COMPFM

LEDGF

LEDGF

LEDGF

V

I0-C.8

COMMON
BLOCK

/KEYLIST/

/CASES/

/SOLS/

/NETWK/

/ACCUM/

/RUNIDS/

/CASES/

/ACCUM/

dynamic*

/CASES/

/ NETWK/

/LEGEOM/

/AACUM/

/PANDAT/

/CASES/

dynamic*

/CASES/

/NETWK/

/CASES/

/ACCUM/

/FMACCU/

/CASES/

/LEGEOM/

/ACCUM/

/PANDAT/

DATA

BASE

CDP

CDP

CDP

CDP

CDP

CDP

CDP

CDP

CDPT

THIRD FORM

MAP NAME DATASET NAME

ADDED-MASS-COEF-DATA ADDMASSCO

CASE-OPTIONS OPTNMAP

DATABASE-HEADER

CONFIG-FORCES

DRMAP

CONFIMAP

PANEL-FORCE-MOMENT PANELMAP

LEAD-EDGE-COEFF EDGEMAP

NETWK-SPEC NETSPCMAP

NETWORK-FORCE-MOMEN NETWKMAPT

FORCE-MOM-COEFF COEFFMAP

PROGRAM/
SUBROUTINE

OUTP_,I

RCASFM

CDP

GENOUT

CPPRDB

CEPRDB

GENOUT

CPPRDB

COMPFM

-_ I0-C.9

COMMON
BLOCK

/CASES/

/EDGSlN/

dynami c*

/CASES/

/PANDAT/

dynamic*

dynamic*

DATA
BASE

CDPT

CDPT

CDPT

CDPT

MAP NAME

LEAD-EDGE-FORCE

DATASET NAME

EDGEMAPT

PANEL-AREAS AREAMAP

PANEL-DIF-VELOC

PANEL-GEOMETRY

VELDMAP

PAGEOMAP

PROGRAM/
SUBROUTINE

LEDGF

COMPFM

COMPFM

LEDGF

CONPFM

LEDGF

/CASES/

/CASES/

/CASES/

IACCUM/

/CASES/

/SOLS/

/ACCUM/

/NETWK/

/NETWKI

/NETWK/

dynamic*

/CASES/

/PGEOM/

/GLOBAL/

DIP

DIP

DIP

DIP

MDG

MDG

MDG

MDG

MDG

GLOBAL GLOBNVMRHS

GLOBAL-FLOW-PROP GLOBALPRO

SURF-FAM CASEMAP

RCASFM

ANALYZ

ANALYZ

SURF-F_ SURF_I RCASFM

GLOBAL MDGGLOBAL ANALYZ

NETWORK-SPEC NETSPEC RCASFM

CP-GEOM CPGEOM

CP-GEOM GPGEOM COMPFM

CP-DATA CPDATA COMPFM

10'C. 10

COMMON DATA

BLOCK BASE MAP NAME DATASET NAME

PROGRAM/

SUBROUTINE

/CASES/

dynamic*

/CASES/ MDG GP-DATA

/MINDAT/

/GLOBAL/

/PGEOM/

/SOLS/ MDG SOLUTION-DATA

/PGEOM/ MDG GP-GEOM

/LEGEOM/

/CASES/ MDG CP-GEOM

/LEGEOM/

/CASES/ MDG CP-DATA

/GLOBAL/

/CPVEL/

GPDATA COMPFM

SOLDATA

GPCOORDS LEDGF

CPCOORDS LEDGF

CONDATA LEDGF

* Dynamic mapping of the dataset is used for all or some of the dataset

elements, thus requiring no common block storage for these elements. See

Section 13 of this document for details of dynamic mapping.

IO-C.II

V

APPENDIX IO-D MASTER DEFINTION

The data base master definition listings of the CDP module has been

deleted from this document. These are produced from the PAN AIR tape during
installation.

IO-D.I

II.0 PRINT PLOT PROCESSOR (PPP) MODULE

II.I INTRODUCTION

The scope of the PPP module has changed since the conception of PAN
AIR. Originally, PPP was to generate all of the PAN AIR printed and plotted
output. Now, however, each of the PAN AIR modules produces its own printed
output while cycling through its calculations. This reduces the amount of
information which must be saved for later processing.

PPP functions as a simple editor, extracting user selected data from the
PAN AIR data bases and reformatting the information for convenience in
preparing plot files of PAN AIR results.

PPP provides a running account of the module progress in the form of Run
Name descriptors to identify the type of options executed and label on the
plot files for DQG, PDP and CDP data. The plot file formats are described in
Appendices E, F, and G for geometry plot file, point data plot file and
configuration forces and moments data plot file respectively. Tables 11.2 and
11.3 give the lists of the parameter names for point data and configuration
forces and moments data. Also, a major function of identifying point data and
configuration data are accomplished by creating parameter name list headings
for the selected data items on the plot files as given in Tables 11.2 and 11.3

respectively.

11.2 PPP OVERVIEW

In order to prepare the plot files of geometry data from the DQG data
base, point data from the PDP data base and the configuration forces and
moments data from the CDP data base, the following steps are performed:

Step I. User Data Selection Process

In describing the problem the user selects from a limited menu of PAN
AIR data falling in three categories (see Section 7.0 of the PAN AIR USER'S
Document, Ref. 2 for details):

Geometry data Network panel corner points as input by the user
(and sometimes slightly modified by DQG) in
module GEOMPR.

Point data Pressures and velocities to be p)otted against
columns/rows of network control or grid points in
POINTP.

(NOTE: The current program allows only the center
control point type to be selected by columns)

Configuration data- Forces and moments over panels, panel rows/columns,
networks, and configurations - groups of networks to
be plotted against solution parameter in module CONFIG.

(NOTE: The current program allows only configuration
data to be selected by columns)

II .I

Step 2. Prepare Geometry Plot File (Corner Points)

For geometry data the user specifies the problem to be considered (this is

equivalent to specifying the DQG data base name from which the geometry will
be read) and the list of networks to be processed. Geometry plot file format

preparation is accomplished in module GEOMPR. A description of geometry plot

file is also shown in Appendix ll-E.

V

Step 3. Prepare Point Data Selection Plot File (Pressures and Velocities)

With point data, the user may want to consider more classifications of

data to indicate the problem (PDP data base name) plus the cases, solutions,

and networks to be processed. In addition, for each network a choice of

plotting by panel rows or columns may be made (default = columns).

Given the above choices, PPP will extract data for all images, velocity

computation options, and velocity corrections. Also, PPP selection options of

data items placed on the data base (per point, by PDP) will be processed.

The data for plotting along a column/row of panels will include results at
all of the column's/row's center control points, plus the two control points

falling on the network edges at the ends of the column/row. Optionally, the
results will be plotted at the network (fine) grid points. Point data plot

file format preparation is accomplished in module POINTP. A description of

point data plot file is shown in Appendix ll-F.

Step 4. Prepare Configuration Data Selection Plot File (Forces and Moments)

Configuration data selection is similar to point data. Again, the user

may want to indicate the problem (CDP data base name) plus the cases,
solutions, and networks to be processed. In addition, configurations (groups

of networks) may be specified. Configuration data plot file format

preparation is accomplished in module CONFIG. A description of configuration
data plot file is shown in Appendix ll-G.

The current PPP version restricts the geometry data, point data and

configuration data to be accessed from only one data base each. If further

plot data from other data bases are desired, then PPP module will have to be
rerun. This will limit the capability of intermixing data from different data
bases in the same run.

V

II.2_I Purpose of PPP

The Print Plot Processor (PPP) is a module of the PAN AIR system. Its

purpose is to prepare plot data files for geometry, point data and
configuration data that were generated in DQG, PDP and CDP modules as shown in

Appendices ll-E, ll-F and ll-G respectively.

II.2.2 PPP Input/Output Data

11.2.2.1 Input

Inputs into PPP are fetched from the following data bases,

DIP User selections of PPP options.

ll.2

MEC Data Base names, account numbers, data base status, date of execution
and other similar information.

PDP User selected point data.
CDP User selected configuration data.
DQG User selected network geometry data.

11.2.2.2 Output

Printed outputs and/or plot files as shown in Appendices II-E, II-F, and
II-G are produced from PPP with the following information,

o User selected geometry data from DQG data base on a disk file named FT09.
o User selected point data from PDP data base on a disk file named FTIO.
o User selected configuration data from CDP data base on a disk file named

FTI I.

The only necessary restrictions on the preparation of plot files is that
the user have enough disk/file space to store the data generated for
plotting. See Table II.I for the maximum problem limits allowable by PPP.
Also, the problem sizes for a typical run are shown.

Appendix II-D lists the possible PPP error diagnostics.

If a printout of the outputs stored on the plot files are desired, then it
is necessary to copy the information stored on the temporary disk file to the
print output file by Job Control Cards as follows,

REWIND(DN=FT09)
REWIND(DN=FTI O)
REWIND(DN=FTI 1)
LS (FT09)
LS(FTIO)
LS (FTI 1)

whe re,

FT09 contains Geometry Data, FTIO contains Point Data,
FTII contains Configuration Data, and
LS is a PAN AIR JCL procedure on dataset PAPROCS

11.2.3 Data Base Interfaces

The data bases from MEC and DIP are always required as input. The data
base(s) from DQG, PDP, and CDP are selected by user options and are used as
input data.

11.3 MODULE DESCRIPTION

The main overlays and its subroutines are briefly summarized in this
paragraph. The PPP functional decomposition is shown in Appendix II-B.
chart of the subroutine tree structure is presented in Appendix II-A.

11.3.1 Overall Structure

Figure II.I illustrates the top level structure of the PPP module.

II .3

11.3.2 Overlay Descriptions

11.3.2.1 PPP Overlay (0,0)

The top level overlay (0,0) PPP initializes and controls access to the 4
primary overlays.

11.3.2.2 PPPINT (Overlay 1,0)

Module PPPINT checks the status of the DIP, DQG, PDP and CDP data bases.
The PPP selection options are initialized in a common block with data from the
DIP module. Figure 11.2 shows the structure and data flow of overlay (I;0).

11.3.2.3 GEOMPR (Overlay 2,0)

Module GEOMPR gets geometry data from the DQG data base and calls

subroutine GEOPLT to prepare geometry plot file (FT09). The network panel

corner points data are processed in subroutine CORPTS. Figure ll.3 shows the
structure and data flow of overlay (2,0).

11.3.2.4 POINTP (Overlay 3,0)

Module POINTP processes and prepares point data plot file (FTIO). MAPPDP
is called to perform SDMS mappings of PDP data sets. Subroutine LAYOUT is
called to store global data, run identification data and surface flow quantity
options in common blocks. The preparation and formatting of the point data
plot file is processed in PNTPLT. Subroutine PTYP23 is called to process
point type 2 for network edges and point type 3 for additional control points
data. Subroutine PTYPI4 is called to process point type 1 for panel center
control point and point type 4 for grid points data. Figure 11.4 shows the
structure and data flow of overlay (3,0).

V

11.3.2.5 CONFIG (Overlay 4,0)

Module CONFIG gets forces and moments on portions of a configuration from
the CDP data base according to user requests and prepares a configuration data
plot file (FTII). For each user defined case, the module loops over all
selected solutions. The SDMS mappings for DIP and CDP data sets are processed
in subroutines MAPDIP and MAPCDP. The forces and moments options are read in
subroutine RCASFM and the case options are stored in a common block.
Subroutine GENOUT is called to prepare the plot file for the configuration
options data for panel _ sums in PANLSM, column sums in PCOLSM, net_ork sums in
PNETSM, configuration sums and accumulation sums. Figure 11.5 shows the
structure and data flow of overlay (4,0).

11.3.3 PPP Data Base

There is no data base created in PPP. The data base communications chart

is shown in Appendix ll-C.

11.3.4 PPP Interfaces

Figure 11.6 summarizes the external data interfaces between the PPP module
and the MEC, DIP, DQG, PDP and CDP databases.

II .4

11.3.5 PPP Data Flow

Figures 11.2 thru 11.5 illustrate the data flow for the major sections of
PPP.

11.4 LOWER LEVEL FUNCTIONS

11.4.1 Functional Decompositions

Functional decompositions are shown in Appendix II-B and the tree
structure is given in Appendix II-A.

11.4.2 Subroutine Descriptions

BLKDAT

The Block Data subprogram initializes the items in labeled common used for
print/plot purposes for DQG, PDP and CDP data.

CDPARM

Prepares CDP parameter name headings for selected options of forces and
moments, pressure rules and axes systems. In addition, the first heading
line consists of solution number, magnitude of uniform onset flow
velocity, alpha and beta values.

CORPTS

Reads geometry corner points data from DQG-DB and writes it onto the plot
file FT09.

CRUNAM

Prepares CDP run names for configuration options data.

DPRINT

Writes DQG geometry network identifications onto plot file FT09.

EDGTAB

Computes table for additional control points and edge data for PDP data.

GENOUT

Prepares the forces and moments data to be stored on the CDP configuration
plot file FTII.

GEOPLT

Prepares DQG geometry plot file of corner point data for all selected
networks.

II .5

HEADPR

Print out page header information including page count for DQG, PDP and
CDP data.

HEADR

Writes DQG geometry plot header information onto the plot file FT09.

LAYOUT

Stores PDP global data with appropriate headers for the first _ime. It
also stores the surface options data for all subsequent calls.

LINDX

Locates the starting and ending indices for row or column loops for PDP
point type center, edge, additional and grid (i.e. point types I, £, 3,
and 4, respectively).

LOADVL

Loads computed PDP flow quantities data into buffer arrays to be stored on
the plot file FTIO.

MAPCDP

Defines SDMS maps for CDP data base data sets CASE-OPTIONS, NETWK-SPEC,
PANEL-FORCE-MOMENT, LEAD-EDGE-COEFF, NETWORK-FORCE-MOMENT, CONFIG-FORCES,
NET-FOR-MOM-EDGE, and DATA-BASE-HEADER.

MAPDIP

Defines SDMS maps on DIP data base for data sets GLOBAL-FLOW-PROP,
SURF-FAM, GLOBAL and CONFIG-PRINT-PLOT for CDP data.

MAPPDP

Defines SDMS maps on PDP database for data sets GLOBAL, NETWK-SPEC,
SURF-OPTIONS, FLOW-QUANT, and DATA-BASE-HEADER for PDP data.

ONSETF

Computes the magnitude of uniform onset flow velocity, alpha and beta
values for a solution for CDP data.

PANLSM

Prepares panel sums for forces and moments plot data to be stored on CDP
plot file FTII.

V

II .6

PCOLSM

Prepares column sum for forces and moments plot data to be stored on CDP
plot file FTII.

PLTDAT

Prepares panel forces and moments data to be stored on the CDP
configuration plot file FTII.

PLTFIL

Stores surface flow quantities data onto PDP plot file FTIO. The surface
flow data is loaded into the arrays by calling LOADVL.

PLTHDC

Writes CDP header information of problem, run and user identifications
onto plot file FTII.

PLTHDR

Stores PDP plot headers on plot file FTIO.

PLTHED

Writes headers for CDP data on the configuration plot file FTII.

PLTOPT

Prepares CDP case options data as the first page of each case.

PLTRPT

Prepares CDP plot file data for forces and moments for panels and the
total for columns, netv#orks, and configuration.

PLTSUB

Writes header for pressure and velocity selections onto PDP plot file FTIO.

PNETSM

Prepares CDP panel network sums for forces and moments plot data for the
axes and pressure rules selected.

PNTGLOB

Prints global data for CDP data.

__i II .7

PNTPLT

Reads data from PDP data base and stores it onto plot file FTIO.

PPPROC

The network, solution and case data are written out on the print and/or

plot file.

PRUNAM

Produces point data run names to be put on the PDP plot file FTIO to

identify point data type.

PTYPI 4

Processes PDP point type l for panel center control point and point type 4

for grid points data.

PTYP23

Processes PDP point type 2 for network edges and point type 3 for

additional control points data.

RCASFM

Reads and analyzes CDP user options for current case data. Also, the

solution list is prepared.

STUFF

Processes all selected PDP flow quantities data and saves these in array

named FLQDAT.

V

II.8

TABLE II.I - Maximum and Typical Counts on Problem Options

PLOT DATA ITEM/OPTION
MAXIMUM NUMBER
(PROBLEM SIZES)

TYPICAL NUMBER
(PROBLEM SIZES)

DQG Data Base(s) 1 1
Networks I00 30
Panels 2000 400

PDP Data Base(s) 1 1

Cases I00 20
Solutions 200 20

Network Selections 400 50

Array Types 4 l
Parameter List 39 20
Surface Selections 5 2

Sel. Vel. Comp. 2 l
Comp. Option Press l l
Velocity Correction 3 2

CP Options 5 2

CDP Data Base(s) l l

Cases lO0 20
Solutions 200 20

Surface Configuration 400 40
Axis Systems 4 2
Data Base Options 9000 2200

o Panels 2000 lO00

o Columns, etc. 250 lO0
Surface Selection l l

Sel. Vel. Comp 2 l

Comp. Option Press l l
Velocity Correction 3 2

CP Options 5 2
Parameter Lists 124 30

II.9

DIP
Index* Headings

2 X
2 Y
2 Z
3 PWX
3 PWY
3 PWZ
4 WX
4 WY
4 WZ
5 WMAG
6 WN
7 PVX
7 PVY
7 PVZ
8 VX
8 VY
8 VZ
9 VMAG

lO PHI
II PHIT
12 MLISEN
12 MLLINE
12 MLSECO
12 MLREDU
12 MLSLEN
13 CPISEN

13 CPLINE
13 CPSECO

13 CPREDU
13 CPSLEN

14 GMUX
14 GMUY

14 GMUZ
15 PSI

16 SINGS

16 SINGD
17 SPDMAX

18 SPDCRT
19 CPVAC

TABLE II.2 - PDP Parameter Name List

Quantity

Point, x-coordinate

Point, y-coordinate
Point, z-coordinate

Perturbation mass flux, x-component

Perturbation mass flux, y-component

Perturbation mass flux, z-component
Total mass flux, x-component

Total mass flux, y-component
Total mass flux, z-component

Total mass flux, magnitude

Total mass flux, normal component

Perturbation velocity, x-component
Perturbation velocity, y-component

Perturbation velocity, z-component

Total velocity, x-component
Total velocity, y-component
Total velocity, z-component

Total velocity, magnitude
Perturbation potential

Total potential

Local Mach number, isentropic
Local Mach number, linear
Local Mach number, second-order
Local Mach number, reduced second-order
Local Mach number, slender body
Pressure coefficient, isentropic
Pressure coefficient, linear
Pressure coefficient, second-order
Pressure coefficient, reduced second-order
Pressure coefficient, slender body
Doublet strength gradient, x-component
Doublet strength gradient, y-component
Doublet strength gradient, z-component
Angle, between average velocity and surface vorticity
vectors (degrees)
Singularity strength, source
Singularity strength, doublet
Maximum total speed
Critical speed
Pressure coefficient, vacuum

V

* See a description of user input record SFIO in Section 7 of the PAN AIR
USER'S MANUAL (Ref. 2).

il .lO

Character
Positions

l and 2
(Forces

and
Moments)

CDP
Headings

FX
FY
FZ
MX
MY
MZ

TABLEll.3 - CDP Parameter Name List

Quantity

Force component in X direction
. ,, . y ,,
II II II Z I!

Moment component in X direction
,, ,, ,, y ,,
II II II Z II

3-5

(CP Rules)

ISE

LIN
SEC

RED
SLE

Isentropic
Linear
Second-order

Reduced second-order
Slender body

6-7

(Axis

Systems)

RC
WA
BA
SA

Reference coordinate system

Wing axis system

Body axis system
Stability axis system

I _

11 .II

r_

v

11.13

%-

0

O_

>

O.

0

I

,p,,.

PRECEDINQ PAGE BLANK NOT FILMED fgkGEjl ,.t ¢, INTENTIONAI:LYBLANK

0 MEC)DATA-BASE-HEADER

11.14

0

()

DIP

DQG

POP

CDP

GLOBAL-DB-OUTPUT

.....)......:-.....-............i.......,

OVERLAY(I,0)

PPPINT

Figure 11.2- Structure and Data Flow of Overlay (1,0) W

v

0

DIP

DQG

OVERLAY (2,0)

GEOMPR

GEOPLT

CORPTS

Figure 11.3 - Structure and Data Flow of Overlay (2,0)

11.15

0
0

DIP

PDP

I POINT-PRINT-PLOT] I

GLOBAL

SURF-OPTIONS

NETWK-SPEC

DATA-BASE-HEADER

OVERLAY {3,0)

POINTP

PTYP23

PTYP14

11.16

Figure 11.4 - Structure and Data Flow of Overlay (3,0)

V

IiOIP

COP

GLOBAL

GLOBAL-FLOW-PROP

SURE-FAM . .

T6Tii_- F_ii_T-R.'o-_
i

I
i
i
i
i

1
i
i

I

SURF- FAM

Fi'_E-;'P_'G'_s ""
/ OATA-BASE-HE, kDER

OVERLAY{4,0)

CONFIG

RCASFM

CONFIG-FORCES

GENOUT

.....F__TC:F63_E':_F___'÷"'_PANLSM

PCOLSM

PNETSM

V
Figure 11.5 - Structure and Data Flow of Overlay (4,0)

11.17

MEC

Modul e

DIP

Module

DQG

Module

PDP

Module

CDP

Module

_BBB _B_SB_ iiOr FIS_mQN..N'" GSSF qe

S o

O0_''

S

_B

S S

Wo

e I

_S

PPP

MODULE
!

i

!

!

z

V

Q Data Base Directory Information

Q PPP Selection Information

Q Geometry Data

Q Point Data

Q Configuration Data

Ii.18

Figure 11.6- External Data Inferfaces

APPENDIX II-A TREE STRUCTURE

The tree structure of the PPP moudle has been deleted from this document.
It is, however, available on the installation tape.

-_-" 11-A. 1

V

APPENDIX II-B PPP FUNCTIONAL DECOMPOSITIO_

V

The functional decomposition of the PPP module is presented here. The
decomposition labels are given in the order of their execution and therefore
may not be alphabetic.

v

L
V II-B.I

V

L

B

Initialization and control of PPP Execution [Overlay 0,0] (PPP).

A Initialize printout (PRGBEG).
B Initialization of SDMS for Execution (ISDMS).

C Check Data Base(s) and initialize [Overlay l,O] (PPPINT).
A Initialization.

B Open MEC Data base (SDSLIB/DBOPEN).
C Get data base header information (SDSLIB/ESGET).

D Check data base location (PALIB/CHPADB).

A Check DIP.

B Check DQG.

C Check PDP.
D Check CDP.

E Open DIP data bases (SDSLIB/PAOPEN).

F Get global PPP information from DIP (SDSLIB/ESGET).
G Close MEC data base (SDSLIB/DBCLOS).

Process geometry data [Overlay 2,0] (GEOMPR).

A Open DIP data base (SDSLIB/PAOPEN).

A Open DQG data base (SDSLIB/PAOPEN).

B Define mappings for DQG data base.
B Process and prepare geometry plot file.

A Get geometry specifications from DIP data base (SDSLIB/ESGET).
B Setup MAP for Global data set for DQG data base (SDSLIB/SVMAP).
C Setup MAP for Network specs for DQG data base (SDSLIB/SVMAP/DSMAP).
D Get Global geometry data from DQG-DB (SDSLIB/ESGET).
E Calculate CALPHA, CBETA and set number of networks.

C Process geometry plot file (GEOPLT).
A Write header titles, run ID, problem ID, user ID and DQG global data

on plot file (HEADR).
B Determine network selections.

A Set networks to all active DQG selections (Default).
B Set networks to PPP selections.

C Get network specs from DIP (SDSLIB/ESGET).
D Print run name (DPRINT).
E Process geometry corner points from DQG data base (CORPTS).

A Get panel corner point data from DQG data base (SDSLIB/ESGET).
B Prepare and write a column of corner points on plot file.

F Write ending identification on plot file.
D Close DQG and DIP data bases (SDSLIB/PACLOS).

Process point data [Overlay 3,0] (POINTP).

A Open DIP data base (SDSLIB/PAOPEN).
A Setup map for POINT-PRINT-PLOT (SDSLIB/DSMAP).

•B Define static map (SDSLIB/SVMAP).

B Get point data specs from DIP for PPP (SDSLIB/ESGET).

C Open PDP data base (SDSLIB/PAOPEN).
D Form maps for PDP data (MAPPDP).

A Get global PDP data (SDSLIB/ESGET).

E Process and prepare point data plot file.
A Get surface flow data (SDSLIB/ESGET).

B Prepare layout of outputs (LAYOUT).
A Print global data.

II-B.3

PRECEDING PAGE BLAr_K NOT FIL&;EL_ p_GE_NTENTIONA_L¥ BLANK

D

B Print surface flow options data.
A Print header information (HEADPR).
B Print option selection information.
C Print option index values for flow quantities.

C Get network data (SDSLIB/ESGET).
D Prepare point data plot file (PNTPLT).

A Initiate program execution.

B Process point types for network edge and additional control point.
A Process edge data table (EDGTAB).

A Initialize row/column indices.

B Prepare panel center control point table.
C Prepare additional control point table.

B Process network edge and additional control points data
(PTYP23).

A Initialize loop control parameters.
B Get flow quantities data (SDSLIB/ESGET).

C Process point type.
A Unpack flow quantities (STUFF).

A Initialization of unpacked flow quantities data.

B Unpack flow data.
C Store flow data.

B Load flow quantities data (LOADVL).
A Initialization.
B Fill flow data selections into buffers.

C Fill subheader flow data.

D Load subheader flow data into buffers.

E Load flow data into buffers.

D Process plot file data (PLTFIL).

A Prepare new page of report (PLTSUB).
B Write new page headings (HEADPR).

C Prepare run name (PRUNAM).
D Print/store flow quantities data.

E Save current point indices.
C Process center control points and grid points (PTYPI4).

A Initialize row/column indices (LINDX).
B Load flow data from PDP data base (SDSLIB/ESGET).
C Set surface option.
D Set velocity correction option.
E Unpack flow data (STUFF).
F Load flow data (LOADVL).
G Store flow data (PLTFIL).

F Close PDP plot file (SDSLIB/PAC[OS).

Process configurations data [Over_lay 4,0]/CONFIG). _
A Open data bases and define SDMS ma_S_-

A Open DIP data base (SDSLIB/PAOPEN).
B Define DIP maps (MAPDiP).

A Initialize.

B Select maps for DIP data base.

ll-B.4

w_

D

C Map SURF-FAM.
D Map SURF-FAM for CASEMAP.
E Map GLOBAL.
F Map CONFIG-PRINT-PLOT PPP selection.

Process and prepare plot file.
A Get DIP-CFG-PL specs (SDSLiB/ESGET).
B Determine selection options for CDP,
C Open CDP data base (SDSLIB/PAOPEN).
D Define SDMS maps for CDP (MAPCDP).
E Define SDMS maps for DIP (MAPDIP).
Get forces and moments data.
A Read forces an# moments case-options data (RCASFM).

A Initialize.
B Get case-options and surface data from CDP and DIP data base.
C Generate computation options vectors.
D Print output case requirements.
E Prepare solutions list array.

Get forces and moments data from CDP data base and store output onto
plot file (GENOUT).
A Print CDP Global and case-options data.
B Print Global data (PNTGLOB).

A Print header lines.
A Print header information for top of new page (PLTHED).
B Store header information for plot file (PLTHDC).

B Print networks information.
C Print global data.

C Print CDP case-options data {PLTOPT).
D Get CDP case-options and network specs data (SDSLIB/ESGET).
E Setup CDP parameter name list (CDPARM}.
F Get CDP network specs data (SDSLIB/ESGET).
G Get panel forces and moments data and prepare configuration plot

data (PLTDAT).
A Initialization.
B Prepare panel forces and moments data {PANLSM).

A Setup panel run name (CRUNAM).
B Prepare alpha, beta and magnitude of uniform onset flow

velocity data (ONSETF).
C Get panel forces and moments data (SDSLIB/ESGET).
D Process panel forces and moments plot data (PLTRPT).

C Prepare column sum forces and moments data (PCOLSM)
A Setup column sum run name (CRUNAM).
B Prepare alpha, beta and magnitude of uniform onset flow

velocity data (ONSETF).
C Output column sum of forces and moments data,

A Get column sum data (SDSLIB/ESGET).
B Process column sum forces and moments plot data (PLTRPT).

D Prepare network sum forces and moments data (PNETSM).
A Setup network sum run name (CRUNAM).
B Prepare alpha, beta and magnitude of uniform onset flow

velocity data (ONSETF).
C Get network sum data (SDSLIB/ESGET).
D Process netwQrk sum forces and moments plot data (PLTRPT).

Prepare configuration sum plot data.H

II-B.5

A Setup CDP option run name.

B Prepare alpha, beta and magnitude of uniform onset flow velocity
solution data (ONSETF).

C Get configuration data (SDSLIB/ESGET).

D Process configuration plot data (PLTRPT).
I Process accumulations option data.

A Setup CDP parameter name list (CDPARM).

B Setup CDP run name (CRUNAM).

C Prepare alpha, beta and magnitude of uniform onset flow velocity
solution data (ONSETF).

D Get forces and moments data (SDSLIB/ESGET).

E Process configuration plot data (PLTRPT).
Close DIP and CDP data bases (SDSLIB/PACLOS).

Terminate Program Execution (PRGEND).

II-B.6

APPENDIX II-C DATABASE COMHUNICATIONS CHARTS

L

The Data Base Communications Chart is presented in three forms. Each form
is alphabetized by columns, from left to right. The first form has a column
order of Data Base, Dataset Name, Map Name, Common Block, and
Program/Subroutine. The second form has a column order of Data Base, Map
Name, Dataset Name, Common Block, and Program/Subroutine. The third form has
a column order of Common Block, Data Base, Map Name, Dataset Name, and

Program/Subroutine Thus a person can get a cross reference on a data element
by knowing either the Dataset Name, Map Name or Common Block name.

v II-C.I

DATA BASE DATA SET NAME

FIRST FORM

HAP NAME COMMON BLOCK SUBROUTINE

k.J

MEC

DIP

DATA-BASE-HEADER

GLOBAL-DB-OUTPUT

DIP GEOM-PRINT-PLOT
DQG DATA-BASE-HEADER
DQG GLOBAL
DQG NETWK-SPEC

DQG PANEL-CORNER-COORDS

DIP POINT-PRINT-PLOT
PDP DATA-BASE-HEADER
PDP FLOW-QUANT

PDP FLOW-QUANT

PDP GLOBAL
PDP SURF-OPTIONS
PDP NET!_K-SPEC

DIP CONFIG-PRINT-PLOT
DIP GLOBAL-FLOW-PROP
DIP SURF-F_

DIP GLOBAL
DIP GLOBAL
DIP SURF-FAM

CDP DATA-BASE-HEADER
CDP CASE-OPTIONS
CDP CASE-OPTIONS

CDP NETWK-SPEC

CDP CONFIG-FORCES

Overlay (I,0)

HECHDR
DIP-GLOBPP

Overlay (2,0)
DIPGEOM
DQGHDR
GLOBAL
NETMAP

PANCORD

Overlay (3,0)

DIPPTPLT
PDPHDR
FLQNTMAP

FLQNTHAP

GLOBMAP
OPTNMAP
NETMAP

Overlay (4,0)

DIP-CFG-
GLOBALPR
SURFAr4

GLOBDIP
GLOBDIP
CASEMAP

HDRMAP
OPTNMAP
OPTNMAP

NETSPCMP

CONFIMAP

/RUNIDS/
/GLOPPP/

/PPPDAT/
/RUNIDS/
/NETWX/
/NETWX/
Dynamic
Dynamic

/PPPDAT/
/RUNIDS/
/PDOPT/
/FLQNT/
Dynamic
/PDOPT/
/FLQHT/
Dynamic
/PDGLOB/
/PDOPT/
/NETSPC/

/PPPDAT/
/CASES/
/CASES/
/SOLS/
/ACCUM/
/NETWK/
/CASES/
/CASES/
/CASES/
/ACCUM/
/RUNIDS/
/CASES/
/SOLS/
/NETWK/
/ACCUM/
/CASES/
/NETWK/
/CASES/
/ACCUM/
Dynamic

PPPINT
PPPINT

GEOMPR
GEOMPR
GEOMPR
GEOPLT

CORPTS

POINTP
POINTP
PTYP23

PTYPI4

POINTP
POINTP
POINTP

CONFIG
CONFIG
CONFIG

CONFIG
RCASFM
RCASFM

CONFIG
RCASFM
GENOUT

GENOUT

° GENOUT

II-C.3

PRECEDING PAGE BI.ANK NOT FILMED F_,IIE1]'_, _.INIENTIOWAI:tlBLANI{

DATA BASE DATA SET NAME MAP N_E COMMONBLOCK SUBROUTINE

CDP

CDP
CDP

PANEL-FORCE -MOMENT

NETWORK-FORCE-MOMENT
NETWORK-FORCE-MOMENT

PANELMAP

NETWKMAP
NETWKMAP

/CASES/
/ACCUN/
/NETWK/
/LEGEOM/
/PANDAT/

PANLSM

/CASES/ PCOLSM
/ACCUM/ PNETSM
/FMACCU/

II -C.4

V
DATA

MEC
DIP

DIP

DQG
DQG
DQG

DQG

DIP
PDP
PDP

POP

PDP
PDP
PDP

DIP
DIP
DIP

DIP
DIP
DIP

CDP
CDP
CDP

CDP

CDP

BASE MAP NAME

MECHDR
DIP-GLOBPP

DIPGEOM

DQGHDR
GLOBAL
NETMAP

PANCORD

DIPPTPLT
PDPHDR
FLQNTMAP

FLQNTMAP

GLOBHAP
OPTNMAP
NETMAP

DIP-CFG-
GLOBALPR
SURFAM

GLOBDIP
GLOBDIP
CASEMAP

HDRMAP
OPTNMAP
OPTNMAP

NETSPCMP

CONFIMAP

SECOND FORM

DATA SET NAME COMMONBLOCK

Overlay (I,0)

DATA-BASE-HEADER
GLOBAL-DB-OUTPUT

/RUNIDS/
/GLOPPP/

Overlay (2,0)

GEOM-PRINT-PLOT
DATA-BASE-HEADER
GLOBAL
NETWK-SPEC

PANEL-CORNER-COORDS

Overlay (3,0)

POINT-PRINT-PLOT
DATA-BASE-HEADER
FLOW-QUANT

FLOW-QUANT

GLOBAL
SURF-OPTIONS
NETWK-SPEC

/PPPDAT/
IRUNIDS/
/NETWX/
/NETWX/
Dynamic
Dynamic

/PPPDAT/
/RUNIDS/
/PDOPT/
/FLQNT/
Dynamic
/PDOPT/
IFLQHT/
Dynamic
/PDGLOB/
/PDOPT/
/NETSPC/

Overlay (4,0)

CONFIG-PRINT-PLOT
GLOBAL-FLOW-PROP
SURF-FAM

GLOBAL
GLOBAL
SURF-F_,I

DATA-BASE-HEADER
CASE-OPTIONS
CASE-OPTIONS

NETWK-SPEC

CONFIG-FORCES

/PPPDAT/
/CASES/
/CASES/
/SOLS/
/ACCUM/
/NETWK/
/CASES/
/CASES/
/CASES/-
/ACCUM/
/RUNIDS/
/CASES/
/SOLS/
/NETWK/
/ACCUM/
/CASES/
/NETWK/
/CASES/
/ACCUM/
Dynamic

SUBROUTINE

PPPINT
PPPINT

GEOMPR
GEOMPR
GEOMPR
GEOPLT

CORPTS

POINTP
POINTP
PTYP23

PTYPI4

POINTP
POINTP
POINTP

CONFIG
CONFIG
CONFIG

CONFIG
RCASFM
RCASFM

CONFIG
RCASFM
GENOUT

GENOUT

GENOUT

II-C.5

DATA BASE MAP NAME DATA SET NAME COMMONBLOCK SUBROUTINE

CDP PANELMAP

CDP NETWKMAP
CDP NETWKMAP

PANEL-FORCE-MOMENT

NETWORK-FORCE-MOMENT
NETWORK-FORCE-MOMENT

/CASES/
/ACCUM/
/NETWK/
/LEGEOM/
/PANDAT/

/CASES/
IACCUM/
IFMACCU/

PANLSM

PCOLSM
PNETSM

II -C.6

V

COMMOn'BLOCK

THIRD FORM

DATA BASE MAP NAME DATA SET NAME SUBROUTINE

V

IRUNIDS/

IGLOPPP/

/PPPDAT/

/RUNIDS/
/NETWX/

/NETWX/

Dynamic
Dynamic

/PPPDAT/
/RUNIDS/

/PDOPT/
/FLQNT/

Dynamic

/PDOPT/
/FLQNT/

Dynamic
/PDGLOB/

/PDOPT/
/NETSPC/

/PPPDAT/
/CASES/
/CASES/
/SOLS/
/ACCUM/
/NETWK/
/CASES/
/CASES/
/CASES/
/ACCUM/
/RUNIDS/
/CASES/
/SOLS/
/NETWK/
IACCUM/
/CASES/
/NETWK/
/CASES/
/ACCUM/
Dynamic

MEC MECHDR

DIP DiP-GLOBPP

Overlay (2,0)

DIP DIPGEOM

DQG DQGHDR
DQG GLOBAL

DQG NETMAP

DQG PANCORD
Overlay (3,0)

DIP DIPPTPLT
PDP PDPHDR
PDP FLQNTMAP

PDP FLQNTMAP

PDP GLOBMAP
PDP OPTNMAP
PDP . NETMAP

DIP
DIP
DIP

DIP
DIP
DIP

CDP
CDP
CDP

CDP

CDP

Overlay (4,0)

DIP-CFG-
GLOBALPR
SURFAM

GLOBDIP
GLOBDIP
CASEMAP

HDRMAP
OPTNMAP
OPTNMAP

NETSPCMP

CONFIMAP

DATA-BASE-HEADER

GLOBAL-DB-OUTPUT

GEOM-PRINT-PLOT
DATA-BASE-HEADER
GLOBAL
NETWK-SPEC

PANEL-CORNER-COORDS

POINT-PRINT-PLOT
DATA-BASE-HEADER
FLOW-QUANT

FLOW-QUANT

GLOBAL
SURF-OPTIOHS
NETWK-SPEC

CONFIG-PRINT-PLOT

GLOBAL-FLOW-PROP
SURF-FAM

GLOBAL

GLOBAL

SURF-FAM

DATA-BASE-HEADER
CASE-OPTIONS
CASE-OPTIONS

NETWK-SPEC

CONFIG-FORCES

PPPINT

PPPINT

GEOMPR
GEOMPR
GEOMPR
GEOPLT

CORPTS

POINTP
POINTP
PTYP23

PTYPI4

POINTP
POINTP
POINTP

CONFIG
CONFIG
CONFIG

CONFIG
RCASFM
RCASFM

CONFIG
RCASFM
GENOUT

GENOUT

GENOUT

II-C.7

COMMONBLOCK DATA BASE MAP NAHE DATA SET NAME SUBROUTINE

/CASES/ CDP PANELMAP
/ACCUH/
/NETWK/
/LEGEOM/
/PANDAT/
/CASES/ CDP NETWKMAP
/ACCUM/ CDP NETWKMAP
/FMACCU/

PANEL-FORCE-MOMENT PANLSM

NETWORK-FORCE-MOMENTPCOLSM
NETWORK-FORCE-MOMENTPNETSM

V

v

II -C.8

APPENDIXII-D PPPERRORMESSAGES

II-D.I

W

u_
000

O_

I'--
Z

e'L

0
r.,,"
I,

m,."
0
r-.,"
C_C

_J

I,
0

I--'-

CT)
(...)

II

i,i
Z

-k

-k

LLJ

-k

(D:C
0
,-,,,
r,,,,"

I--

-K
-K

,e,-,

!

0

i,

I'--

I'--

C)
I

_D
r-_

I
.__I

0

(.D

I-.-

{.,r)

I--

"1-

I,

Z

e_

--I
Z
0

Z

i

r_

(3_
-r
(_)

(_0
z

_J _

_ -r'_ _.-._ ._

F-
la./

0

n

v

I

0
e_

I--

-k

e_

i

r-_

0
r_
i,

IN

-r*

1..--

tJ-

g

r_ z

W,-J

I '=CL.O
_ _.J

t II II

_J

N

tJJ

Z

l--
Z
0
.

I

LLI

Z

4_

I

t.L.

p.-

r_

-r-

F--

Z

e_

I
I

OL._J
C.)_-

Z_.J

%J

Z

.."g

0

_ Z

(D..O _._

r_

LLI O,J
C.D "---

..J

0
W

PRECEDING PAGE BLANK NOT FILMED

II-D.3

0

T,....

i

II

0
II II II II II

ZZZ

l---

X
LO

I

0

,,I

-J

k-

LL

I

0

CO
0

CD

L_

_ t
-1- t

_ _ II li II II

<

Z

=.==_

V_
L_

Z
m...*
<
"m

.-.X

CO
,.--.,
I

0..

O_

C>
O_

Z

l---
,.m

I
LJ..

I'--

,<
I"--

=t
--r- _

l,a.l

z

0
e_

0
II 11 II 11 It 11

ZZZZ

0

w
Z

X
_J
Z

Z

Z
0

I

I_lj

<

Z

Z
r_
<

I
O.
r-',

0

L__

r._
L,U.I

.m

I
.../

LLJ
Z

Z

%..

.to

I---

<

-r-
l--

0

I

Z
0

I--
0
Z

r-,

!II I
It II II II "' It

1
i

!

C.

r.,." t

r_

,,, _-',,,

v

0
r.,

11-D.4

n_

s-

ILl;

¢*")
0

ZF'-

0 C._

=:C _'-* ::3
Z '=C _:

,'--4 =:C F-

_W-.-

F--_

(D I.-- ,--_

• !
1, e-_ I

I_- (._1 II II II II I!

O

e_

I

O_

O

O

Z

",r"

l.s./ I.i./
L_

!

>-
._J
Z

ILl
(.0

b'3

CO
Z

Z

I

!

O.

e,,.-

F-

O<.._
-../
la_ t--

e_

,_ eY

.N

4<

--1

Z

Z

I

I
e_

e_

O

_../ e"7
L__ _--_

Z

"_-Z
CD=_:

L_. L.LJ L_
I--C_

g

4_

.t<

zo J
Z_
_1t111111111111

X

!

.=1

i,

8 P, _:

 I°I
II _ tl

,,,=_ g_ ,,,=="'
C_ ,'_" 0:: C3

*N _g *=-k ..k _"
k (./') .k C/) -k b.

..k

.k

.k

l.--
c_

C.,n

C_

L._ C:_
C_

r./3 C_3

.I(
-k L_

I---
..._I
CL
I--
Z

C_.
>..

0-
>-

r,,

CO

Z _:
0 (.3
C..)

II-D.5

Gn
Gn

C/) _ C/)

I---- _ --.I
'_ I-- U.J

_- %

_ r_
Z _ _-_

'_Z Un

_ I

c_ C/) X I-- 0

l I X _,"
I _ I.J.I

g _

_ e,,- t.L

•_ -to i, I--- _

_ L_

L_

]
II II II II II II II II

Z

.if

CL

,,,/

I

,,,,-
0

--.I

I--"

I

0

I---
Z

0

I

t-b

L_
I

",I

Z

I--"

C_

!

or)

LIJ

Z

Z

-k

r'_
I

(_.

C_

_JJ

Z

LJ-

L_J

I

N
I

m

I---

V

V

0
Z

11-D.6

APPENDIX II-E GEOMETRYPLOT FILE

II-E.I

V

II-E.I Plot File Format for Geometry Data

The network panel corner points data along with its identification information
is written onto a plot file (logical unit 9), as given below:

Record

Set(s) Item Columns Description

1 DQG Plot Titles DQG Plot Title Information consisting of
4 lines of title information as follows:

a) NETWORKGEOMETRY1-35 DQG Title (Format 3AIO,A5)
FROM DQG DATA
BA_E

b) Run ID 1-72 DQG Run Identification (RID). (Format
7AIO,A2)

c) Problem ID 1-72 DQG Problem Identification (PID).
(Format 7AIO,A2)

d) User ID 1-72 DQG User Identification (UID). (Format
7AIO,A2)

2 *START I-5

3 $GLOBAL DATA 1-12

4 (DQG Run Id) 1-28

Signifies start of data IFormat A5)

5 (Geometry Data
from DQG)

Global Data (see paragraph II-E.2 for
details)

6 *END

DQG Run Name Identification (Format AI,
13, 212, 2AIO) (see Paragraph II-E.3).

Network Geometry corner points data X,
Y and Z along with its identification
data [Format 14, 6X, 3(14, IX), 3(F12.6,
ix)]

I-4 Sequence Number
5-10 Blanks
II-14 Row Number
1 5 B1ank
16-19 Column Number
20 Blank
21-24 Network Number
25 Blank
26-37 X-coordi nate
38 Blank
39-50 Y-coordi nate
51 Blank
52-63 Z-coordinate
64 Blank

(Repeat record sets 4 and 5 above for
each Network selected.)

I-4 The last line of data contains *END to

signify the end of DQG data (Format A4)

II-E.3

PRECEDING PAGE BLAI', K NOT FILMED IV E It"g./, INTENT 0NAId.7BLANK

II-E.2 Global Data for Geometry File

A description of the Global Data for DQG is written onthe geometry plot file
(logical unit 9) following record set 2 (i.e., *START descriptor record
signifying the start of data).

v

Record Record

Set(s) Subset(s) Item(s) Columns Description Format

3 $GLOBAL DATA 1-12 Global Data A12

1 DATE 1-5
DATECR 6-I 5

The heading DATA A5
Date of creation in AIO

the form Yr/Mo/Date**

AMACH I-I0
CALPHA 11-20

CBETA 21-30

NUMPOS 31-35

NNET 36-40

Mach Number FIO.5
Angle of attack FIO.5
(degrees)
Angle of sideslip FIOo5
(degrees)
Number of planes of 15
symmetry,
:0 unsymmetric
:I one plane of sym.
:2 two planes of sym.
Number of Networks 15

3 POSNRM 1-60 Normal to first and

second planes normal

to the planes of sym-

metry (3 by NUMPOS)

6FI0.5

V

4 POSLOC 1-30 Coordinates of point
comon to first and
second planes

3FI0.5

NETPPP,NETID 1-70 Network index and ID, 2(14,1X,2AIO,IOX)
two networks per
record subset
[network number
(14) and network
id (2AIO)]

For the Ames System, the form is Date/Mo/Yr

II-E.4

I I-E.3 DQG Run Name Format

ITEM LITERAL
NUMBERS COLUMNS NAME/VALUE FORMAT DESCRIPTION

1 1

2 2-4

3 5-6

4 7-8

5 9-28

A1

13

12

12

A20

DQG Identification

Network Number

Number of Rows

Number of Columns

Network ID

"_ II-E.5

V

2- -._

APPENDIX II-F POINT DATA PLOT FILE

II-F.I

V

II-F.I Plot File Format for Point Data .

The format of the point data plot file (on iogical unit IO) is described below:

Record
Set(s) Item Columns

l (6FI0.5) I-8

Description

Data Format Specification (Format A8)

PD_ PLOT TITLE(S) PDP Plot Title Information. Starts in
column 1 with a $ and consists of 4
lines of title information as follows:

a) $POINT DATA FROM 1-30
PDP DATA BASE

b) $(RID) 1-72

c) $(PID) 1-72

d) $(UID) 1-72

PDP Plot Title (Format 3AIO)

PDP Run Identification (RID).(Format

7AIO, A2)

PDP Problem Identification (PID).(Format
7AlO, A2)

PDP User Identification (UID).(Format

7AIO,A2)

V

3 *RUN 40 I-7

4 SGLOBAL DATA 1-12

5 (PDP Parameter]-76
Name List)

6 (PDP Run Name) 1-40

7 (Point data from 1-60

PDP in order of
Parameter name list)

8 *EOF I-4

Identifies maximum run name length of 40
alpha/numeric characters in PDP run name
(record set 6).

Global Data (see paragraph II-F.2 for
details)

Identifies parameters available for
plotting. If more than one line is
needed to specify parameters, the word
MORE must be entered in columns 73-76 on

line except for the last line of a
parameter list. The parameter name list
is written on the plot file at the
beginning of each solution. The
parameter list is written 6 per line. A
detailed description is given in the
Table 11.2 (Format 6AIO, 12X, A4).

A detailed description of the PDP run
name is described in paragraph II-F.3

(Format Al, 12, 13, 12, 4A4, Al, 13, A3,
A4, Al, 12, 2X).

PDP Data list in order of parameter name
list in the format specified in Record
Set 1 above.

(Repeat Record Sets 6 and 7 above for
all selected data options.)

The last line of dataset contains *EOF

to signify the end of data for that run
(Format A4).

II-F.3

PRECEDING PAGE BLANK NOT FILMED fl_GEJl* _,)-,.INTENTIOJIAId_BLAN_

II-F.2 Global Data for PDP file

A description of the Global Data for PDP is written on the point data plot file

(logical unit lO) following record set 3 (i.e., *RUN 40 descriptor record

identifying maximum run name length of 40).

Record Record

Set(s) Subset(s) Item(s) Columns Description Format

4 SGLOBAL DATA 1-12 Global Data Al2

l DATE 1-5

DATECR 6-I 5
The heading DATA A5
Date of creation in AIO
the form Yr/Mo/Date**

AMACH I-I0
CALPHA 11-20

CBETA 21-30

NUMPOS 31-35

NNET 36-4O
NSOL 41-45

NCASE 46-50

POSNRM 1-60

Mach Number FlO. 5

Angle of attack FlO.5

(degrees)

Angle of sideslip FlO. 5
(degrees)

Number of planes of 15

symmetry,
=0 unsymmetric

=l one plane of sym.

=2 two planes of sym.
Number of Networks 15
Number of solutions 15
Number of cases 15

Normal to first and
second planes normal
to the planes of sym-
metry (3 by NUMPOS)

6FI O.5

4 POSLOC 1-30 Coordinates of point
common to first and
second planes

3FI0.5

NETPPP,NETID 1-70 Network index and 2(14,1X,2AlO,lOX)

ID, two networks

per record subset
[network number (14)
and network id (2AlO)]

6 ALPHA 1-70 Angle of attack for
each solution

(max 200)

7Fl O.5

II-F.4

For the Ames System, the form is Date/Mo/Yr

Record
Set(s)

Reco rd
Subset(s) Item(s)

BETA

SOLLST,SOLID

CASLST,CASEID

Columns

1-70

1-70

1-70

Description Format

Angle of sideslip for 7FI0.5
each solution
(max 200)

Solution index and 2(14,1X,2AIO,IOX)

ID, two solutions per
record subset

[solution number (14)
and solution id (2AlO)]

Case index and ID, 2(14,1X,2AIO,IOX)

two cases per record
subset [case number
(14) and case id (2AIO)]

II-F.5

II-F.3 PDP Run Name Format

Item

Number Columns

Literal Name(s)

or Value(s)

For Literal name
or Associated
Integer Format* Description

V

1 1 P A1 PDP Identification

2 (a) 2-3 12
(b) 4-6 13

Case Number
Solution Number

3 7-8 99 12 Job number, preset to 99
(not used)

4 9-12 UPPE - l A4/14
LOWE - 2

UPLO - 3
LOUP - 4
AVER - 5

Surface Selection

5 13-16 BOUN - l A4/14 Velocity computation

VIC - 2 option

6 17-20 UNIF - 1 A4/14 Pressure computation
LOCA - 2 option

7 21-24 NONE - 0 A4/14 Velocity correction
SAI - 1 option
SA2 - 2

8 (a) 25 N A1 IJetwork ID
(b) 26-28 13 Network number

9 29-31 INP - 1 A3/13 Images
IST - 2
2ND - 3
3RD - 4

I0 32-35 CENT - 1 A4/14 Point type
EDGE - 2
ADDI - 3
GRID - 4

ll(a) 36 R or C A1

(b) 37-38 12

Row or Column ID
Row or Column Number

12*(a) 39 C A1 Column ID
(b) 40-41 12 Column _Jumber

13" 42-44 13 Run Sequence Number

* Note that the PDP plot file has 2 similar names for each dataset option. Item numbers

12 and 13 in the Run Name are used for only the second run name descriptive with

associated integer values for item numbers 4, 5, 6, 7, 9 and lO above. Also, the
second run name length is 44 characters instead of the maximum length of 40 ___
specified in record set 3 described in paragraph ll-F.l.

II-F.6

APPENDIX II-G CONFIGURATION FORCES AND MOMENTS PLOT FILE

V

-'- II-G.I

V

II-G.I Plot File Format for Configuration Data

The format of the configuration data plot file on logical unit II is
described below:

Record
Sets(s) Item Columns Description

1 (6FI0.5) I-8 Data Format Specification (Format A8)

CDP Plot TitleCs)

a)$CONFIGURATION
DATA FROM CDP
DATA BASE

1-38

CDP Plot Title Information. Starts in
column with a $ and consists of 4 lines
of title information as follows:
CDP Plot Title (Format 3AIO, AS)

b) $(RID) 1-72 CDP Run Identification (RID)o(Format
7AIO,A2)

c) $(PID) 1-72 CDP Problem Identification (PID).(Format
7AIO,A2)

d) $(UID) 1-72 CDP User Identification (UID).(Format
7AIO,A2)

3 *RUN 40 I-7 Identifies maximum run name length of 40
alpha/numeric characters in CDP run name
(record set 6).

4 $GLOBAL DATA 1-12 Global Data (see paragraph II-G.2 for
details)

5 (CDP Parameter 1-76
Name List)

Identifies parameters available for
plotting. If more than one line is
needed to specify parameters, the word
HORE must be entered in columns 73-76 on

that line except for the last line of a
parameter list. The CDP parameter name
list is written on the plot file at the
beginning of the plot file data for each
solution and at the beginning of the
accumulation sum data. The parameter
list is written 6 per line. A detailed
description of the CDP parameter name
list is described in Table 11.3,
(Format 6AIO, 12X, A4)

6 (CDP Run Name) 1-40 A detailed description of the CDP Run
Name is described in paragraph II-G.3
(Format AI, ** 12 4A4 A1 13, A3, AI,
At,12,AI,12:2xl.' '

II-G.3

PRECEDING PAGE BLANK NOT FILMED

Record

Sets(s) Item Columns

(Configuration data 1-60
from CDP in order of
parameter name list)

8 *EOF I-4

Description

CDP data is written in order of

parameter name list specified in
record set 5 above. The first record
lists the solution number, magnitude of
uniform onset flow velocity, alpha
(angle of attack) and beta (angle of
sideslip) values using format (II0,
3FI0.5). The forces and moments data
for the selected pressure rules and axis
systems as shown in TABLE 11.3 are
written on the plot file in the format
specified in record set 1 above.

(Repeat record sets 6 and 7 above for
all selected data options.)

The last line of dataset contains *EOF

to signify _he end of data for that run

(Format A4).

qW

**Formats for configuration options in columns 2-6 of the CDP Run Name are

described in paragraph ll-G.3, item number 2.

II-G.4

II-G.2 Global Data for CDP file

A description of the Global Data for CDP is written on the configuration data
plot file (logical unit II) following record set 3 (i.e., *RUN 40 descriptor
record identifying maximum run name length of 40).

Record Record

Set(s) Subset(s) Item(s) Columns Description Format

4 $GLOBAL DATA 1-12 Global Data AI2

1 DATE I-5 The heading DATA A5
DATECR 6-15 Date of creation in AIO

the form Yr/Mo/Date**

2 _,IACH I-I0
CALPHA 11-20

CBETA 21-30

NUMPOS 31-35

NNET 36-40
NSOL 41-45
NCASE 46-50

3 POSNRM 1-60

4 POSLOC 1-30

5 NETPPP,NETID

Mach number
Angle of attack
(degrees)
Angle of sideslip
(degrees)
Number of planes of
symmetry,
O: unsymmetric
1= one plane of sym.
2= two planes of sym.
Number of networks 15
Number of solutions 15
Number of cases 15

FIO. 5
FIO. 5

FIO.5

15

6 ALPHA

1-70

Normal to first and 6FI0.5
second planes normal
to the planes of sym-
metry (3 by NUMPOS)

Coordinates of point 3FI0.5
common to first and
second planes

Network index 2(14,1X,2AIO,IOX)
and ID, two networks
per record subset
[network number (14)
and network id (2AIO)]

1-70 Angle of attack for
each solution
(max 200)

7FI O. 5

For the Ames System, the form is Date/Mo/Yr

_" II-G.5

Record
Set(s)

Record

Subset(s) Item(s)

7 BETA

8 SOLLST,SOLID

9 CASLST,CASEID

Col umns

1-70

1-70

1-70

I0 REFPAR

SR I-I0

CR 11-20

BR 21-30

II NUMA×S

AXISAR

12 MOMLST

1-4

5-8

9-12

13-16

17-20

1-72

13 ELRLST 1-72

Desc ri pti on Format

Angle of sideslip
for each solution
(max 200)

7FI0.5

Solution index and ID,2(14,1X,2AIO,IOX)

two solutions per record
subset [solution number

(14) and solution ID (2AlO)]

Case index and ID, 2(14,1X,2AIO,IOX)
two cases per record
subset [case number
(14) and case ID (2AIO)]

List of reference data

coefficient values

Area reference FIO. 5

parameter
Chord reference FlO.5

paramete r

Span reference FlO. 5
parameter

Number of axis 14
systems selected
Li.st of selected
axis systems
allowable
I: reference coor- 14
dinate system (RCS)
2= wind axis system 14

(WAS)
3= body axis system 14

(BAS)
4= stability axis 14

system (SAS)

Coordinates of mo- 12F6,2
ment reference values
for above axis system
(3 by NUMAXS)

Euler angles in

degrees to go from
RCS to selected axis

system only for BAS

12F6.2

II -G.6

11-G.3

Item
Numbers

CDP Run Name Format

Column(s) Literal Name(s) Fo rma t Description

J

I

2(a)Panel
Data

(b)Column
Sum

(c)Network

Sum

(d)Config.
Sum

(e)Accum.
Sum

3

8(a)
(b)

lO(a)
(b)
(c)

ll(a)

(b)

1

2-3

4-6

2-3

4

5-6

2-3
4-6

2-4

5-6

2-4
5-6

7-8

9-12

13-16

17-20

21-24

25
26-28

29-31

32
33

34-35

36
37-38

C

C

CON

ACC

99

UPPE
LOWE
UPLO
LOUP
AVER

BOUN
VIC

UNIF

LOCA

NONE
SAI
SA2

INP
lST

2ND

3RD

AI

12
13

12
A1
12

12
3X

A3
12

A3
12

12

A4

A4

A4

A4

A1
13

A3

Al
Al

12

Al

12

CDP Identification

Network Number
Panel Number

Network Number
Column Sum ID
Column Number

Network Number
Blanks

Configuration ID
Case Number

Accumulation ID
Case Number

Job number, Preset to 99
(Not used)

Surface Selection Option

Velocity

Pressure

Vel ocity

Computation Option

Computation Option

Correction Option

Case ID
Case Number

Images

Panel ID
Row ID
Row Number

Column ID
Column Number

II -G.7

V

12.0 FIELD DATA PROCESSOR(FDP) MODULE

12.1 Introduction

The Field Data Processor (FDP) is a stand alone program which is a module
of the PAN AIR system. It presumes that singularity strengths have been
calculated for points on the configuration and computes flow quantities for
points in the field. It is a post processing module like the Point Data
Processor (PDP) and Configuration DAta Processor (CDP) modules. The two basic
functions of FDP are to compute flow quantities at user selected points in the
field (offbody points) or along streamlines. The computational core of
routines in FDP was taken from the PAN AIR pilot code and does not conform to
PAN AIR coding standards. This section will describe all of the higher level
routines in FDP but will not describe some of the lower level routines. Also
much of the code used in FDP was taken from the Matrix Generator (MAG)
module. In particular, the PIVC subassembly, described in section 5, is used
in FDP. The reader should review appendix P of reference i for an explanation
of the computations performed in FDP and section 7.6.2 of reference 2 for a
description of the user specifications for FDP.

12.2 FDP Overview

12.2.1 Purpose of FDP

FDP will examine flow behavior in the field away from the configuration
surface. It will trace streamlines from a user specified starting point and
compute flow quantities along the streamline. The user may also select
individual points or grids of points off the body at which flo_# quantities are
computed. The flow quantities output include all those available from the PDP
module except for those associated with singularities. In addition, the
streamline arclength and transit time can be output. The output quantities
from FDP are enumerated in table 7.10 of reference 2.

12.2.2 FDP Input/Output Data

12.2.2.1 Input

Input data to the FDP module, like other post processing modules, comes
from the MEC, DIP and MDG databases. (The reader should be familiar with the
use of SDI,_Sdescribed in section !4.) The datasets required are given in
appendix 12-C along with tlle routines where database maps are defined. To
precisely define which quantities are input to FDP, compare the database maps
with the MEC, DIP and MDG master definitions in appendices 2-A, 3-A and 8-A
respectively.

In general, the MEC data base provides the names of the databases and DIP
provides the user specifications for offbody point and streamline cases. (See
section 7.6.2 of reference 2.) DIP also provides global problem data such as
the number of networks, Mach number and planes of symmetry. The MDG database
provides the panel geometry data, such as splines and normals, and the
calculated singularities.

12.2.2.2 Output

The flow properties computed by FDP for offbody points and streamlines are
printed and also written to a plot data file (logical unit 12). See figure

12.1

12.1. FDPdoes not produce an SDMSdatabase. The FDPplot data file is
similar to the plot data file (logical unit i0) which is written by the Print
Plot Processor (PPP) module. The specific format of logical unit 12 is
d_scribed in tables 8.41 through 8.43 of reference 2.

The printed output is similar to that of the PDP module. In all the

offbody points cases, the selected flow quantities are preceded by a summary

of the solutions selected and the points selected. The streamline cases begin
with a summary of the selected starting points and integration parameters,

followed by a status summary of each streamline. The status summary will

indicate if the streamline integration has terminated abnormally. The flow

quantities along the streamlines will be displayed after the summary. An
example of FDP printed output is given in figure 8.9 of reference 2.

12.2.3 Internal Data Files

FDP uses four internal files for temporary data storage. They contain
column singularities (logical unit 28), panel data (logical unit 18), panel
singularities (logical unit 19) and streamline data (logical unit 8). These
are not SDMS databases and so their contents are described in appendix 12-D.
The internal data flow is shown in figures 12.2 through 12.5.

12.3 Module Description

12.3.1 Overall Structure

The FDP module does not use overlays but its operation can be divided into
three basic tasks and one basic function. The module will perform preparation
processing by initializing the contents of the internal data files. Flow
quantities at offbody points will be computed and displayed during offbody
processing. During streamline processing the streamline integration is
performed and flow quantities along the streamlines are output. Both offbody
and streamline processing will have to perform potential and velocity
calculations.

12.3.2 Detailed Descriptions

12.3.2.1 preparation Processing

This task is performed by the main routine FDPPRG prior to the offbody
case loop. The MEC and DIP data bases are accessed in routine OPENDB and
their data is loaded into labeled common blocks. The columns of singularity
data on tile MDG data base are unsymmetrized and transferred to the column
singularity dataset (logical unit 28). The routine BLOCK loads various
program constants. The routine PPPDQ takes the essential panel data from the
MDG data base and packages it in the panel data dataset (logical unit 18). In
FDPPRG, the number of offbody and streamline cases is retrieved from the DIP
database and the global headings are written to the plot data file (logical
unit 12) by routine PLTHDR,

12.3.2.2 Offbody Processin_ (OFFBD)

All the processing for offbody cases is performed inside the offbody case
loop in FDPPRG. The user case selections are retrieved from the DIP database
and the data is directed to labeled common blocks with the SDMS static map

12.2

=

V

option. The routine PANSNG takes the unsymmetrized column singularities for
only the solutions selected for the case and the panel data and writes the
panel singulaPity data (logical unit 19). The routine OUTPREP interprets the
case selections so that FDPOUT will print the data in the proper format. The
offbody points are represented internally as a list of points and a matching
list of solution numbers. Thus for a case with multiple solutions, one point
would have multiple occurrences in the point list each with a different
corresponding solution index. The data is ultimately passed to the potential
and velocity calculations in this form. Ti)e ca]] to OFFBD begins the
calculation and display of offbody points for a selected subset (usually all)
of the case solutions. The total velocity and perturbation potential for each
point and solution index pair is calculated by a call to PVCAL. (See section
12.3.2.4.) Then for each point and solution, the full set of requested
quantities is computed from these basic quantities using procedures explained
in appendix N of reference i. The routine FDPOUT writes the printed output
and FDPPLT writes the plot data file.

12.3.2.3 Streamline Processing (STMLNE)

2

All of the processing for streamline cases is performed inside the
streamline case loop fn FDPPRG. The user case selections are retrieved from
the DIP database. The routines PANSNG and OUTPREP perform the same function
here as in section 12.3.2.2. Tile starting point list and corresponding
solution index list is prepared in the same fashion as in section 12,3.2.2.
Additional lists are prepared which indicate the streamline limits and
direction. The data is ultimately passed to the integrator in this form. The
call to STMLNE begins the calculation and display of streamline points for a
selected subset of the case solutions. The routine STMLNE2 and subordinates
perform the integration. They were extracted from the PAN AIR pilot code and
perform the asynchronous integration of multiple streamlines. That is,
several streamlines are integrated together to minimize multiple accesses to
the same set of panel data. The integration technique is described in
appendix P of reference i. The function evaluation by the integrator is
directed by the routine FSTLHN which calls PVCAL. (See section 12.3.2.4.)

The basic streamline data is written by the integrator to logical unit 8 as it

is computed. (See appendix 12-D.) The file is sequential so data for a

particular streamline may be scattered throughout the dataset. When the
integration is completed and the streamline data has been _ritten, the routine

STMOUT reorders the data, expands the basic data to the full set of selected
output quantities, and writes the printed output and plot data file. The

routine will read through the streamline data (unit 8) looking for data for
the first streamline, rewind the dataset and repeat the process for subsequent

streamlines. The selected output quantities are computed in the same fashion

as in section 12.3.2.2. The streamline arclength is calculated by the

integrator. The streamline travel time is computed by averaging the velocity
(or mass flux) between adjacent streamline points. The routines FDPOUT and

FDPPLT perform the same function as in section 12.3.2.2.

12.3.2.4 Potential and Velocity Calculation (PVCAL)

Both the streamline and offbody routines require the calculation of
velocity and potential at selected points. (See appendix P.I of reference

1.) The routine PVCAL retrieves singularity data for panels from unit 19 and
panel geometry data from unit 18 and uses the PIVC subassembly to compute

perturbation velocity and potential. The PIVC subassembly is also used in HAG

12.3

and it is described in section 5. The perturbation velocity is converted to
total massflux or velocity per request of the calling routine.

12.3.3 Hodule Database

FDP does not generate an SDMS database.

12.3.4 Data Interfaces

12..3.4.1 System Interfaces

Figure 12.1 illustrates the external interfaces between the FDP module and
the MEC, DIP and MDG data bases. Figures 12.2 through 12.5 illustrate the
internal interfaces between routines in FDP and the datasets on units 8, 18,
19 and 28. Figure 12.1 illustrates the printed output and plot file generated
by FDP. They are not required by any other PAN AIR module.

12.3.4.2 Subprogram Interfaces

A tree diagram of all the routines in FDP is given in Appendix 12-A. This
show the interrelationships among the subroutines which make up FDP. It also
sho_#s the calls to routines in the SDHS library (see section 14) and the PAN
AIR library (see section 13). Figures 12.1 through 12.5 also show t1_e called-
by relationships of routines in FDP without tile references to library and low
level routines. Each subroutine is described briefly in section 12.4.2.

12.3.5 Data Flo_ in FDP

Figures 12.2 to 12.5 illustrate the data flow between routines in FDP and
external databases and datasets. All accesses to SDHS databases are performed
in routines FDPPRG, OPENDB and PPPDQ. Access to the FDP internal datasets is
described in Appendix 12-D. The flow of data is labeled common and formal
parameters may be traced with the use of comments in the code.

12.4 LC)WERLEVEL FUNCTIOrIS

The following paragraphs present the functional decompositions of the
routines and gives the purpose of each routine.

12.4.1 Functional Decomposition

The FDP functional decomposition is given in Appendix 12-B.

12.4.2 Subroutine Descriptions

The subroutines used in FDP are described below.

BLOCK

Initializes selected labeled common blocks.

BLTRNS _

Initializes the panel singularity dataset (unit 19).

12.4

V

V

BRTRNS

Initializes the panel data dataset (unit 18).

COEFP

Ca_putes pressure coefficients, local _lach numbers and critical pressure
coefficients.

CSCAL2

Scales the coaponent of a vector parallel to the compressibility axis. It
is used to convert between perturbation mass flux and velocity.

DUALXF

Converts between total mass flux and velocity.

ELTRNS.

Clears the data buffer for the panel singularity dataset (unit 19).

ERTR_IS

Clears the data buffer for the panel data dataset (unit 18).

FDPOUT

Writes the selected flow quantities for a point to the printed output

dataset. It also writes pages heading_ and labels as appropriate.

FDPPLT

Writes the selected flow quantities for a point to the plot data dataset

(unit 12).

FDPPRG

Controls the preparation for FDP cases and tlleprocessing of offbody and
streamline cases.

FSTLHN

Perfor_,isthe evaluation of velocity or aass flux for the streamline

integration. It arranges the data in the proper form and then calls PVCAL.

ILTRNS

W;-ites data to the panel singularity dataset (unit 19).

IRTRNS

Writes data to the panel data dataset (unit 18).

LTRNS

Reads data froJl the panel singularity dataset (unit 19).

OFFBD

Computes and prints flow quantities at offbody points for selected
solutions.

ONSTFL

Adds any rotational component to ti_e freestream velocity.

OPEIJDB

Opens and defines the maps for all the SDHS databases. Reads and
initializes global run parameters, such as Mach number and compressibility
axis. It also unsymmetrizes singularity values and writes them to the
column singularity dataset (unit 28).

ORIENT

Computes the orientation of a vector with respect to the positive x axis
in the reference coordinate system. It is used to compute quantities such
as VALPHA and VBETA {see table 7.10 in reference 2) or to regenerate _c

and Bc from the compressibility direction.

OUTPREP
• =

Prepares to output FDP quantities. It distinguishes between offbody and
streamline cases and initializes the appropriate headings. Since any
subset of t_le possible flow quantities can be selected for printing,
OUTPREP computes how they will be formatted. This information is used by
FDPOUT to actually perform tilewrite.

PAKLAM

Packs the panel singularities into a single buffer.

PAKPQF

Packs the panel data into a single buffer.

PANSNG

Converts the column singularity data to panel singularities on unit 19.

It writes singularities only for the current set of selected solutions.

PlVC

Computes a panel's influence on a point. It is described in section 5.

PLTHDR

Writes the headings for the plot data dataset (unit 12). w_

12.6

PPPDQ

Transfers the panel data on the ',,IDGdata base to the panel data dataset
(unit 18).

PVCAL

Computesperturbation potential and total velocity or i,lass flux.

RTRMS

Reads data from the panel data dataset (unit 18).

SETUP

Prepares to co_ipute streamlines.

SETUPI

Controls the streamline integration and writes the streamline data as
computed to unit 8.

STEP

Performs the streamline integration.

STHLNE

Computes the streamlines and outputs flow quantities along the streamlines.

STMLNE2

Computes streamlines.

STUOUT

Outputs flow quantities along the streamlines.

UPKLAM

Unpacks a buffer of panel singularities.

UPKPQF

Unpacks a buffer of panel data.

VELCOR

Performs velocity corrections.

12.7

I
O _=_

)-===,-m

,,_
L_

Z_.

T

IL

rT_

<
rT

Z

<
Z

X

I

m

D

V

12.8

#

#
o_,

#

#

<

C_

I

J

#

t

#

#

t
ii iflnl_rfuo IB

f

#

,J

f ffw

m

z_
IBnBBIBBWBI

J Z_ r_m

<<

<
cL

Z

<
Z

Z

o.
i

c'q
¢-q

rr

12.9

#

p
F

u

J

w.

m

m L_

0

m

0

L_

m

m

.J

>

#

#
J11J

#

J

D

D
L_

#

<
L_

Z

<
z

r

z

>

0

L_
L_

0
i

L_

v

v

12.10

Z

u

<
<
U-

z

Z

Z

i

O.

12.11

m

Z
©

u

,-.1
.<

--,,--,- r0

m

g

#

#

_> '
#

F-- P

P

>-

r,1

...]
<_

_trtU.1

rr.

Z
e,/
b-

m

.<
-1

m

Z
...2

Z

<
rr.

Z

..1
<
Z

Z

,..a
<

>

u

C'-I

V

12.12

APPENDIX 12-A

TREE STRUCTURE

The tree structure diagram of the FDP module has been deleted from this
document. It is, however, available on the installation tape.

12-A.I

V

APPENDIX 12-B

FUNCTIONAL DECOMPOSITION OF FDP

This appendix describes the functional decomposition of FDP, that is, an
outline form of the structure of FDP organized by task. Where a particular

task is realized as a subroutine, tile subroutine name is listed in parenthesis
along the right margin.

Y

12-B.1

L

V

_w

V

I

t _ p

AJ

B=

Prepare for offbody and streamline data processing

A, Define the SDIqS maps for the DIP and r.]DG databases,
Retrieve global case data, Transfer the singularity
data (HOG datasets LAHBDA-UNKNOWN and LAMBDA-KIdOWN)
to a random access (READHS/_RITEHS) dataset (FT28)

B. Initialize labeled common blocks

C. Transfer the panel data (MDG dataset ,;IAG-PANEL-DATA)
to a sequential binary dataset (FTI8)

D. Write the plot dataset (FT12) i_eading

Perform offbody data processing

A. Get offbody case options

B. Write source and doublet parameters for each panel and
selected solution to a sequential binary dataset (FTI9)
by combining the global singularity data from FT28 and
the panel data from FT18.

C. Prepare the output heading forT,tat

D. Compute and output flow quantities at offbody points

A, Compute total velocity/mass flux and perturbation
potential

A, Get singularity data from FTI9

B, Interpret the singularity data in a usable
form

C, Get panel data from FTI8

D, Interpret the panel data in a usable form

E. Compute perturbation velocity and potential
(see section 5.4.2 and figure 5.2 for a
decomposition of the PIVC subassembly)

F. Compute perturbation mass flux

G. Compute total velocity/mass flux

B. Perform velocity corrections

C. Compute pressure coefficients

D. Compute total potential

E. Output field flow properties

F. Write flow quantities to the plot dataset (FT12)

(OPENDB)

(BLOCK)

(PPPUQ)

(PLTHDR)

(PANSNG)

(OUTPREP)

(OFFBD)

(PVCAL)

(LTRNS)

(UPKLAH)

(RTRNS)

(UPKPQF)

(PIVC)

(CSCAL2)

(ONSTFL)

(VELCOR)

(COEFP)

(FDPOUT)

(FDPPLT)

12-B.3

PRECEDING PAGE BLANK NOT FiL_tEI3 ItA(;;EI3"/5,2-..INTEtlTIO_AL,I.11BLANK

CJ Perform streamline data processing

A. Get streamline case options

B. Write source and doublet parameters for each panel
and selected solution to a sequential binary data-
set (FTI9) by combining the global singularity data
from FT28 and the panel data from FT18

C, Prepare the output heading format

D. Comp_te and output flow quantities along streamlines

A. Compute flow quantities along streamlines

A. Prepare to compute streamlines

B. Control the asynchronous integration of
multiple streamlines and write the results
as computed to a binary sequential dataset
(FT08)

A. Hove along the appropriate integra-
tion path

B. Prepare to evaluate the total veloc-
i ty

C. Compute the total veiocity/:nass flux
andperturbation potential (see
paragraph BDA)

B, Output flow quantities along streamlines

A,

B,

C.

D.

E.

F.

G.

H.

Get all the data for just the current
stream line from FT08

Transform velocity to mass flux

Transform mass flux to velocity

Compute velocity corrections

Compute pressures

Compute arc length and time

Output field flow properties

Write flow quantities to the plot
dataset (FTI2)

(PANSNG)

(OUTPREP)

(STMLNE)

(STMLNE2)

(SETUP)

(SETUPI)

(STEP)

(FSTLt, iN)

(PVCAL)

(STMOUT)

(DUALXF)

(DUALXF)

(VELCOR)

(COEFP)

(FDPOUT)

12-B .4

APPENDIX12-C

DATABASECO/II'_U,_IICATIONSCHART

The Data Base Communications Chart is presented in three forms. Each form

is alphabetized by columns from left to right. The first form has a column
order of Data Base, Dataset Name, Map Name, Common Block and Subroutine. The
second form has a column order of Data Base, Hap Name, Dataset l_ame, Common
Block and Subroutine. The third form has a column order of Common _lock, Data

Base, Map Name, Dataset Name and Subroutine. Thus a person can get a cross
reference on a data element by knowing either the Dataset Name, _lap Name or
Common 31ock name.

y

12-C.1

V

v

T r

FIRST FORH

DATA

BASE DATASET FJAI,IE MAP NAME

• [',IEC DATA-BASE-HEADER MECHED

MEC MACRO-OPTI ONS MACRO

DIP GLOBAL FSVIiAP

DIP GLOBAL FSVi,IAP

DIP GLOBAL GLOBAL

DI P GLOBAL GLOBAL

DIP GLOBAL GLOBAL

DIP GLOBAL GLOBAL

DI P GLOBAL-FLOW- PROP DI P-GLOF LO

DI P OFFBODY-OPTI ONS DI P- OBOPT

DI P OFFBODY-OPTI Ol,lS DI P-OBOPT

DI P OFFBOOY-OPTIONS DIP-OBOPT

DIP STREAMLINE-OPTIONS DIP-SLuPT

DiP STREAf,;LINE-OPT IUflS DIP-SLOPT

DIP STREAi,ILINE-OPTIONS DIP-SLOPT

DIP STREAMLINE-OPTIONS DIP-SLOPT

DIP STREAi,ILI NE-OPT IOr_S DIP-SLL)PT

t,iDG GLOBAL GLOMDG

MDG LAMI_DA-KNOWN LAM-KNOW

MDG LAI,IDBA-UNKNOWN LAM-UNKN

MDG MAG-PANEL-DATA f_IAG-PAN

MDG MAG-PANEL-DATA MAG-PAN

COFIIiON
BLOCK

/RUNIDS/

/MAGNUM/

/ACASE/

/SY_',IM/

/;,IAGGLO/

/MAGNUM/

/NSOLN/

/SYMTRY/

dynamic

/FDPCAS/

/UFBOPT/

/ZFOPI

IFDPCASl

/KSTMLN/

/STLOPT/

/STMCAS/

/ZFDP/

/MAGNUM/

dynamic

dynamic

/PANDF/

/PANDQ/

PROGRAM/
SUBROUTINE

OPE_JDB

OPENDB

OPENDB

uPENDB

OPENDB

OPENDB

OPEr_DB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

12-C .3

tPi_.GED|NG PAGE BLANK NOT Fak_b PAGEI]--_,,,,_LINIENTIONA_y BLA_

DATA
BASE

MEC

MEC

DIP

DIP

DIP

DIP

DIP

DIP

OIP

DIP

DIP

DiP

DIP

DIP

DIP

DIP

DIP

MDG

IIDG

MDG

MDG

MDG

MAP IIAHE

MACRO

MECHED

DIP-GLOFLO

DI P-OBOPT

DiP-OBOPT

DIP-OBODT

DIP-SLOPT

DIP-SLOPT

DIP-SLOPT

DIP-SLOPT

DIP-SLOPT

FSVHAP

FSVMAP

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOMDG

L_',i-KNOW

LAt,I-UNKN

NAG-PAN

MAG-PAN

SECOND FORM

DATASET NAME

MACRO-OPTIONS

DATA-BASE-HEADER

GLOBAL-FLOW-PROP

OFFBODY-OPTIONS

OFFBODY-OPTIONS

OFFBODY-OPTIONS

STREAMLINE-OPTIONS

STREAMLINE-OPTIONS

STREAHLINE-OPT I ONS

STREAMLI NE-OPT I ONS

STREAHLI NE-OPTI OI_S

GLUBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

LAMBDA-KNOWN

LAMBDA-UNKNO_N

MAG-PANEL-DATA

MAG-PANEL-DATA

COllhON
BLOCK

/HAGtJUH/

/RUNIDS/

dynamic

/FDPCAS/

/OFBUPT/

/ZFOP/

/FDPCAS/

/KSTMLN/

/STLuPT/

/SThCAS/

/ZFDP/

/ACASE/

/SYr,iM/

/HAGGLO/

/HAGNUM/

/NSOLN/

/SYMTRY/

/MAGNUH/

dynamic

dynamic

/PANDF/

/PANDQ/

V

PROGRAM/
SUBROUTINE

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPEND_

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

12-C.4

THIRD FORM

_.i,J "

COHMON
BLOCK DATA BASE

/ACASE/ DIP "

dynamic DIP

dynamic MDG

dynamic [IDG

/FDPCAS/ DIP

/FDPCAS/ DIP

/KSTMLN/ DIP

/MAGGLO/ DIP

/HAG',IUM/ DI P

/IIAGNUM/ HDG

/MAGtJUM/ HEC

/NSOLNI DIP

/OFBOPT/ DIP

/PANDF/ I,IDG

/PANDQ/ MDG

/RUNIDS/ MEC

/STLOPT/ DIP

/STMCAS/ DIP

/SYMh/ DIP

/SYMTRY/ DIP

/ZFDP/ DIP

/ZFDP/ DIP

HAP NAME

FSV,_=tAP

DI P- GLOFLO

LAM-KNOW

LAI,I-UNKN

DIP-OBOPT

DIP-SLOPT

DIP-SLOPT

GLOBAL

GLOBAL

GLOrlOG

HACRO

GLOBAL

DIP-OBOPT

_,IAG- PAN

HAG-PAN

MECHED

DIP-SLOPT

DIP-SLOPT

FSVMAP

GLOBAL

DIP-OBOPT

DIP-SLOPT

DATASET NA[,iE

GLOBAL

GLOBAL-FLOW-PROP

LAHDBA-KNOWN

LAMBDA-UNKNOWN

OFFBODY-OPTIONS

STREAi,ILI NE-0 PTIONS

STREAMLINE-OPTIONS

GLOBAL

GLOBAL

GLOBAL

i_ACRO-OPTIONS

GLOBAL

OFFBUDY-OPTIONS

MAG-PANEL-DATA

MAG-PA;'_EL- DATA

DATA-BASE-HEADER

STREAI,iLI NE-OPT I ONS

STREAMLI NE-OPTIONS

GLOBAL

GLOBAL

OFFBODY-OPTIONS

STREAMLI NE-OPT IONS

PROGRAM/
SUBROUTINE

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPEND_

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

OPENDB

12-C.5

V

J

APPENDIX 12-D
FDP INTERNAL OATASETS

_-'J 12-D.1

m I

L

- j

12-D.I Introduction

FDP uses four internal datasets for temporary storage which are not SuMS
datasets. They are described in the following sections.

12-D.2 Column Singularities (Unit 28)

This is a random access binary dataset created by READNS/WRITEMS routines
on logical unit 28. Its records are keyed by solution number. Each record
contains all of the calculated singularity strengths for that particular
solution. The singularities have been unsymmetrized. They were derived from
the sy_._etrized singularities on the _I_G datasets LA_iBOA-KNO[JN and
LAMBDA-UNKNOWNby the routine OPENOB. They are used by the routine PANSNG to
derive the singularity strengths on a particular panel, Tlle singularities are
stored in the following order: known-nonupdatable, known-updatable,
unknown-nonupdatable and unknown-updatable. That group is repeated within a
record for each distinct image.

12-D.3 Panel Data (Unit 18)

This is a sequential access binary dataset created by unformatted binary
writes to logical unit 18. Each physical record is 2048 _ords long. The
physical records are logically divided into 256 word packets. These packets
contain the essential panel defining quantities which are prepared by the
routine PAKPQF. The panel data dataset is created by the routine PPPDQ _hich
reads the dataset MAG-PANEL-DATA in HDG and makes calls to PAKPQF. The panel
data is used in velocity calculations by PVCAL. The routines BRT_NS, IRTRNS,
ERTRNS and RTRNS are used to read and write to _ile dataset.

12-D.4 Panel Singularities (Unit 19)

This is a sequential access binary dataset created by unformatted binary
writes to logical unit 19. If NS is the number of solutions selected for the
current case and NI is the number of distinct images, then the physical record
length is the largest multiple of 14*NS*NI which is less than or equal to
1120, The physical records are logically divided into packets of 14*NS*NI
words. The packets contain the singularity strengths (the five source
parameters followed by the nine doublet parameters) for a particular panel.
The group of 14 singularity values are repeated for each distinct image and
that group in turn is repeated for each of the selected solutions. The
dataset is rewritten for each case by the routine PANSNG and will contain only
the singularities for the solutions selected for the case. PANSNG combines
the column singularities and panel data to create the panel singularities.
They are used by PVCAL in velocity calculations. The routines BLTRI]S, ILTRNS,
ELTRNS and LTRNS are used to read and write to the dataset,

12-D.5 Streamline Data (Unit 8)

This is a sequential access binary dataset created by unformatted binary
writes to logical unit 8. Each record is 12 words long. It contains the basic
data for a particular point of a particular streamline. Table 12-D.I shows the
contents of a record of basic streamline data. The dataset is written by the
routine SETUP1 as the streamline integration is being performed. The records
for a given streamline may be scattered through the dataset. The routine
STMOUT reads through unit 8 searching for records for the first streamline,
rewinds the aataset and repeats the process for the remaining streamlines.

12-D.3

PRECEDING PAGE BLANK NOT F!LME_) PAG_J2"D,_. INIENII0_/A_ BLANK

Word Number

i

2

3

4

5

6

7

8

9

10

11

12

Table 12.L).I - Basic Streamline Data

Contents

streamline number

streamline point nur_ber

arclength

x component of position

y component of position

z component of position

x component of total velocity*

y component of total velocity*

z component of total velocity*

perturbation potential

order of integration

(see section P.2.1 of reference i)

streamline direction

+i implies downstream and

-i implies upstream

V

V

if variable TPSL is common block /KSTI,ILN/ is 0.0, tile velocity is replaced
by mass flux.

12-D.4

13.0 PAN AIR LIBRARY (PALIB)

13.1 INTRODUCTION

This section is a guide to the diverse collection of routines that make
up the library used in PAN AIR. This guide is a short description of wha_
each routine does. It is not a detailed description of calling sequences nor
is it a detailed description of program contents (with exceptions as noted
below). Note that structured programming techniques were used for only about
ten percent of the routines which make up PALIB. The extent and completeness
of in-line documentation in the other ninety percent of the library varies
from excellent to non-existent. The basic supposition of this manual is that
the programs in PALIB have been so thoroughly used in previous (non-PAN AIR)
programs that no errors can remain in them, and that they are so simple that
they may be easily modified even without extensive documentation.

This section also describes eleven basic classes of subroutines which
make up PALIB and provides a short description of each subroutine. All of the
PALIB routines required by PAN AIR are described in this section. For one of
the classes (e.g. the Constrained Quadratic Least Squares Fit subroutines), a
more detailed discussion of the operation is provided in Appendix 13-B.

13.2 PALIB OVERVIEW

13.2.1 Purpose of PALIB

PALIB is a collection of general purpose library routines which are used
by modules within the PAN AIR system. They are divided into eleven classes of
related routines:

l)
2)
3)
4)
5)
6)
7)
8)
9)

IO)
II)

matrix and vector manipulation;
general routines related to arbitrary geometries;
special routines related to PAN AIR geometries;
general mathematical routines;
constrained quadratic least squares fit routines;
blank common management;
special purpose SDMS-related routines;
real matrix solver routines;
free field format input routines;
miscellaneous; and
input data processing support routines;

13.2.2 PALIB Output

Most routines in PALIB print out only error messages. A few, however,
roduce printed output as part of their normal execution. They are CHPADB,
ODREC and several of the miscellaneous routines.

13.2.3 Database Interfaces

The two subroutines in the "special purpose SDMS-related" class of
subroutines communicate with one or more SDMS databases. One subroutine,

- 13.1

CHPADB,is used by all PANAIR Modules to create all permanentand temporary
databases. Note that no data is written to any of the databases by CHPADB.
It merely opens and closes the database. The other subroutine in this class
(MULTI) is used to perform an out of core matrix multiplication operation.
The matricies are assumed to be stored as datasets of an SDMS database. The
SDMS maps {see Section I, Paragraph 1.2.3) are defined externally by the
calling program.

V

A second class of routines in PALIB utilize SDMS databases in I/0

operations. This class is the real matrix solver set of routines. We note
here only that the SDMS map names are defined externally just as for the
subroutine MULTI.

13.3 DESCRIPTION OF CLASSES OF SUBROUTINES IN PALIB

A brief description of the eleven classes of subroutines is given in
this section. Included is a list of all subroutines which are members of the
class.

Note that most PALIB routines receive their data by way of a formal

parameter list. However, there are some subroutines in the library which
receive data by labeled common block (notably blank common management

routines). Tree diagrams for subroutines in PALIB are presented in Appendix
13-A.

13.3.1 Matrix and Vector Manipulations

The subroutines in this class perform various combinations of vector and
matrix operations. Table 13.1 lists the subroutine names and a short
indication of the operation which is performed.

13.3.2 General Routines Related to Arbitrary Geometry

The subroutines in this class manipulate basic geometric concepts such
as a point, line or plane. There is no direct reference to their application
in PAN AIR. Table 13.2 lists the subroutine names and a short indication of

the operation that they perform.

13.3.3 Special Routines Related to PAN AIR Geometr 7

This class of operations are related to those in the first class except
that they involve some specialized operations that occur frequently in PAN AIR

but might not occur in some other system, (e.g. the evaluation of the
compressible inner product). They deal mostly with panel defining quantities
which are computed by DQG and MAG. Some routines also implement the graph

theoretic approach to the assignment of matching conditions at abutment
intersections. (See reference l.) Table 13.3 lists the subroutine names and

a brief indication of their operation.

13.3.4 General Mathematical Routines

These routines perform a variety of general mathematical operations such

as sorting arrays, inverting matrices, and solving sets of linear equations.

13.2

The routines are listed by namein Table 13.4 along with a brief description
of the function.

13.3.5 ConstrainedQuadratic Least Squares Fit

These routines solve the general least squares fit problem with an

arbitrary number of independent exact constraints. A hierarchy exists in that
subroutine CQLSF is the only routine called by a PAN AIR Module. In turn it
calls subroutine DEFVEC and LSQSFX. Subroutines LSQSFX calls subroutines

DCBHTX and PSINTP. The function of these routines is briefly discussed in
Table 13.5. A more detailed description will be found in Appendix 13-B.

13.3.6 Blank Common Management

This set of programs keeps track of multiple arrays stored in blank

common. They are relatively unsophisticated but their use simplifies the code

within the modules of PAN AIR. A short description of the purpose of each

subroutine in this group is given in Table 13.6. Note that subroutine STARTR
must be called before any other subroutine in this class is called. All

subroutines in this group are written in FORTRAN. These routines reference a

blank common array with a dimension of I. It is up to the calling module to
dimension blank common and pass that length in another special common block.
A PAN AIR module which uses these routines will cause the loader to indicate
that the length of blank common has been redefined. This is acceptable as
long the definition in the PAN AIR module is used.

13.3.7 Special Purpose SDNS-Related Routines

These are subroutines which perform specialized tasks within the PAN AIR
System and which make use of the SDMS database system. Table 13.7 describes
the FORTRAN subroutines.

13.3.8 Real Matrix Solver

This collection of subroutines performs an out-of-core matrix inversion
and back-substitution. It makes use of an SDMS database. Table 13.8 lists
the routines.

13.3.9 Free Field Format Input Routines

This class of subroutines reads an input record in free field format and
decodes it into separate data items based on the occurance of certain
delimiters (blanks, commas and end of card). LODREC is the controlling
subroutine in this process. Table 13.9 briefly describes these subroutines.

13.3.10 Miscellaneous

These routines are those which do not seem to list well with the other

classes. Table 13.10 describes these subroutines,

13.3

13.3.11 Data Input Processing Support Routine

These routines support only the DIP module. They each perform an

operation which occurs in more than one place in the module. The routines are
listed by name in Table 13.11 along with a brief description of the function.
All routines in this class are written in FORTRAN.

V

13.4

Table 13.1 - Matrix and Vector Manipulation Routines

SUBROUTINE OPERATION COMMENTS

CAB
CAD
CAMB
CAPB
CAPDB
CATB
CMAB
CROSS
CXMAB

DET
MUL3X3

MXMACA

RRAATX
RRAAX
RRZAB
RRZATB
RRZATX
RRZAX
RRZXYT

TRANS

UNIVEC
UVECT
VADD
VlP
VIPDA
VMAG
VMUL
ZERO

C =A*B
C=d*A
C=A-B
C=A+B
C=A+d*B
C=At*B
C:A*B
Z:XxY

Cim : eij k Ajl Bklm

d = det(A)
C =A*B

C:C+A*B

y=y+At*X
Y=Y+A*X
C =A*B
C=At*B
y=At*X
Y=A*X
A=x*yt

C = At

Y : X / magnitude(X)

Y = X / magnitude(X)
C=A+d*B

d=X.Y
d=d+X. Y

d = magnitude(X)
X=d*Y
X=O

arrays stored by columns

arrays stored by rows

3 by 3 determinant
3 by 3 matricies

highly vectorized CAL

arbitrary dimension
dimension 3

Note: A, B, C are matricies
X, Y are vectors
d is a scalar

-_..v 13.5

SUBROUTINE

DISTNC

IMAGE

INSIDE

ISCAL

LPROJ

NORCAL

NRPTED

PIDENT

PROJ

XXADJ

Table 13.2 - General Geometry Routines

OPERATION

Computes the distance between two points

Reflects a point through a plane of symmetry

Determines if a point lies inside a quadralateral

Determines if an edge is collapsed

Performs a length preserving projection

Computes the unit normal to a triangle

Finds a point on an edge that is closest to a given point

Determines if two points are essentially coincidental

Projects a vector onto a plane

Withdraws the vertex of a triangle a fraction of the
distance along its angular bisector

V

13,6

SUBROUTINE

ABTINT

BIQUAD

CCALN
COMPIP
GPHPLK

GPHSCN

GPLUCK

GTALAM

NRPTHP

PANMOM
PDQSUB

RACOF

RCSLOC

SD2LIN

TCOF

UNIPAN

UVCALC
XBPOSH

XBPROJ

XCOF

ZCADJ

Table 13.3 - PAN AIR Geometry Routines

OPERATION

Generates the matching condition assignments for the control
points in an abutment intersection

Evaluates the nine canonical biquadratic basis functions at a
point on the standard isoparametric element. It is used in
spline construction.

Prepares computations for panel moment data. It invokes PANMOM.
Evaluates the compressible inner product. (See reference l.)

Reorganizes the node to node description of a tree so that
branches occur in the proper order for pruning. It is called by
ABTINT. {See appendix F in reference l.]

Identifies a spanning tree for a connected graph. It is called
by ABTINT. (See appendix F in reference l.)

Assigns nodes to branches and checks for bad assignments. It is
called by ABTINT. (See appendix F in reference l.)

Computes the "ALAM" array for subpanel doublet splines. The

"ALAM" array contains lambda vectors defining corner chord

midpoint values used in subpanel spline calculations.

Finds an estimate of the point on an H-P surface closest to a

given control point. It is used to compute
hyperbolic-paraboidal coordinates of the four corner chord

midpoints which is one of the panel defining quantities. (See
reference l.)

Computes panel moment matricies

Computes the doublet and source inner spline matricies for a
subpanel. It is used to compute panel defining quantities.

Computes source inner spline matricies, It is used for

computing near field panel defining quantities.
Defines a subpanel reference to local coordinate system
transformation

Computes a transformation of source design splines from a
representation based on center and edge midpoints to one based
on center and corner points

Computes the coefficients of the linear, quadratic and cubic

basis functions on a triangle. It is used for generating panel
defining quantities.

Transforms the representation of a position vector from
universal to panel coordinates

Computes additional panel data
Performs a projection of points onto a plane in scaled

coordinates and applies an origin shift
Performs a projection of a point onto a plane in scaled
coordinates

Computes the quasi-far-field doublet spline matricies. It is

used for panel defining quantities.
Withdraws edge control points

13.7

SUBROUTINE

AMCON

CODIM

DECOM

FBSUBM

FSHELL

GLESOM

ISHELL

JORDAN

KEYSRT

LCHVAR

SHLSRT

SORTAK

SRCHOL

UKYSRT

Table 13.4 - General Mathematical Routines

OPERATION

Defines constants to maximum machine accuracy

Interpolates using a controled deviation method

Decomposes a square matrix into lower and upper triangular
matricies with partial pivoting and row equilibration

Solves a matrix equation by forward and backward substitutions
using the lower and upper triangular decomposition of the
matrlx

Sorts a real array using the shell sort algorithm. It keeps
track of the original order of the array.

Solves a linear system of equations by calling DECOM and FBSUBM

Sorts an integer array using the shell sort algorithm.
keeps track of the original order of the array.

Inverts a matrix

It

Arranges elements in an array to bring it into correspondence

with an array that has been sorted

Performs a linear change of variables. It is used in panel
moment calculations.

Sorts an integer array using the shell sort algorithm.

Sorts an integer array. It performs the same function as
ISHELL.

Searches an ordered list for an entry

Arranges elements in an array to bring it into its original
order after it has been sorted

ZWINDG Computes the product of an array of complex numbers keeping
track of the quadrant

13.8

Table 13.5 - Constrained Quadratic Least Squares Fit Routines

SUBROUTINE
TqZTF

FUNCTION
Sets up arrays for constrained and least squares fit,
calls LSQSFX and unpacks solution.

DCBHTX Performs a Householder Q-R factorization of the least
squares part of the matrix.

DEFVEC Defines functional form of the fit (polynomial in two
dimensions of order one, bilinear or quadratic)..

LSQSFX Constructs L-U factorization of constrained part of
fit and calls DCBHTX and PSlNIP to solve the least
squares part of problem.

PSINTP Constructs the transpose of the _seudo-inverse of the
least squares part of the fit using the Q-R
factorization performed by DCBHTX.

l •

_ 13.9

Table 13.6 - Blank CommonManagementRoutines
V

SUBROUTINE

DELETR

INITIR

LOCATR

STARTR

REQFL

FUNCTION

Eliminates an array from blank common and compresses
storage in blank common.

Initializes storage parameters for a new array in
blank common.

Returns current size, type and location of an array in
blank common.

Initializes storage scheme, creates an array catalog,
sets limit for maximum number of arrays and determines
maximum storage available.

Checks that the current scratch memory request can
reside within blank common

13.10

k._y Table 13.7 - Special PurposeSDMS-RelatedRoutines

SUBROUTINE

CHPADB

MULTI

PAOPEN

PACLOS

FUNCTION

This FORTRAN subroutine obtains the names of the
required database files from the MEC database, opens
the database, and (if the database is not a newly

enerated one) checks that the database is complete.
his subroutine is used by all PAN AIR Modules to

define new databases and to check the status of those
databases generated by upstream modules which are
required as input.

This subroutine performsan out-of-core matrix
multiplication between the matrices stored in SDMS
datasets. The resulting matrix is stored as another
SDMS dataset.

Open a temporary or permanent SDMS database.

Close a temporary or permanent SDHS database.

13.11

Table 13.8 - Real Matrix Solver Routines

PAC RDPIV

RDSMR REDUCR

RMSBS RNSCBS

RMSCFS RMSD

RMSDC RMSERA

RMSERG RMSFB

RMSFS RMSLBS

RMSLTS RMSLUS

RMSRDB RMSRED

RMSUBS RMSXCH

RMSXCS UNPAC

WTPIV WTSMR
V

13.12

SUBROUTINE

BITSLGH

BITSLOC

BITSMSK

CHKEOR

DCODIR

GETT

INCBCD

LODREC

PUTT

STRMOV

Table 13.9 - Free Field Format Input Routines

OPERATION

Aligns one bit string with another. It is written in CAL.

Performs bit string location calculations.
in CAL.

It is written

Generates a variable length bit string mask. It is
written in CAL.

Checks an input record for an end-of-record delimiter. It
is called by LODREC.

Sets error flags. It is called by LODREC.

Extracts a character from a string and places it,
left-adjusted and blank-filled in another

Increments the numerical portion of a left justified BCD
(Binary Coded Decimal) number

Reads and decodes an input record

Takes one left most character of a word and inserts it
into a string

Moves a specified number of characters from one word to
another

13.13

Table 13.10 - Miscellaneous Routines

SUBROUTINE

ABTJOB

BKMOVE

CSTPRT

ERRMSG

LOCF

OUTLIN

OUTMAT

OUTMXV

OUTVEC

PIW4

PRGBEG

PRGEND

REMARKF

SHFTIC

SYSTEMC

UABEND

UNPIW4

XFERA

OPERATION

Aborts the job and initiates a traceback

Transfers one matrix to another

Prints the cumulative CPU time since the last call

Writes an error message

Interfaces the call to the intrinsic LOC function

Prints an intermediate output line of at most ten values

Prints an intermediate output matrix

Prints an intermediate output vector with up to ten values
per line

Prints an intermediate output vector with one value per line

Packs four words into one word

Indicates the start of a PAN AIR module

Indicates the completion of a PAN AIR module

Suppresses the logfile messages from the random I/0 package

Translates influence coefficients by a shift of origin

Acts as an interface to future error handling routines

Aborts the job

Unpacks one word into four words. It is the inverse of PIW4

Transfers one array to another

V

13.14

SUBROUTINE

ADJCHK

BALIND

BDTERM

COLIND

COMP

CUSCOE

Table 13.11 - Data Input Processing Support Routines

FUNCTION

Check the user specified edge control point locations to ensure
that there are two edges with control points, the edges must be
adjacent in order to have a control point at one corner of the
network.
Process the balance of an indexed input record once the index or
indices have been evaluated into row and column ranges. Thus for
a record like

(I, 4 to'5) = .5
this routine checks for the right paren, the equal sign and
loads the .5 into a temporary buffer for smearing.

Process the TERM records for the following network data sets:
Closure edge boundary condition boundary set;
Coefficients of general boundary condition equation
data set;
Tangent vectors for design data set;
Specified flow data set; and
Local incremental onset flow data set.

Examples:
TERM = AU
TERM = ADI,CA2

TERN = TAI
TERM = 1
TERM = VWYZ

/ A closure term.
/ A pair of coefficient terms

*/ of equal value.
/ A tangent term.

/ Specified flov equation number
/ Local incremental onset flow

option.
Note: a record which begins with */ is for comment only

Process the column index or range of indices for the indexed
input option for control point data values.

Examples :
(row , 1) = value / Column 1
(row , 2 TO 4) = value / Columns 2 thru 4
(row , ALL) = value / Columns 1 thru max
(row , 4 TO MAX) = value / Columns 4 thru max

This routine is called after the row index or range of
indices have been decoded.

Process the computation option for pressures record.
Examples:

COMP : UNIF / Compute presures from uniform set
COMP =.LOCA / Compute pressures from local onset

flow

COMP : COMP / Compute pressures from compressibility
Global record default:

COMP=UNIF

Write defaulted general B.C. coefficient term datasets to data
base. Check user inputs to verify that user has not tried to
define input for these terms.

13.15

Table 13.11 - (Continued)

V

SUBROUTINE FUNCTION

EDGE Process the parameter list for the following network data record
types:

Edge control point locations : type{s), edge-number(s)

Closure edge condition = type, edge-number
Examples :

EDGE = SNE, l, 2, DNE, 3, 4
CLOS = DNE, l

EXPIND Expand a dataset which is homogenous (same value for all control
points) and contains only data for a single representative
control point to a dataset which may be heterogenous (every
control point with one user specified value) and contains data
for each control point. This step preceeds the updating of a
homogenous dataset with indexed input.

FILIND Fill the portion of the network defined by the indexed input
option of a value(s) record for network data sets as follows:

Closure;
Coefficients of general B.C. equation;
Tangent vectors;
Specified flow; and
Local incremental onset flow.

The value(s) is uniform for all points and is either a single
value (closure, coefficient or specified flow) or a triplet
(tangent vector, local incremental onset flow).
Each column number represents a separate dataset for the data
base.

V

FMPDCK Check the combined inputs for printout and data base output
requests by user.

FHPRDA Process the forces and moments printout and data base records.

FMREPA Process global and local reference parameter records from the
forces and moments data subgroup of the flow properties aata
group.

FPCASE Process flow properties case names. New case names must be

alphanumeric (l to 20 characters). Old case names may be
alphanumeric or integer (input order no). Old case names can

only be referenced if the post solution update option is set to
update.

In surface flow properties the case name appears as the
parameter list on the surface flow properties record. In forces

and moments the case name appears as the parameter list on the
case record.

FPDAWR

13.16

Write a flow properties calculation problem to the DIP database.

SUBROUTINE FUNCTION

Table 13.11 - (Continued)

FPVALU

IMAGED

Process any record which has a single floating point value for a

parameter list.

Examples:
GEOM = E-3 / Geometric edge matching tolerance - .OOl
RATI = 1.5 / Ratio for computation of pressures = 1.5

TRIA = E-6 / Triangular panel tolerance = .O00001

Process the images in a parameter list for the netv_ork and image
selection records in the flow properties calculations data group.

INDXED Process the indexed input option of a value(s) record for
network data sets as follows:

Closure;

Coefficients of general B.C. equation;

Tangent vectors;
Specified flow; and

Local incremental onset flow.

The value(s) is uniform for all points and is either a single
value (closure, coefficient or specified flow) or a triplet

(tangent vector, local incremental onset flow)

Example :
(row , column) = value(s)

INPUIM Process the input-images records for network data in the
specified flow data set and the local incremental onset flow
data set.
Example s :

INPUT-IMAGES = INPUT
INPUT-IMAGES : INPUT, IST, 2ND, 3RD

LHSTST Test left hand side network constraint datato verify that each
data set covers all solutions

NBDORT Check the order of data records for the following groups
Closure;
Coefficients;
Local incremental onset flows;
Specified flows; and
Tangent vectors.

NEDATA Process the values for the following network data set terms:
Coefficients of general boundary condition equation
Tangent vectors for design;
Specified flow;
Local incremental onset flow;

The values may appear as floating point data or as _ndexed
input. Indexed input starts with a left paren as follows:

(row , column) = value

__i 13.17

SUBROUTINE

NEPOIN

NETWIM

NORSUB

PLAN

PPCASE

PPPNET

PPPORT

Table 13.11 _ (Continued)

FUNCTION

Process the points (control point locations) record for the
following network data set terms:

Coefficients for general boundary condition equation;
Tangent vectors for design;
Specified flow; and
Local incremental onset flow;

Examples :
POINTS = CENTER
POIN = EDGE
POIN = ADDITIONAL
POIN : ALL

Process network and image selection records in the flow
properties data group
Examples:

NETWORK-IMAGES : WING-A, INPUT IST, +
: WING-B, REVERSE +
: WING-C, IST

NETW : BODY-I = BODY-2 : BODY-3 / IMAGES DEFAULTED TO INPUT,
*/ ORIENTATION DEFAULTED TO RETAIN

Note: a record which begins with a */ is for comment only.

Normalize a triplet of X,Y,Z direction numbers and also return
the magnitude for error testing {RSQ = Zero).

Process either of the following two record types:
Plane of symmetry deletion flag
Abutments in planes of symmetry

Exampl es :
DELETE REFLECTION IN PLANE OF SYMMETRY= FIRST-PLANE
DELE : SECOND-PLANE
PLANE OF SYMMETRY= FIRST-PLANE-OF-SY_4METRY
PLAN = FIRS
PLAN = SECO
PLAN = BOTH

Process the case list found on case records for PPP Point and

Configuration Data.

Process the network IDs found in the parameter lists of network
and surface records for PPP data.

Read and check the order of data records for the following DIP
data subgroups for PPP:

GEOMETRY - DQG
POINT - PDP
CONFIGURATION - CDP

Determine when datasets are complete and write them on data base.

V

V

13.18

SUBROUTINE

PRES

REFE

RHSPRG

ROWIND

SELE

SETFLG

SFOUCL

SFOUIC

SFOULD

Table 13.11 - (Continued)

FUNCTION

Process the pressure coefficent rule record.

Examples:

PRES = ISENTROPIC,LINEAR,SECOND-ORDER,REDUCED-SECOND-ORDER,
SLENDER-BODY / THIS CONTAINS ALL OPTIONAL TYPES.

PRES=ISEN

PRES=ISEN,LINE

May be called from GLOBDP or any of the point data post solution
processors.

Process the reference velocity for pressure record.
Examples:

REFE = 1.3,1.29,1.31,1.32,1.33
REFERENCE VELOCITY FOR PRESSURE = 1.305

Purge right hand s_de (RHS) terms from data for current network.

Process the row index or range of indices for the indexed input

option for control point data values Examples are
(l, col) = value / ROW l

(2 TO 4 , col) = value / ROWS 2 THRU 4

(ALL , col) = value / ROWS2 THRU MAX
(_ TO MAX , col) = value / ROWS4 THRU _iAX

This routine is called only after it has been determined that a
data value record starts with a left paren.

Process the selection of velocity computation record.
Examples:

SELE = BOUN / BOUNDARYCONDITION NETHOD
SELE = VlC- / VIC-L_,IBDA (VlC DOTTED WITH LAhBDA)

Process records which require an on/off flag to be set. (I.EQ.ON)
Example record type:

STORE LOCAL ONSET FLOWS
STORE VIC ,MATRIX

Load the output array with pressure coefficient rule data and

velocity corrections data. The output array becomes the list of

print/data base output requests for current surface flow
properties calculation.

Load the individual parameter list options encountered on the
printout and data base records for surface flow properties
calculations.

Process the parameter list for both the printout record and the
data base record, within the surface flow properties data

subgroup.

13.19

SUBROUTINE

SFPRDB

SMRIND

SOLSFP

SURF

VALUE

VELO

Table 13.11 - (Concluded)

FUNCTION

Process printout options data set and data base options data set
from the surface flow properties data subgroup.
Examples:

PRINTOUT = 13
VELOCITY CORRECTIONS = NONE, SAI, SA2
PRESSURE COEFFICIENT RULES = !SEN, LINE, SECO, RUDU, SLEN,
DATA BASE : ALL
VELO = NONE
PRES : ISENTROPIC, SLENDER-BODY

Transfer data from the temporary buffer for smear values to the
output buffer for control point values. Then load the data onto
the data base. Network data sets processed are defined by the
MAPID contents as follows:

IOHDIP-CLOSUR = Closure edge B.C. data
IOHDIP-COEFBC = Coefficients of general B.C. equation
IOHDIP-LOCFLO = Local incremental onset flow
IOHDIP-SPCFLO = Specified flow
IOHDIP-TANVEC : Tangent vectors for design

Process solutions lists records.
Examples:

SOLUTIONS : I, 2, SOLUTION-ID-3, 6
SOLU:I ,2,3,6

Process the surface selection record.
Examples :

SURF:UPPER ,LOWER,UPLO (UPPER-MINUS-LOWER)
SURF=LOUP(LOWER-MINUS-UPPER),AVERAGE
SURF:UPPE,LOWE,UPLO,LOUP,AVER / ALL OPTIONS

Global default:
SURF:UPPE

Process the array of data values record(s) for network data sets
as follows:

Closure;
Coefficients of general B.C. equation;
Tangent vectors;
Specified flow; and
Local incremental onset flow vectors.

The array shall contain data (one value for non-vectors, three
values for vectors) for each control point as defined by the
current control points location option.
Process the velocity corrections record.
Examples:

VELOCITY CORRECTIONS= NONE(NO-CORRECTION)
VELO=NONE,SAI(IST-STAGNATION-TO-AMBIENT)
VELO=NONE,SAI,SA2 / ALL OPTIONS

V

V

13.20

APPENDIX13-A TREESTRUCTURE

The tree structure of selected routines in the library is presented in
this appendix. Manytasks requested by the PANAIR modulesare performed by
groups of routines in the library. The purpose of this appendix is to show
the calling relationships betweenthose routines. A routine maybe shownas
the trunk of its own tree or a one of the branches of another tree. Routines
which perform a single function and do not use other library routines are not
shownin this appendix.

13-A.I

V

+-GPHPLK UKYSRT
I
I +-FSHELL
I I-ISHELL
I-GPHSCN--I-KEYSRT
I I-UKYSRT
I +-XFERA
I
I-GPLUCK UKYSRT
I-OUT_T

ABTINT--I
I-OUTMXV OUTLIN
I
I-OUTVEC
I-XFERA
+-ZERO

+-ABTJOB
CCALN---I-LOCF

I
I +-LCHVAR
+-PANMOM--I

+-ZERO

+-DEFVEC
I
I +-DCBHTX.... VIP
I I-PSINTP VIP

CQLSF---I-LSQSFX--I
I I-VlP
I +-VlPS
I
+-ZERO

+-DECOM..... AMCON
GLESOM--I-FBSUBM

+-VIPDA

+-CAB
I-C_4B

IMAGE---I
I-CAPB
+-XFERA

13-A.3

PRECEDING PAGE BL/.uNK NOT FILMED B_G[_INTENTIOJlAIt¥ BLANK

+-CROSS
I-RRZAB

INSIDE--I
I-VADD
+-XFERA

ISCAL..... PIDENT

+-GETT
+-CHKEOR--I
I +-PUTT
I-DCODIR
I-GETT
I
I +-GETT

LODREC--I-INCBCD--I +-BIT$LGN
I +-STRMOV--I-BITSLOC
I +-BIT$MSK
I-LOCF
I +-BITSLGN
I-STRMOV--I-BIT$LOC
I +-BITSMSK
I
+-SYSTEMC

+-CMAB
I
I +-CMAB
I-PROJ.... I
I +-VADD
I

LPROJ---I-UVECT
I-VADD
+-VMAG

+-LOCATR
+-DELETR--I
I +-XFERA
I
I +-LOCATR
I +-DELETR--I
I I +-XFERA

MULTI---I-INITIR--I-LOCATR
I +-LOCF
I
I-LOCF
I
I-REQFL.... LOCF
+-VIP

13-A,4

+-CROSS
NORCAL--I-UVECT

+-VADD

+-CROSS
I
I +-CROSS
I I-RRZAB
I-INSIDE--I
I I-VADD
I +-XFERA
I
I-MUL3X3
I
I +-VADD
I-NRPTED--I-VIP
I +-XFERA
I

NRPTHP--I-RRZAB
I-RRZATB
I-VADD
I-VIP
+-XFERA

+-LCHVAR
PANMOM--I

+-ZERO

+-RRZXYT
I-UNIPAN.... CMAB

PDQSUB--I
I-VMUL
+-ZERO

+-VIP
RACOF---I

+-ZERO

_"" 13-A.5

I
I
I
I

RMSD.... I
I

+-RDPIV
I-RDSMR
I-RMSERG
I-RMSLBS
I-RMSLUS
I
I +-REDUCR

+-RMSDC---I -RMSRED--I- RMSERG
I I +-RMSLTS.... VIPS
I I
I I-RMSUBS

I-RMSXCH.... UNPAC
I-RMSXCS.... PAC
I-WTPIV
+-WTSMR

+-RDSMR
+-RMSERA--I

+-RMSERG

I
I

RMSFB--- I
I
I

+-RDPIV
I-RDSMR
I-RMSCBS

+-RMSBS---I-RMSRDB.... REDUCR
I I-RMSXCH.... UNPAC

I-RMSXCS.... PAC
+-WTSMR

+-RDSMR
I-REDUCR

+-RMSFS---I
I-RMSCFS
+-WTSMR

+-MUL3X3
I-RRZAB

SD2LIN--I-XBPOSH
I-XFERA
+-ZERO

+-LOCATR
+-DELETR--I
I +-XFERA

+-INITIR--I-LOCATR
I +-LOCF

STARTR--I-LOCF
I
+-REQFL..... LOCF

XCOF...... MUL3X3

i 3-A.6

V

Appendix 13-B CONSTRAINED QUADRATIC LEAST SQUARES FIT SUBROUTINES

13-B.I

13-B.I CONSTRAINED LEAST SQUARES FIT SUBROUTINES

The PAN AIR Theory Document, Sec. 1.5 (Ref. I), discusses the theoretical

basis of the constrained least squares procedure. In this Appendix we discuss

the realization of the theory in a set of FORTRAN subroutines. The set of

subroutines and their interrelationships are indicated in Figure 13-B.I.

13-B.2 Subroutines CQLSF and DEFVEC

Information is passed to CQLSF through its formal arguments concerning the

number of points to be fit, a two dimensional coordinate for each point, a

weight for each point and the order of the fit desired (linear, bilinear or

quadratic).

13-B.3

PRECEDING PAGE BLANK NOT FILf, IEL_ PAGE1_" _. ;Z_INTENT4ONAI:'LYBLANK

Any point with an input weight greater than 1.0 is treated as an exact

constraint. Any point with a negative weight is treated as a least squares

part of the fit with a weight equal to the absolute value of its weight.

Subroutine DEFVEC defines a vector of polynomials in the two dimensional

coordinates of the points according to the order of the fit. Tile vectors are:

W

(I, x, y) Linear

(I, x, y, xy) Bilinear

(1 , x, y, I/2x 2 , xy, I/2y 2) Quadratic

These are defined for each point in the fit. In CQSLF the vectors are

scaled by the weights for each point and are stored in the matrix A. This

matrix is defined as a one dimensional array. The rows of the matrix which

correspond to the exact constraints occur at the beginning of the matrix and

those that correspond to the least squares constraints occur at the end of the

array. Subroutine LSQSFX then solves for the set of equations and returns the

transpose of the solution (see below). CQLSF unpacks the solution array and

generates the solution matrix for the problem. A check on round-off errors is

made by computing the identity matrix minus the product of the solution matrix

and the fit matrix. The quadratic norm of this matrix is computed. If it is

greater than 10 -6 the fit is declared to be singular. If it is greater than

10 -12 the fit is declared to be poor. CQSLF then copies the solution matrix

into appropriate locations in the output array SOLMAT according to whether the

full matrix is desired {e.g. for the panel subspline in the sixth overlay of

DQG) or whether only the constant coefficient term of the fit is required

(e.g. as in the computation of spline vectors in the fifth overlays of DQG and

MDG).

i3-B.4

W

13-B.2 Some Theoretical Remarks

The general form of the equations solved by LSQSFX is

[A] Ix] = [b]

where A is a matrix which contains some equations which are to be solved

exactly and some which are to be solved in a least squares sense,

written as

b2_i_2J ix_--
These can be separated into two sets of equations

E: --[:!
_×2_J

fo o] _,-!

If the submatrix All is invertable then

,oj L_ i°J L:2j

iI °
We can substitute this into the expression for x 2

roio] ,o-

The inverse of Z22 (in the least squares sense) is computed to allow a

solution for x2 in terms of bE and bL.

This can be

and rearrange terms to find

13 -B.5

I'his result is substituted For x in the equation for x .
2 i

-i -I -I -i ,, -i -I

I!II+AII AI2 Z22 A21 All _-All AI2 Z21 bE

-[...........o............, o
The complete solution is then

x1 11+At1A12z22A21Ali',- _A_!2

where Z22 = A22 - A21 All I AI2 and Z2_ is t,e least squares pseudo-inverse

of Z22. The transpose of this matrix is returned to LSQSFX.

V

13-B.3 Subroutine LSSQ.__

Subroutine LSQSFX and the two routines it calls (DCBHTX and PSINTP) all

make use of a particularly dense style of coding (See Reference 6) which is

intended to minimize both storage space and execution time. For this reason

they may be difficult to unravel. In this section we give an outline of the

operations of the subroutine LSQSFX without discussing the details of data

storage. If this information is required it will have to be found through

careful study of the code.

The matrix of equations which are to be solved may be divided into four

quadrants distinguished by the exact constraints and the least squares

constraints. The first operation LSQSFX perf0rms is to do an L/U

decomposition of the exact constraints quadrant. This operation is carried

V

13 -B.6

out in the section of the subroutine marked phase (I,A). Simultaneously in

phase (I,A) the matrix Z22 (see figure 13-B.2) is constructed in the lower

right quarter of the matrix.

Then, in DCBHTX, a Householder QR factorization of Z22, the least squares

part of the matrix is performed. This is phase (I,B) of LSQSFX.

In phase (2,A) the inverse of the LII and UII matrices are computed and
-I -I

are applied to the UI2 and L21 submatrices. In phase (2,B) the LII and UII

matrix product is computed and the submatrices A_I, A_I AI2 and A21 _'I are

computed, and the transpose of the pseudo-inverse of the matrix Z22 is
computed in PSINTP.

Finally in phase 3 the pieces of the matrix are assembled to form the

transpose of the solution matrix defined at the end of section 13-B.2. Figure

13-B.2 sumarizes the operations.

13-B.4 Subroutine DCBHTX

Subroutine DCBHTX decomposes the least squares portion of the matrix

Z22 = A22 - A21 All AI2 into a product of unitary matrices Q and an upper

triangular matrix R

Z22 : QR

The matrix Q is not computed explicitly, Rather since it is a product of

elementary reflections

13-B.7

with

and

Q = HI H2 "" Hn

Hk : I - Bk Wk W_

Bk -- _ ll[dk(Wk)k];

Wk:[al_);

(k)) ikdk : _ sgn(ak k k(a(k)) i/2

i=k
i=k ,m] - dk_Faik; i:k, m]

just the numbers d k and the vectors Wk are stored in a packed form. In the

above expression a(k)ik denotes the entries of the partially factored Z22

matrix at the beginning of the k th stage of factorization.

13-B.5 Subroutine PS!NTP

V

Subroutine PSINTP computes the least squares pseudo-inverse of the matrix

Z22 as follows. Let

: QR = _iZ22
L °2][;]

!
_--= j

!

Then the pseudo-inverse of Z22 is given by

-i is comformable with Z22 PSINTP actually computesSince the transpose of Z22

the matrix (Z2_!T = QI(R-I) T

13 -B.8

v

CQLSF

DEFVEC

LSQSFX

I PSIN
DCBHTX TP

Figure 13-B.1 Tree Structure of Constrained Least Squares Subroutines

13-B.9

Exact

LSQ

I!xact i LSQ]

! a121U_____.... V

L/U Factori zation

Phase (I,A)

,0 U , U

L_2t i _1to izo_/
' J L , c._. _j

Z22 = A22 - A21 AI_ Ai2

QR Factorization
>

Phase (I,B)

DCBHTX

b2iiU L° i, LO!_]

Phase (2,_)LL21-LI_- - Lg---i Q--] -

......
(PSINTP)

Phase (2,B)

CollectPhase3 Terms> IAI#T

T . T .-IT]

z_S j

13 -B.IO
Figure 13-B.2 Outline of Algorithm Implemented in LSQSFX

Section 14 - Scientific Data Management System (SDFIS)

The Scientific Data Management System Reference Manual is included
verbatim as a section here and, as such, it does not conform to the standards
of the PAN AIR Maintenance Document (i.e., page numbering). The manual is
written for the CDC (Control Data Corporation) version of SDMS but it may be
applied to the CRAY version used by PAN AIR with the following considerations:

I. The user number of a file may be considered the CRAY dataset
identification (ID). The job user number may be considered the
ownership (OWN) value. Any datasets saved by SDMS will have an
identification equal to the ownership value. This includes databases
and master definitions. To specify the dataset identification will
require additional job control language. The options for SCOPE 2.1 do
not apply to the CRAY version.

2, The job control language to access, the SDMS library and the Data

Definitions Processor is provided on the PAN AIR installation tape,

3. Sequential datasets (described in section 3.5 of the SDMS manual),
miscellaneous database functions (section 3.6), indexed sequential
datasets (appendix B), and qualified dataset search (appendix C) are not
used by PAN AIR.

4. The dynamic storage capability (described in section 3.01 of the
SDMS manual) and the trace option (section 5) are not available.

5. The permanent file errors in table 4-3 and table 4-4 do not apply
to the CRAY version. Table D-2 (PDD Status) of reference 7 (CRAY-OS
Manual) should be used instead. The permanent file error number is
labeled in table D-2 as the PMST.

The copyright to the Scientific Data Management System (SDMS) is owned
by the Boeing Computer Services Company. All recipients of the PAN AIR
software system have been granted a royalty-free, nonexclusive, irrevocable,
world-wide license to publish, distribute, copy and use SDMS as long as this
is accomplished without separating SDMS from the entire PAN AIR system.

SDMS and any documentation thereof may not be reproduced in whole or in
part, or used in any form outside the PAN AIR System without express written
permission of Boeing Computer Services Company,

14.1

_W

2

TABLE OF CONTENTS

Title Page

List of Active Pages

Table of Contents

Revisions

1.0 Introduction

i.I
1.2
1.3
1.4

Data Dependence
Data Independence
Data Base Construction Process
SDMS Features

2.0 Data Base Definition

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.3
2.zI
2.5

SDMS Data Base Fundamentals
Master Definition Structure
Master Definition Syntax
Dataset Syntax
Password Set Syntax
Key Set Syntax
Oataset Body Syntax
Elefnent Set Syntax
Master Definition Example
Limitations
Definition Processing

3.0 Data Base Access Facilities

3.01
3.1
3.1.1
3.1.2
3.2
3.3
3.3.1
3.3.2
3.3.3

SDMS Initialization Routine ISDMS)
Data Base Initialization Routine (DBOPEN)
Data Base Creation
Post Creation Access
Data Base Termination Routine (DBCLOS)
Dataset Mapping Routines
Static Mapping
Dynamic Mapping
Map Creation

Page

ii

iii

7
9
9

ii
ii
12
12
13
15
16
17

24

25
26
27
28
30
31
31
33
35

7

14.3

PRECEDING PAGE BLANK NOT FILMED P,AI;E_INTENTIt_AICI BI,A/IK

TABLE OF CONTENTS

3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.5
3.5.1
3.5.2
3,5.3
3.5.4
3.5.5
3.5.6
3.6

4.0

5.0

6.0

7.0

Static Mapping Examle
Dynamic Mapping Example
Restrictions
Permissible Usages
Map Usage Tecnniques
Map Construction in Overlay Programs
Random Dataset Functions
Put Element Set (ESPUT)
Put DIRECT Element Set (DESPUT)
Get Element Set (ESGET)
Get DIRECT Element Set (DESGET)
Replace Element Set (ESREP)
Replace DIRECT Element Set (DESREP)
Creating and Accessing Random Datasets
DIRECT Dataset Usage
Sequential Dataset Functions
Open Element Set Sequences (ESSOPN)
Position Element Set Sequence (ESSPOS)
Close Element Set Sequence (ESSCLS)
Put Into Next Element Set (ESSPUT)
Get From Next Element Set (ESSGET)
Using Sequential Datasets
Miscellaneous Data Base Functions

Error Handling

Diagnostic Features

Recovery Options

Access to SOMS Suoroutines

6

38
38
38
39
4O
41
41
41
42
43
43
44
45
48
5O
5O
5O
51
51
51
52
54

55

64

65

O_

14.4

1.0 Introduction

This document describes the Scientific Data Management System (SDMS). SOMS

provides a high-level, file-independent framework for external data transfers

performed by scientific application programs. With SOMS, data is transferred
between a program and naf_ed scalars and vectors in an external data base.

These scalar and vector data elements are grouped into a data hierarchy by
means of an external data definition.

The use of named, structured data means that I/O takes place at a nigher level

of abstraction than files provide, thus simplifying I/O design. The use of an

external data definition makes data sharing _etween programs easier.

i.i Data Dependence

A model of data flow in a modern system is snown in Figure i-i. Each program

P in the system communicates both with its local data L and with data S which
is shared among members of the system.

Tne use of separate programs to perform snarply-defined functions provides a
high degree of modularity. However, the use of file-oriented data transfer

methods tends to i_Ipede inter-program communication in such a system.

File-oriented I/O ignores two of the most important properties of data:
identity and form. Record elements nave values but no inherent identity, no

external names. Similarly files nave no innerent form. Althougn some files

are regular in for;_l, many are not, and none are required to be So.

The only identity given to record elements is that of position within the

record. A variable stored in word 12 of a record must, of course, oe
retrieved from word 12. This is at best a weak kind of data identification,

and it imposes on the data an ordering which is not intrinsic to it.

14.5

1.2 Data Independence

SOHS uses a data definition to define the form and identity of external data.
This definition is part of the external data it represents and provides the

exclusive means of access to it (Figure i-2). This combination of definition

and data is commonly referred to as a data base. This approach makes it
possible for programs to issue data re,]uests of tne form "get external data
element MACH-NUHBER and store it in program variable XHN".

V

1.3 Data Base Construction Process

Figure 1-3 Shows the basic processes involved in the construction and use of a
data base, The form of the data base is specified in the definition text.

The definition text is converted by the Data Definition Processor (an SOHS
utility) to a master definition file. Program P accesses data base elements

by calling on SDMS routines which are loaded with it. These routines use a
copy of the master definition to retrieve and store data base values.

1.4 SDI4S Features

The important features of SDHS are listed below.

Permanent and Temporary 9ata Bases

SDHS permits the construction of both temporary and permanent data bases.

Temporary data bases can be used to handle both the local data and transient

snared data ShOWn in Figure I-i.

Nultiple Data Bases

Several data bases may be accessed by the same program.

Master Definition Concept

A single external definition can provide the form for an aroitrary numoer of

physical data bases.

Random Datasets

SDHS supports the list-directed transfer of element set variaoles to and from
random datasets. A random dataset corresponds to a logical file in a

file-oriented system. An element set corresponds to a logical record.

Sequential Datasets

SD_IS supports list-directed transfers of element set variables to and from
element set sequences. Element set sequences correspond to sequential files.

They are grouped into sequential datasets.

14.6

Keyed Access

S_!_S provides keyed access to random element sets and to element set sequences

as well. Multiple keys are permitted.

Data Element Types

A data block consists of a set of data e]ements. Data element types include

scalar, fixed-length vectors, and variaole-length vectors. (A vector is a

single-dimensional array.)

Data Element Access by Name

Data block elements are selectively accessed by name.

Hi,n-Efficiency Transfers

Random element sets can be transferred verbatim between disk and central

memory without intermediate buffering.

Availaoility

SDAS is available to progra_Is coded in Control Data Corporation (COC) Fortran
ncxte ded (FTN) running under tne KRONOS/NOS operating systems for COC lower

CY3ER computers (6600 li_e), and tne SCOPE 2.1 operating system for CDC 7600
computers.

_ 14.7

P2

SI

P - Program

L - Local external data

S - Shared externa_ da_a

S3

P4

Figure I-1: Data Communication in Typical Programs

_4.8

Control path
Data path

P1

Figure !-2: Definition Controlled Data Access

14.9

V

Data

Definition

Processor

SDMS Util ity

aster

User Program

Definition

Data

Data Base

Figure I-3: Data Base Processing

14.i0

- y 2.0 Data Base Definition

2.1 SD_S Data _ase Fundamentals

Figure 2-i snows tne general for,_1 of an SDMS data base. Each SOHS data base
consists of two major parts: a data base definition and a collection of

random and sequential datasets. The data base definition is a copy of a
master definition.

The basic SDHS inforr_lation unit is the dat_ element. All retrieval and

storage of information is done by referencing data elements through names

given in their dataset definition.. SOMS data elements are well-suited to the
expression of scientific data. Data element-forms include scalars,

fixed-lengtn vectors and variab|e-iengtm vectors. Data element values may be

integers, floating point nu_nbers, and text strings.

In case of random datasets, data elements are grouped into element sets, each
with a key set. The corresponding definition gives the names and attributes

of element set keys and data elements. In Figure 2-i, dataset X has a single
key K. Each element set has two data elements A and 3. Programs store

dataset X infor;_ation oy nlaking Statements of the for:;1 ":hake a ne_ ele_ent set

in dataset X SUCh that K nas the value K I ana data element A has the value

AI." Retrieval statements have the fornl "from an element set in dataset X
SUCh that K has the value K 2 , transfer data ele_nent B into program area

B2. ii

In a random dataset, each key set is associated with one element set. In a
sequential dataset, each key set is linked to an eleH]ent set sequence. An
element set sequence is the SDHS correspondent to a sequential file. The

dataset description gives the names and attributes of sequence key sets and
element set data elements.

In dataset Y of Figure 2-i, sequences are keyed by the single _ey Q. Each
element set contains the single data element R. To create a new element set
seauence requires tnat tne program issue an SDHS reauest of the form "open a

new sequence L in dataset Y sucn that Q has the value Q1." The sequence is
built by issuing SDMS requests of the form "add an element set to the end of
se,]uence L in which data element R has the value R(i)."

J

14.11

V

DEFINITION CONTENT

{Master Definition Z

Dataset X

Key Set

K

End

Element Set

A

B

End

End Dataset

Q

Dataset Y

Key Set

Q
End

Element Set Sequence

R

End

End Dataset

End Definition

14.12

\

Key Set

...I
B.--_ Data I

_1 IElementsl

Element Set

A
n

B
n

Random Dataset X

__Element Se_ R2_

\ Element Set Sequence

Sequential Dataset Y J

V

Data Base Z

Figure 2-1: A Typical SDMS Data Base

V

2.2 Master Definition Structure

A master definition consists of a sequence of 80 character text lines which
establishes:

I. form of a data base,

2. the permanent file on which the master definition will reside.

3. controls on dataset access within permanent data bases.

4. the names and attributes of dataset elements.

Each definition line consists of a left-to-right sequence of items separated
_y blanks. The one-character item _' is reserved as an optional end-of-line

terminator which may be followed by comments. 31an_ lines may be inserted in

the definition to aid legibility.

The master definition is constructed using SDDL (Scientific Data Definition

Language). In the paragraphs that follow, the syntax of SDDL will be

expressed in top-down fashion, using the syntactic constructs defined in Table
2-i. Uppercase text strings denote literal items. Constructs peculiar to the
CDC 7600 version (SCOPE 2.1) will be enclosed oy double slashes (//).

2.2.1 >taster Definition Syntax

The complete master definition has the form

i_ASTER DEFINITION mdname //user-id set-name//

<dataset definition>

END DEFINITION

where mdname is the name of tne direct access permanent file to wnicn the

fnaster definition is to be written. //User-id and set-name are the SCOPE 2.1

permanent file user-id and set n_me under which m_name is to be cataloged.
For system residence (not private pack), set-name=SYSTEM.//

Note: the asterisk and horizontal lines indicate vertical repetition of the

syntactic construct between them.

• 14,13

Syntactic Unit Definition

<Key element>
<data element>

<subscript>
<data type>

<option>

elna_ne <data type>
elname[<subscript>] <data type>

integer/name
TEXT/INTEGER/REAL/T/I/R

READ/WRITE/R/W

V

Elementary Unit

mdname

snanle
user-id

set-name

pw
elname
Iname

TEXT or T

INTEGER or I
REAL or R
READ or R
W_ITE or W

Definition

master definition name (i to 6 characters I)

dataset name (1 to 20 charactersl)..

SCOPE 2.1 user-id (i to 9 characters/).

SCOPE 2 i set name (i to 9 cnaractersZ).
password (i to i0 cnaractersL).
element name (I to 20 cmaractersl).

name of scalar integer <data element>.
textual type.

integer type.
real type.

read per;aission.
write permission.

Syntactic Constructs Definition

* X

×

[x] x is optional.

x/y x or y
<x> x is a compound syntactic unit.

Taole 2-I: Scientific Data Definition Language (SDDL) Syntax

1. No imbedded Planks permitted.

14.14

7

2.2.2 Dataset Syntax

Tne syntactic unit <dataset definition> defines a rando_n dataset or a
se,_uential dataset. The unit <dataset aefinition> expanas to

9ATASET shame [DIRECT]

[<password set>]

[<key set>]

[<dataset oody>]

END DATASET

where sname is the ha:he of the dataset. The identifier shame can be up to 20
characters in length and may contain any legal FORTRAN character except
'Plank'

The DIRECT option specifies a random dataset which has no <element set> and

therefore no structure. Its simplicity permits nigh-efficiency transfers to
take place (3.a.2, 3.4._, 3.a.6).

2.2.3 Password Set Syntax

The syntactic unit <password set> defines access permissions for this dataset
or group in conjunction with permanent data base initialization (3.1._). The
unit <password set> expands to

PASSWORDS

pw <option>

END

wmere pw = password (10 characters or less)
<option> = READ or WRITE.

Options may be abbreviated by specifying R instead of RE_9, and W instead of
WRITE,

14.15

2.2.4 Key Set Syntax

The syntactic unit <key set> defines the names and attributes of keys which
are used to access dataset components. It expands into

KEY SET

elname <data type>

END

where elname is the name of a scalar data element and <data type> is the

element type (in the FORTRAN sense). <data type> = INTEGER, REAL or TEXT

where INTEGER (or I) denotes integer type, REAL (or R) denotes real type and
TEXT (or T) denotes textual type. Elname can be up to 20 characters in length

and ;nay contain any legal character except 'olank' A key set may contain a
maximum of 10 elements.

2.2.5 Dataset Body Syntax

The syntactic unit <dataset body> defines how data elements are arranged

witnin the dataset. It expands to

ELEMEiiT SET [SEQUENCE]

<element set>

END

If the word SEQUENCE is present in the header, a sequential dataset is
defined. Its a_sence indicates a random dataset. In a sequential dataset,

Keyed access is provided to sequences of element sets. In a random dataset,
each element set is key-accessible.

14.16

2,2.6 Element Set Syntax

The syntactic unit <ele_qent set> defines the data elements present in each

element set in a dataset, It expands to

elname [<subscript>] <data type>

where

e I name =

<suBscript> =

<data type> =

integer =
I name =

data element name (< 20 characters)
integer/Iname
TEXT/INTEGER/REAL/T/I/R
natural number > t

name of scalar Tnteger data element in the same
element set.

The use oF the <SubScript> parameter determines data element structure,

<subscript> element structures

null (not given) scalar

integer fixed-length vector

/name variable-length vector

Data element type is defined Dy <data type>.

<data type> element type

TEXT (or T) text

INTEGER (or I) integer

REAL (or R) real

14.17

Some data element definitions

data element

integer scalar LIST-LE!_GTH.

text scalar _IAME.

5 words of text named TITLE_

3-word floating-point array
POINT.

floating-point array LIST
wmose length is equal
to the value of LIST-LENGTH.

are illustrated

definition

LIST-LENGTH

NAME

TITLE

POINT

LIST

oelow.

LIST-LENGTH

I

T

T

R

V

V

14.18

2.3 Master Definition Example

The basis for OUr example is the kind of data _hicn represents a paneled
aerodynamic body. Figure Z-2 sho_s a wing _odeled as two networks of panels;

one for the wing and one for the wake. Associated with each panel are one or
,_ore control points at which boundary conditions are evaluated. &n

aerodynamic analysis requires that several collections of geometric properties

be extracted from the modeled configuration.

Figure 2-3 sho_s the breakdown which we will use to represent our panelled
configuration. A master definition called PANCD which corresponds to this

data arrangement is Shown in Table 2-2.

The dataset 91obal-data consists of a single element set containing all global
information about the configuration. In our examp]e, this consists of the

number of networks and a configuration name.

The dataset network-def-data contains information about individual networks,

keyed by network number. Note that para_neters witn a prescribed set of values
are fully described by comments.

NetworK-grid-points is another dataset containing information about individual
networks. The data consists of a sequence of grid points in 3-space, each

se,]uence keyed by network nu_nber before. The data element name network-nO was

chosen to be the same in both cases to emphasize that the _ey is tne same in

both cases. Uniqueness of reference is preserved by the fact that the data

elements are in different datasets. Network grid points are accessed by
specifying dataset name and network number and then reading or writing them
sequentially.

The dataset panel-def-quant contains a large collection of panel-related data

keyed jointly on network nu_nber and panel number. The ele_ent set includes

fixed-length arrays like panel-moments and variable-length arrays li_e
fit-wt-factors with its length- speclfying ele:nent pnl-srf-fit-ordr.

The last two datasets in our master definition represe,t tne control-point

definition data of Figure 2-3. The first dataset, ctl-pt-def-quant, contains
an element set sequence for each network. Each element set contains data

about a particular control-point in one network. This data includes the
coordinates of the control-point and tne number of the panel associated with
it. The data element panel-no is used as _ key into tne dataset

panel-def-quant.

The second control-point dataset is distinct-ctl-pts, again keyed by network

number. Since all control points may not be spatially distinct; the index
array ctl-pt-no-lst is used to indicate those control-points which are
duplicated.

Figure 2-4 snows how PANCD can serve as the baSiS for an arbitrary number of
PAN AIR data bases.

l

14.19

2.4 Limitations

I te_n

Oatasets per master definition

Passwords per dataset

Keys per key set

Scalar elements per dataset

Fixed-length arrays per dataset

Variaole-lengtn arrays per dataset

Li:nit

!00

i0

i0

i00

i00

I00

V

W

14.20 V

2.5 Definition Processing

At tne BCS Renton Data Center, tne control cards required to create a master
definition are:

GET, DDP / UN=PAWAMI.

DDP(MDIN,OFIL)

where

MDIN=file of _naster definition text. (default=INPUT)

OFIL=print file. (default=OUTPUT)

Assume MDIN contains a va]id master definition named x. At DDP

completion,direct access permanent file x will be the corresponding _aaster
definition file.

14.21

f

V

F1 ow

%
Wing Panel

/
y./
/7,"

\
Control

Wake Panel

/

\

Point

Wing Network

Wake Network

Figure 2-2t Plan View Of Wing Geometry

V

14.22

V

Aerodynamic

Geometry

Data

Global

Data

Network

Definition

Data

Network

Grid

Data

Panel

Definition

Data

Contro Point
Defin tion

Data

Figure 2-3: Panelled Geometry Data Structure

14.23

PAN AIR

guration

Geometry

Data Base

guration

Geometry

Data Base

uration C

Geometry

Data Base

\

\

\

\

\

V

/

/
/

/
/

/

Figure 2-4:
Data Base/Master Definition Relationship

£4.24

7-- •

-v
MASTER DEFINITION pancd

DATASET global-data
ELE_IENT SET

no-of-networks

config-name
END

END DATASET

DATASET network-def-data
KEY SET

network-no
END

ELEMENT SET

nuln-grid-pt-rows

num-grid-pt-cols
pnl-srf-fit-ordr

pnl-sing-type

network-type

num-s i n g-par ares
nu_ll-c tl -pt-rows

num-ct I -p t-col s
num-ctl-pts

END
E_,:D DATASET

DATASET networK-grid-pts
KEY SET

network-no
END

ELEMENT SET SEQUENCE
grid point

END

END DATASET

i

t

%
%

%
%

%

%
%

global configuration data.

number of panel networks in

configuration,
configuration name.

network defining data.

network number.

number of grid point rows.

number of grid point columns.
order of panel surface _it:

l=flat panels,
2=curved panels.

panel singularity type.

O=constant strength source,
l=linearly-varying source,

2=Quadraticly-varying doublet,
network type:

l=source/_n_lysis,
2=doublet/analysis,

3=source/design no i,

4=douOlet/design no. i,
5=source/design no. 2,

5=doublet/design no. 2,
8=doublet/wake no. i,
O=doublet/waKe no. 2.

number of singularity parameters.

nu_nber of control point rows.
numDer of control point columns.

number of control points.

network grid points.

network number.

r _ grid point in x,y,z order.

Table 2-2: Aerodynamic Data Definition

14.25

DATASET panel-def-quant
KEY SET

network-no

panel-no
END

ELEMENT SET

corner-pt-1

corner-pt-2

corner-pt-3
corner-pt-4
u-vector

v-vector

pnl-ctr-pt
Ics-rrans-mat

inv-lcs-tr-mat

panel-centroid
Ics-pnl-crnr-pts

quad-surf-coeff

Ics-origin
max-panel-diam

panel-moments

panel-sing-type

pnl-surf-fit-ordr

sing-par-index-lst

fit-wt-factors

leasr-sq-coeff-mat

END
END DATASET

9

3
8

2

3

36

r

r

r

r

r

96 r

panel defining Quantities.

network number.

panel number.

corner point in x,y,z order.

same,

same,
same.

(u cross v defines vector normal
to flat panel.)

panel center point.
local coord, system transfor-

mation matrix. (3 x 3)
inverse of Ics-trans-mat.

panel centroid coordinates.
panel corner points in local

coordinate system.
quadratic surface coefficients.

local coordinate system origin.
l_aximufn panel diameter. (in.)

array of panel mo,_lents. (6 x 6)

panel singularity type:
O=constant-strength source,

1=linearly-varying source,
2=quadraticly-varying doublet.

panel surface fit order:
i for flat panels,

2 for curved panels.

pnl-surf-fit-ordr

singularity parameter index list.

pnl-surf-fit-ordr
fit weighting factors.
least squares fit coefficient

matrix. (6 x 16)

V

V

Table 2-2: Aerodynamic Data Definition (Cont'd)

14.26
F

DATASET ctl-pt-def-quant

KEY SET
networK-no

END
ELEMENT SET SEQUEHCE

panel-no
control-pt-coords
panel-surf-normal

END
END DATASET

DATASET distinct-ctl-pts

KEY SET
network-no

END
ELEMENT SET

ncp
ctl-pt-num-list ncp

END
END DATASET

END DEFIHITION

i
r
r

control point defining
quantities.

network number.

panel numoer.
control point coordinates.
panel surface normal at control
point.

definition of distinct control
points.

network nufnber.

S numoer of control points.
list of distinct control point

i_dices.

Table 2-2: Aerodynamic Data Definition (Cont'd.)

_.j 14.27

3.0 Data Base Access Facilities

Figure I-3 illustrates the relationship between the data definition process
(creating data base forms) and the data manipulation process (creating and

accessing data base values). Data manipulation activities are c_rried out Dy
calls to SDi_S subroutines using CDC Fortran Extended calling sequence
conventions•

Tnere are five classes of manipulation activity"

• Data Base Initialization and Termination--creating new data

bases, connecting to existing ones, and terminating data base
processing.

. Progra_n Variable/Data Base Element Mapping--specifies
associations between program variaoles and data base elements

for data transfer purposes.

3. Random Dataset Data Transfer Operations--

4. Sequential Oataset Data Transfer Operations--

. Dynamic Storage Assignment--obtain and release mlocks of central

memory.

Tne sub-sections which follow will discuss each class in tne order given

above. Two forms will De given for each data manipulation function: a

Fortran calling sequence and a statement in a higher-level lahguage called
SDML (Scientific Data Management Language). The SDklL statements are included

only for their descriptive value. Tney may be included as cofnments since they

begin with an * in column one.

V

14.28

V

V"

3.01 SDMS Initialization Routine (ISDMS)

* _EGIN SD[_S.

CALL ISONIS (fwa,lwa)

where

fwa = i if this is the first word of SDMS working storage.
= 0 if working storage is to be obtained from the system

as needed.

lwa = last word of SDMS working storage, if fwa = I .

ISDMS initializes data areas for the use of data base processing routines
described in subsequent sections.

It is called only once in a given executable step.

It must be called before any other SDMS routines are called.

In an overlay program, it must be called from the (0,0) level.

The presence of ISDMS arguments indicates that all buffer space and dynamic
storage areas required by SDMS routines will be allocated witnin tne memory
li:_lits specified. For example, the code

A(L) = i
CALL ISDi IS(A(1),A(IO000))

specifies that SD_4Scan use A(1) through A(LO000) as a dynamic storage area.

If fwa = O, SDMS will get dynamic storage starting at the current value of
field lengtn. The amount of additional storage used will fluctuate depending
on the number of data bases and sequential datasets open at one time.

The following taole indicates SOMS dynamic space requirements.

For each

data base

dataset map(3.3)

open element set
sequence(3.5)

central memory words required (decimal) is

4 + no. of datasets.

14 + no. of dynamic variables + no. of key set
variables + 2 no. of data elements.

1045

14.29

3.1 Data Base Initialization Routine (DBOPEN)

Some DBOPEN calls require tne use of a data base descriptor dbd and a master
definition description mdd. Both descriptors are short arrays having the same
form.

The descriptors tell SDMS where to find or create permanent files.

mdd(1) master definition file name.

mdd(2) master definition file user numoer. May be 0 if same
as job.

//mdd(2) master definition file set name. //
(I to 9 characters)

//mdd(3) master definition file user id. //
(i to 9 characters)

dbd(1) data base name (dbn).
(i to 6 alphanumeric characters starting
with a letter)

dod(2) data base files user number.
_,lay be 0 if same as job.

/ldod(2) data base files set name. //
(I to 9 characters)

I/dod(3) data base files user id. /
(I to 9 characters)

Note: only the first six non-blank characters of mdd(1) and dOd(L) are used,
// Unless a private pack is mounted for the joo, mdd(2) and dbd(2) must be set
to 'SYSTEM' After a D3OPEN call using dbd, the default set name for the
remainder of the job will De set to dbd(2).//

14.30
V

|

7 3.1.1 Data Base Creation

The first function to be performed relative to a particular data base is that
of data base creation. In this step, an "empty" data base is created having a

form supplied by a specified master definition.

The exercise of this function takes one of two forms. The first is for the

creation of temporary aata bases.

* OPEN DATA BASE dbn USING mdd.

CALL DBOPEN (dbn,'USING',mdd)

where dbn = data base name (1 to 6 characters)
mdd = master definition descriptor.

Since a temporary data base is being created, DBOPEN creates 'local' (in the

operating system sense) data base files with names dbnl, dbn2, dbn3 and dbn4
(after returning to the system any previously existing files with the same

n ame s).

Tne statement form for permanent data nase creation is:

* OPEN DATA BASE dbd PERMANENT pw USING todd.

CALL DBOPEN (dbd, 'PERHANENT', pw, 'USIF'IG', todd)

where dbd = data base descriptor. (3.1)

pw = master password (i to 10 characters).
mdd : master definition descriptor. (3.1)

With this calling sequence variant, DBOPEN creates direct access permanent
data base files witn an associated master password.

-_ _ 14.31

3.1.2 Post Creation Access

DBOPEN is also called to connect to existing data bases. If dbn is an
existing temporary data base (exists on local files), the following form is
used.

* OPEN DATA BASE dbn.

CALL DBOPEN (dbn)

If dbn is an existing permanent data base (exists on permanent files) the form
used is:

* OPEN [SHARED] DATA BASE dbd PERHANENT pw.

CALL DBOPEN (dbd, 'PERMANENT', pw, 'OLD', [,'SHARED',])

where dbd = data base descriptor. (3.1)
pw : password (i to 10 characters).

v

If the parameter'SHARED' is included, the data base files are attached in
READ mode. This permits other programs to use dod in SHARED mode at tne same
time. None of these prografns may modify data base dbd.-

If password pw is the master password assigned at data oase creation, then
read permission is granted for all datasets in dbd; write permission is
granted for all datasets if dbd is not SHARED.

If pw is not the master password, then access to a dataset is controlled by
tne set of passwords included in its definition. If pw is not in the password
set, no dataset elements may be accessed. If pw is in the set, it has been
granted either read (R) or write (W) permission. Write permission includes
read permission.

Restrictions

Attempting to open a permanent data base in SHARED mode when it is currently
open in non-SHARED mode will result in a non-fatal error (see 4.0).

No more than i0 data bases can be open (active) at one time.

V

3.2 Data Base Termination Routine (DBCLOS)

After data base processing is complete, tne using program may elect to perform
a data base termination function.

* CLOSE/RETURN DATA BASE dbn.

CALL DBCLOS (dbn [,'RETURN',])

14.32
V

where x/y indicates 'x or y'.
dbn = data base name.

DBCLOS updates data base files for dbn to reflect its current state. It also

releases all dynamic table space used by dbn, including its maps (3.3).

Inclusion of the RETURN parameter causes data base files to be returned to the
system. In the case of abnormal job termination, SDMS regains control and

automatically closes any open data bases, excluding any for which the DBOPEN

process was not comDleted.

Restrictions

Any data base which has been modified and which is reauired after program
termination must be CLOSED before termination.

A data base must be CLOSED before it can be reOPENed.

_'-/ 14.33

3.3 Dataset Mapping Routines

SDMS handles communication between two different data spaces: one containing

program variables like x,y,z and another containing data base elements like
X-VALUE, Y-VALUE, Z-VALUE (Figure 3-i).

In order for data transfer to take place, a two-part process must occur.
First, a named data map is constructed by a sequence of subroutine calls

(3.3.3). Tne data map binds program variables to elements of a data base as

specified in its master definition (Figure 3-2). Tnen calls to other SDMS
routines move data to and from the data base by referencing the map name (3.4,

3.5).

From a mapping standpoint, program variables fall into two classes: dynamic
and static. Dynamic variaoles have addresses which may change from reference

to reference. In Fortran, dynamic variables consist of variable-subscript
array references like _(I) and subroutine formal parameters. All other
variables define static references.

The distinction is made because static variables can be "bound" when the map
is constructed. Dynamic variables cannot be bound until data transfer is
requested.

V

3.3.1 Static Mapping

Figure 3-3 snows a mapping in which a map M forms an association between
static variable V and data element d in dataset DS. Map M _s created by

subroutine calls. A single map may define an arbitrary number of

variable-to-data element bindings; only one is ShOWn for clarity.

The process of data transfer between V and d is diagrammed in Figure 3-4.
Transfers to and from the data base are effected by SDMS subroutines which

reference map M to guide the transfer.

Suppose that DS(K) is a dataset with one key K. We add to map M a program

variable VI which is Bound to dataset key K. Figure 3- 5 ShOwS how this map
extension perulits transfers between program variable V2 and data element d
in DS.

14.34

Program Data Base

Figure 3-1: SDMS Data Spaces

Program Data Base

Figure 3-2: Variables-to-Data Element Mapping

--_ ; 14.35

V

Central

Memory

(CM)

V A
v

Dataset DS

Figure 3-3: Static Variable Map

CM V

Data Transfer Operation 0
DS

Figure 3-4: Data Transfer of Static Variable

CM

VI,_

f
wA i

M

0 DSK

Figure 3-5: Mapping of Keyed Dataset

14.36
V

3.3.2 Dynamic Happing

The use of static variables makes mapping efficient but rigid. In our

previous examples, the source or destination of data element d as determined

by M must be a fixed location in central memory.

The use of dynamic mappin 9 (Figure 3-6) removes this restriction. At map
creation, only the data base side of the correspondence is established. The

central memory portion of the linkage is completed at data transfer time

(Figure 3-7). Dynamic mapping makes it possible to reference dynamic
variables Such as subroutine formal parameters and variably-subscripted array
references.

A map M can reflect DOth static and dynamic mappings, as ShOWn in Figure 3-8.

" i4.37

CM

Map M

Figure 3-6: Dynamic Variable Map

DS

CM

!

V

I

M

0

Figure 3-7: Transfer of Dynamic Variable

DS

CM
V --

dl

DSK

Figure 3-8: Typica] Map

14,38

3.3.3 Map Creation

* MAP dmn FOR dsn IN dbn HAS [vn=den,]* [vden (i)]*.

CALL DSMAP (n,dsn,dOn)

[CALL SVMAP (vn(1),den(L), • • ,vn(n),den(n))]

[CALL DVMAP (vden(1),
CALL ENDMAP

• . ,vden(m))]

where dmn =

dsn =
don =

Ix]* =
vn(i) :

den(i) =

vden(K) =

unique map name (i to i0 characters).

dataset nalne (Hollerith literall).

name of open data base,
arbitrary integer > O,
X,X_...,X

static variable name,

Hollerith literal defining data element name
corresponding to vn(i).

Holleritn literal defining data element name associated
with dynamic variaoles in data transfer calls
(3.4.1 - 3.4.6, 3.5.4, and 3.5.5).

The map name dmn is used by data transfer functions (3._) to determine the

sources and destinations of program variables and data base elements.

Restrictions

DSMAP must be called only once for each value of dmn.

A map definition sequence must oegin with a call to DSiIAP and end with a call
to ENDMAP.

The calls to SVMAP and DVMAP are order,independent•

No more than one DVMAP call may appear in the sequence•

No more than I0 SVMAP calls may _ppear in the sequence.

No more than i00 maps can oe defined at one time.

Z • The name of a 2-word array variable may be substituted for the
Hollerith literal. If the text string has 10 characters or less, the
second word must have a zero value.

_' 14.39

3.3.4 Static Mapping Example

The most efficient method of binding program variaoles to data base elements
is in the DSMAP call itself. Such variables must be static; they cannot be
subroutine formal parameters or a dynamic array reference sucn as A(1),. Any
other references are legal, such as local variables L or A(3,4), or COMMON
variaole X.

Consider the dataset shown in Table 3-i. The following DSMAP call forms an
association between local program variaDies N,X,Y and dataset elements NC,
X-VALUE and Y-VALUE respectively.

* MAP CRVMAP FOR 2D-CURVE IN dbn HAS N=NC, X=X-VALUE, Y=Y-VALUE.

CALL DSMAP ('CRVMAP', '2D-CURVE', don)
CALL SVMAP (N,'NC',X,'X-VALUE',y,'Y-VALUE')
CALL ENDMAP

This association is specified by map name in subsequent calls to SDMS data
transfer routines. After the previous map calls nave been made, the statement

* PUT CRVMAP.

CALL ESPUT ('CRVMAP')

causes a transfer of variables from tne program to the data base as shown
below.

Program Variable Data Base Element

N - - - > NC
X(i),i:l,N ---> X-VALUE
Y(i),i=l,N ---> Y-VALUE

The use of ESPUT is fully explained in Section 3.a.l.

W

V

'14.40

DATASET 2d-curve

ELEMENT SET

curve-title
nc
x-value
y-value

END

END DATASET

5 t
i $

nc r
nc r

curve title array.
number of coordinate pairs.
x coordinate array.
y coordinate array.

Table 3-1: Example Dataset

14.41

3.3.5 Dynamic Mapping Example

In the previous example, suppose that N,X and Y were formal sub-routine
parameters. They would then be referenced in the ESPUT call instead of the
DSMAP call, as shown below:

* ,_AP CRVMAP FOR 2D-CURVE IH dbn HAS NC, X-VALUE, Y-VALUE.

CALL DSMAP ('CRVMAP' '2D-CURVE',dDn)
CALL DVMAP ('NC,'X-VALUE','Y-VALUE')
CALL ENDMAP

* PUT CRVMAP USING N,X,Y.

CALL ESPUT ('CRVMAP', N,X,Y)

3.3.6 Restrictions

DSMAP must be called only once to establish a map with a given name (dmn
value). It should be considered a declarative command.

Data element names must be Hollerith literals in the calling sequence.

If a variable-length array data element is included in a map, its
length-defining scalar must also oe included (2.2.6).

All key data elements must be included in the map.

V

3.3.7 Permissible Usages

Any su_set of dataset elements may be referenced in a single :nap.

Dynafnic and static mappings may be included in the same map. For example,

CALL DSMAP ('CRVMAP','2D-CURVE',dbn)
CALL SV_HAP(N,'NC')
CALL DVMAP ('X-VALUE','Y-VALUE')
CALL ENDMAP

is legal.

Data element names and static and dynamic variables may be used in more than
one map.

14.4'2

3.3.8 Map Usage TecnniQues

In order to reference static map variables in more than one coding module, it
is necessary to pass them through blank or labelled COMMON. It is recommended
that all static variables and only those variables associated with a
particular map be kept in a single labelled common block with the same name as
the map. It is also recommended that the correspondence between program
variables and mapped data elements be identified by comments immediately
preceding or following the common block containing mapped variables.

To keep the clerical work involved in maintaining several copies of
map-related text to a minimum, it is suggested that the UPDATE utility I be
used to maintain the source program. Then each set of map comments and a
COM!_ONdeclaration can oe maintained as a single COHDECKwithin UPDATE.

The following text snows now map-related text might look for the map used in
3.3.4.

C MAP=CRVMAP DATASET=ZO-CURVE
C VARI&BLES DATA ELEME_ITS
C N NC
C X X-VALUE ([_C)
C Y Y-VALUE(NC)

COMMON/CRVMAP/ N, X(i 00), Y(I00)
C,,,,,.,o,..,,..,..o...,..,,.,..,,,.C

When dynamic variables are used, the list position of the data element in the
DVHAP call should be given in place of the variable name. For example, the
ma_ text for the map used in 3.3.5 might be as follows:

C....o.,..,,,....,...,,.Jiioootoo,,°C

C MAP=CRVMAP DATASET=2D-CURVE
C VARIABLES DATA ELEMENTS
C D.V. I NC
C D.V. 2 X-VALUE(_C)
C D.V. 3 Y-VALUE(NC)
Ci.ll,.,...e.llaloel...i_g,ii,.oJlo,C

Note that no COMHONdeclaration is required because the map includes no static
variables.

1. UPDATE Reference _lanual, Control Data Corp. Document Ho. 60449900.

14.43

3.3.9 Map Construction in Overlay Programs

To conserve v_riable space, it ,nay be desirable to issue map-construction
statements in overlay levels above the 0,0 level. If this is done, the

programmer must arrange to nave these calls executed only once no matter how

many times the overlay is called. This can be done conveniently by placing a

map-construction flag in a labelled COMMON block in the 0,0 overlay and
testing it just prior to map creation. If the flag is false, the map does not

yet exist. It is then created and the flag is set to true.

_ I

V

3.3.10 Preventing Mappin 9 Error Aborts

If a data or key element name is mis-spelled during map construction, SDMS
error 18 is detected during ENDMAP processing. Normally, this causes an

explanatory message to be printed followed by an immediate abort of the job.
If many errors are present in a set of inaps, it will take many runs to find
them all.

The job abort due to SDMS error 18 can be prevented by executing

CALL MAPCHK

prior to map processing. The explanatory message is still printed, but

execution of tne job continues.

After map processing is complete, the user prografn should execute

CALL MAPERR(err)

The _aria_le err will be .TRUE. if SOMS error 13 has occurred since the MAPCHK

call. It is the calling program's responsibility to terminate the jom if an
error condition is detected.

14.44

3.4 Random Dataset Functions

I/0 operations on random datasets are carried out relative to a map of the

dataset (3.3). If the dataset has a key set, all corresponding Key variaoles

must be set before an I/O operation is performed. A Key variable is a program
variable which corresponds to a KEY SET element in a dataset (2.1, 2.2.4). In

the example of 3.4.7, _iAME is the key variable associated with key element
'_ATRIX-NAME' in dataset '_IATRIX-DATA'.

3.4.1 Put Element Set (ESPUT)

* PUT dmn [USING pv*].

CALL ESPUT (dmn [,pv(1),

where dmn =

pv(k) =

name of non-DIRECT random dataset map.

dynamic Fortran variable corresponding to data element

vden (k) in map dmn (3.3.3).

ESPUT uses DSMAP static variables vn(i) and ESPUT dynamic variaoles pv(k) (if

present) to transfer data to the corresponding data elements in the selected
element set.

No te : if an elet_ent set witn the specified key values already exists, no
transfer is made and non-fatal error 21 is returned (4.0). This

error can be made fatal by calling SETAEF.

3.4.2 Put DIRECT Element Set (DESPUT)

* PUT dmn DIRECT origin lb.

CALL DESPUT (dmn,origin,lb [,pv(1) ,pv(n)])

where dmn = name of DIRECT random dataset map.

origin = start of block to be transferred.

Ib = length of olock.

pv(k) = dynamic Fortran variable corresponding to key element
vden(k) in map dlnn (3.3.3).

DESPUT transfers the block tO the DIRECT dataset specified by dmn. Since

DIRECT datasets have no element set structure (2.2.2), they can be moved to

and from the data base more efficiently.

Note: the note in 3.4.1 also applies to DESPUT.

_-Ii 14.45

3.4.3 Element Set (ESGET)

* GET driln [USING pv*].

CALL ESGET (dmn[,pv(1), ,pv(n)])

where dilln

mY(k)

= name of random dataset map.

= dynamic Fortran variable corresponding to data element
vden(k) in map dmn (3.3.3).

ESGET uses DSMAP variables vn(i) and ESGET variables pv(k) (if present) to

transfer data from the corresponding data elements in the selected dataset.
non-fatal error occurs if the selected data set does not exist (4.0). Any
data element with undefined value will be input as the indefinite quantity
1777 0000 0000 0000 0000 octal.

Note: if the specified element set does not exist, non-fatal error 23 is

returned (4.0). This error can be made fatal Dy calling SETAEF.

A

V

_ I

V

v
14.46

3.4.4 Get DIRECT Element Set (DESGET)

* GET dmn DIRECT origin limit lo.

CALL OESGET (dmn,origin,limit,ID [,pv(1), ,pv(n)])

where drnn

origin
limit

Ib

pv(k)

= name of DIRECT DATASET MAP.
= start of block to be received.

= maximum block lengtn permitted.

= actual olock length (output).

= dynamic Fortran variable corresponding to
key element vden(k) in map dmn (3.3.3).

The element set specified by dfnn is transferred into the program area
indicated in the DESGET call. No error is returned if ID exceeds limit.

Note: the note in 3.4.3 also applies to DESGET.

3.4.5 Replace Element Set (ESREP)

* REPLACE dmn [USIriG pv*].

CALL ESREP (dr_In[,pv(L), . . ,pv(n)]

where dmn

pv(K)
= name of non-DIRECT random dataset map.
: Fortran variable corresponding to data element

vden(k) in i_ap dlnn (3.3.3)

ESREP replaces the whole element set selected through map dmn, not just the

mapped data elements. If the previous element set is at least as long as its
replacement, it will be overwritten. Otnerwise, additional disk space will De
used.

Note: the note in 3.4.3 also applies to ESREP.

14.47

3.4.6 Replace DIRECT Element Set (DESREP)

* REPLACE dmn direct origin lb.

CALL DESREP (dfnn, origin, Ib [,pv(1), . ,pv(n)])

where dmn

origin
Ib

pv(k)

= name of DIRECT dataset map.
: start of block to be transmitted.

: actual block length.

: dynamic Fortran variable corresponding to key element
vden(k) in map dlnn (3.3.3).

DESREP replaces the DIRECT element set selected via map dmn. If the previous

element set is at least as long as its replacement, it will be overwritten.

Otherwise, additional disk space will be used.

Note: the note in 3.4.3 also applies to DESREP.

V

14.48 :

3.4.7 Creating and Accessing Random Datasets

A cof_mon data representation for a matrix is ShOWn in Figure 3-9. Each matrix
X consists of mn Dlocks X(i,j) in a rectangular arrangement. Each block
X(i,j) contains r(i) rows and c(j) columns. Table 3-2 shows an SDf,lS
representation of block-format matrices with comments referencing the symbols
of Figure 3-9.

The dataset 'matrix-data' holds global information aoout each matrix keyed by
matrix name. Dataset 'blocks' describe the structure of an individual olocK.
It includes r(i), c(j) and X(i,j). Its keys include i, j and the name of X.

ThiS pair of datasets describe a whole family of matrices X(i,j),
i=1,2, m(X),j=l,_,...,n(X). The global attributes of any matrix X are
retrieved 'matrix-data' using the matrix name as key. The contents of any
block X(i,j) are retrieved from 'blocks' using (i,j), and the name of X as
keys.

Assuming that an empty data base hITX has been initialized, the next step is to
provide a mapping for 'matrix-data'. Since tnere is no need for dynamic
reference to its data elements, the mapping will be exclusively in terms of
static variables.

CALL DSMAP ('M-D','MATRIX-DATA','MTX')
CALL SVMAP (NAI4E,'MATRIX-NA_IE',NR8,'N-ROW-gLOCKS',

NCB,'NUM-COL-BLOCKS',NR,'rI-ROWS',NC,
'NUr_COLS')

CALL ENDMAP

In the case of dataset 'blocks', a dynamic variable will be used to reference
data element ,block, since the program will be working on more tnan one block
at a time.

CALL DSMAP ('BLK','BLOCKS','MTX')
CALL SVMAP (I_AME,'MATRIX-NAME',RBI,'ROW-BLOCK-I$4DEX,

CBI,'COL-BLOCK-Ii,IDEX',NRPB, 'NUM-OF-ROWS/BLOCK')
NCPB,'NUM-OF-COLS/BLOCK',LB,'BLOCK-LENGTH')

CALL DVMAP ('BLOCK')
CALL ENDMAP

After the variables NAME, NRB, NCB, _'IR and NC nave been set, the state_nent

CALL ESPUT ('M-D')

causes a new element set to be created in dataset 'matrix-data'

14.49

cj

I J n

1 Xll • • • XIj • • • Xln

XiI 000
Xij 000 Xln

m XmI 000 000 X_

Figure 3-9: Block Format Matrix

14.50

DATASET matrix-data

KEY SET

matr i x-n ame

END

ELEMENT SET

n um-row-b I oCKS
num-col -o l OCkS
n Uill-r ows

num-col s

END

END DATASET

D&TASET blocks

KEY SET

matri x-name
row-block-index
col-block-index

END

ELEMENT SET

num-o f-rows/o locK
num-of-col s/block
block-length
olock olock-length

END

END DATASET

t

i
i S
i
i $

t
i S
i

i
i
i
r S

name of matrix x.

m

n

sum of r (i), i=l,m
sum of c (j), j=l,n

name of matrix X.
i
J

r(i)
c(j)
r(i) * c(j).
X(i,j) elements in column
order.

Table 3-2: Random Dataset Example

14.51

Assume the dynamic variaole XIJ is tne origin of olock X(i,j). After key
vari_les 4A_E, RBi, CBI and data variables NRPB, tB are set, tne statement

CALL ESPUT ('BLK',XIJ)

transfers the specified matrix block to the data oase.

To read a matrix block, the key variaoles NAME, RBI, CBI are set and dynamic
variable XBS(1) is selected to serve as a correspondent to 'BLOCK'. The
statement

CALL ESGET ('BLK',XBS(1))

causes the matrix olock to oe transferred to the block of memory starting at
XBS(1).

3.4.8 DIRECT Datase t Usage

Table 3-3 snows a typical DIRECT dataset containing information related to a
group of surface "patches". The patches themselves t_ignt be defined
individually in anotner dataset. To analyze a surface region efficiently, a
group of patcnes can be formed into a larger olock and transferred to
'intermed-geom-data' for use in subsequent processes.

This dataset is mapped with the statement

CALL DSMAP ('I-G-D','INT_RMED-GEOM-DATA',dbn)
CALL SVMAP (NR,'REGION-NUi.IBER')
CALL ENDHAP

Assume that tne block is constructed in the array REG. After the static Key
variable NR is set, a block is output with the statement

CALL DESPUT ('I-G-D',REG,LREG)

where LREG is the block lengtn.

Block input is achieved by again setting NR and executing the statement

CALL OESGET ('I-G-D',REG,NREG,LREG)

where REG and LREG have tne same meaning as previously and NREG is the maximum
number of words to be read.

V

14.52

DATASET intermed-geom-data DIRECT

KEY SET

region-number i

ENO

END DATASET

Table 3-3:

index to a group of neigh-
boring surface patches.

DIRECT Dataset.

14.53

where

3.5 Sequential Dataset Functions

3.5.1 Open Element Set Sequences (ESSOPN)

Before data can be transferred to or from an element se_ sequence, it must be
opened or initialized with a call to ESSOPN.

* OPEN Isn FOR dmn FIRST/LAST .

CALL ESSOPN (Isn,dmn, 'FIRST'/'LAST')

dmn = naf_e of existing sequential dataset map.
Isn : local sequence name (i to IO characters)

If the sequence specified by map dmn and its key values (if any) exists, then
it is opened at the position indicated by the table below.

argument 3 position

before first element set,
after last element set.

If the referenced sequence does not exist, an empty sequence is created.
sequence previously associated with Isn will be closed (3.5.3).

Any

Cautions

Opening an element set sequence requires buffer and control taole space.
space can be minimized by keeping inactive sequences closed.

Restrictions

All _ey variables in dmn must oe static.

Dead

3.5.2 Position Element Set Sequence (ESSPOS)

* POSITION Isn FIRST/LAST .

CALL ESSPOS (Isn, 'FIRST'/'LAST')

where Isn = local sequence name.

If 'FIRST' is specified in the calling sequence, Isn is positioned before the
first element set in the sequence. If 'LAST' is specified, Isn is positioned
after the last element set in the sequence.

W

V

14.54

3.5.3 Close Element Set Sequence (ESSCLS)

* CLOSE Isn .

CALL ESSCLS (]sn)

where]sn = local seouence name.

ESSCLS updates the data base image of Isn if necessary and marks associated
central memory space for release.

3.5.4 Put Into Next Elelnent Set (ESSPUT)

* PUT INTO SEQUENCE Isn [USING pv*]

CALL ESSPUT (Isn [,pv(1),pv(2),

where]sn

pv(i)

,pv(n)])

= loca7 seduence name.

= dynamic Fortran variable corresponding to

data element vden(i) in the _nap associated with
Isn (3.3.3, 3.5.1).

ESSPUT uses map variables vn(i) and variables pv(K) to transfer data to the

corresponding data elements (see 3.3.6) in the next element set in the
sequence. This element set becomes the last element set in the sequence.

3.5.5 Get From Next Element Set (ESSGET)

NI c c* GET FROI,I S.J_NCL lsn [USING pv*]

CALL ESSGET (Isn [,pv(i), . ,pv(n)])

where]sn =

pv(i) =

local sequence name.

dynamic Fortran variable corresponding to data element
vden(i) in the map associated with Isn (3.3.3, 3.5.1).

ESSGET is symmetric to ESSPUT. It uses map variables vn(i) and variables

pv_k) to transfer data into tne program from the corresponding data elements
in the 'next' element set in the sequence. Any undefined data element values
will De represented by tne indefinite value 1777 0000 0000 0000 0000 octal.

14.55

3.5.6 Using Sequential Datasets

T_ole 3-4 contains a definition which will be used to illustrate now
sequential datasets are built. The first step is to create a new temporary
data base and build a map for dataset space curve. °

* OPEN DATA BASE SHAPE USING CRVSET.

CALL DBOPEN ('SHAPE', 'USING', 'CRVSET')

* MAP CURVE OF SPACE-CURVE IN SHAPE HAS X=X-VALUE, Y=Y-VALUE, Z=Z-VALUE,
CN=CURVE-NAME.

CALL DSMAP ('CURVE' 'SPACE-CURVE' 'SHAPE')
CALL SVMAP (X,'X-VA_UE', Y, 'Y-VALUE', Z, 'Z-VALUE',

CN, 'CURVE-NAME')
CALL ENDHAP

The next step is to specify the name of a curve to be constructed and open a
local sequence to hold it.

CN = 'SPIRAL'

* OPEN CRVl FOR CURVE.

CALL ESSOPN ('CRVI','CURVE')

This is followed by steps to move successive curve points into the 'SPIRAL'
element set sequence.

DO !0 I=I,NPO!NTS (set values of x,y,and z)

* PUT INTO CRVI.

I0 CALL ESSPUT ('CRVI')

The next curve can be constructed my opening a 'CURVE' element sequence with a
different key.

CN = 'GREAT-CIRCLE'

* OPEN CRVI FOR CURVE.

CALL ESSOPN ('CRVI', 'CURVE')

As indicated in 3.5.1, the 'SPIRAL' element sequence will de CLOSED
automatically when 'GREAT-CIRCLE' is opened. After all curves have been
generated, local sequence CRVI is CLOSED.

* CLOSE CRVl.

CALL ESSCLS ('CRVI')

14.56

W

V

MASTER DEFINITION crvset

DATASET space-curve

KEY SET

curve-name

END

ELEMENT SET se,]uence

x-value

y-value
z-value

END

END DATASET

EHO OEF!N!TION

curve identifier.

x coordinate.
y coordinate,
z coordinate.

14.57

3.6 _liscellaneous Data 3ase Functions

3.6.1 Purging Data 3ase (DSPURG)

Permanent data bases may be completely removed from the system by use of the
DBPURG routine.

* PURGE DATA BASE dbd.

CALL DBPURG (dbd)

wnere dbd = data base descriptor (3.1)

Restrictions:

The data base referenced by dbd must be closed when DBPIJRG is called. Since

the data base is completely removed from the system, DBPURG must De used with
considerable caution.

3.6.2 Deleting Key Sets (KSDEL)

Key sets may be removed from a dataset index by using the KSDEL routine.

Calling sequence:

where:

dmn

pv(k)

CALL KSDEL(dmn [,pv(1), ,pv(n)])

= dataset map name.

= dynamic Fortran variable corresponding to argument
vden(k) in fnap dmn (3.3.3).

KSDEL can be used with any of the three dataset classes: random, direct and
sequential.

No error condition results if the specified key set values are not found.

Note: KSDEL results in a logical rather than a physical delete of a key set
and its associated data.

V

14.58

4.0 Error Handling

SDMS detects both fatal and non-fatal errors. Detected fatal errors cause the

printout of the error number plus a tracemack Showing the flow Of control

whicn preceded the error. SDMS enters a recovery phase in which it closes all
data bases currently open and aborts tne job.

Non-fatal errors can occur after calls to ESPUT, ESGET, ESREP, ESGET, DESREP

AND ESSGET. These can be detected by including tne COMMON blOCk SDMSER as

shown below.

COMMON/ SOMSER/ N ERR

If NERR is non-zero, non-fatal error witn that value occurred on the preceding

SDMS call.

Tables 4-I and 4-2 list all SDMS error messages.

Non-fatal errors can be made fatal by executing the statement CALL SETAEF

('ON'). Afterwords, all non-fatal errors are treated as fatal except error
27, 'end-of-information detected on element set sequence'. The default
condition can be restored with the statement CALL SETAEF ('OFF').

_.j 14.59

Frror

_lumber

1

2

3

4

5,n

6,n

7

8

9

I0

ii

12

13

14

15

16

17

Table 4-I: SDNS Error Messages

Meaning

Second call to ISOMS in same program.

Wrong no. of arguments to ISDMS.

Too many data bases defined,

ISDMS not yet called.

Permanent file error. (see table 4-3 or 4-4)

System error. (see Table 4-2)

Field lengtn limit exceeded while getting working
storage from system or supplied working storage
buffer exceeded (see 3.01).

Previous map not yet complete.

Too many maps defined.

Duplicate map name.

Unknown database name.

Too many SVMAP calls for one map.

Too many DVMAP calls for one map.

ENDMAP call without preceding DSI4AP call.

Unknown dataset name.

Key element not found in map arguments.

Array-length paralneter not given for
variable-length array.

Dataset does not contain one or more
elements specified in map.

Fatal
Error

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

14.60

Error

19

2O

21

22

23

24

25

26

27

28

29

3O

31

32

33

34

35

36

37

38

Meaning

Unknown map name.

Wrong no. of dynamic variables.

Element set already exists with the
specified key set.

Illegal dataset access within permanent
data base. Attempting to write to shared
data base or attempting access which
violates user password permissions.

Key entry not found.

Too i_any local sequences open.

Undefined local sequence.

jndeflned local sequence positioning operation.

End-of-information detected reading
element set seauence.

Duplicate data base name.

Element set seauence already open.

Bad syntax in D6OPEN call.

matrix column length (via MATMAP call) less than
submatrix column length.

array or matrix element dimension negative.

not used.

too many simultaneous searches.

search over unique dataset not necessary or
permitted.

0 (zero) is not a legal database name.

not used.

not used.

Fatal
Error

yes

yes

nO

yes

no

yes

yes

yes

no

yes

yes

yes

yes

yes

yes

yes

yes

Table 4-1: (continued)

14.61

Error
_IUhgber

39

40

41

42

Meaning

datamap not terminated by E_DqAP call.

not used.

unpaired SVMAP argument,

DIRECT dataset bloc_ length .It. O.

Fatal

Error

yes

yes

yes

W

V

Table 4-i: (Continued)

V
14.62

_3 System
Error
NuJ_ber n

6

7

8

9

i0

ii

12

13

14

15

_4eaning

Incorrect length of file resident table.

Premature end-of-information detected on data base file.

Index tree malformed.

Positioning error on file dbn2.

Too many index levels.

Too many dynamic variables.

Not used.

Positioning error on file dbn4.

Element set length mis;natch.

Element set length field on dbn4 has _rong parity.

Variable-length data element header has wrong parity.

Element set boundary exceeded.

Master definition file length does not match its directory value.

Output word count doesn't match Duffer length.

Next available position doesn't faatch end-of-information
position on data base file.

Table 4-2: SDMS System Errors.

14,63

Perm. File
Error
_umDern

i

2

5

6

7

8

Table 4-3: KRONOS/NOS Permanent File Errors

Meanin 9

The specified direct access file is attached to another joo.

One of the following:

* The specified permanent file could not be found.

* The specified account number could not be found.

* The user is not allowed to access the specified file.

* The user issued an indirect access _ile command on a direct
access file.

* The user issued a direct access file command on an indirect
access file.

If this message occurs in response to the SAVE macro, the specified
local file is not attacmed to the control point, is a direct access
file,or is an execute-only file.

The file specified on a SAVE macco contains no aata.

The file to _e saved is not on mass storage: the first track of the
file is not recognizable.

The user has already saved or defined a file with the name specified.

The user attempted to define a file that was not a local file.

File name contains illegal characters.

The user is not validated to create direct access or indirect access
files or to access auxiliary devices.

The device type (r parameter) specified on a request for an auxiliary
device cannot be recognized or does not exist in the system.

If the auxiliary device specified by the pn parameter is not the same
type as the system default, the r parameter must be included; if not,
this message is issued.

V

V

14.64

Perm. File

Error

Nu_ner n Meaning

i0 Tne local file specified for a SAVE, REPLACE, or APPEND command
exceeds the length allowed or the direct access file specified for an

ATTACH in WRITE, MODIFY, or APPEND mode exceeds the direct access

file length limit for which the user is validated.

Ii One of the following:

* Illegal command code passed to PFM

* lllegal permitmode or catalog type specified

* CATLIST request has permit specified without a file name

* PERMIT command attempted on a library file

12 Access to the permanent file device requested is not possible.

13 The device on which the file resides may not contain direct access

files because:

i. The device is not specified as a direct access device in

the catalog descriptor table.

2. The device is not specified as ON and initialized in the

catalog descriptor table.

3. The device is a dedicated indirect access permanent file
device.

14 Because a permanent file utility is currently active, the operarion
was not attempted; the user should retry the operation.

15 An error occured in a read operation during a file transfer.

16 The number of files in the user,s catalog exceeds the limit (refer to

LIMITS control statement, section 6).

17 The cummalitive size of the indirect access files in the user's

catalog exceeds the limit (refer to LIMITS control statements.
section 6).

Table 4-3: (Continued)

14.65

Perm. File

Error
_umoer n Meaning

iB Tne number of PRUS specified via the _ parameter on the DEFI_IE macro
is not available.

19 A re,luest was attempted on a local file that is currently active.
This error can occur, for example, if the user creates two FETs for
tne same file and issues a second request before the first is

completed.

20 The job's local file limit has been exceeded oy an attempt to GET or
ATTACH the file.

21 The job'S mass Storage PRU limit has beenexceeded during preparation
of a local copy of an indirect access file.

22 Permit limit nas been exceeded for a private file.

24 The resource executive has detected a fatal error.

25 No allocatable tracks remain on equipment xx, where xx is the EST

ordinal.

26 The length of a file does not equal the catalog length: the action

taken depends on the type of command issued.

Command Action

GET A local file is created _itn length being the actual

length retrieved.

SAVE If file length is longer than TRT specification, file
is truncated.

REPLACE Same as for SAVE.

27 Per,nit random address error.

28 The system sector data for the file does not match the catalog data.

29 The same file was found twice during a catalog search. This error can
occur for APPEND or REPLACE co_nmands after a file is found and purged

and the catalog search is continued.

30 Error flag detected at PFM control point.

31 An error was encountered in reading a portion of the permanent file

catalog or permit information.

TaDle 4-3: (continued)

14.66

V

J Perm. file

Error
Number n

2

3

4

5

6

8

9

i0

12

13

14

15

15

17

13

19

20

22

23

29

32

Meaning

Local file name already in use.

Local file name unknown.

No room for new cycle.

Catalog full (PAM full).

No local file name or permanent file name, both null.

Blocked file not closed.

File not on mass storage device. File not requested for *PF.

File not on set. Cycle referenced does not exist on set. File
purged while waiting for attach.
Invalid cycle. Nonnumeric character in numeric field.

Duplicate cycle.

Directory full.

Purge attempted on nonpermanent file. Nonper:nanent file cannot be
extended.

Catalog attempt on nonlocal file.

Parameter error.

Catalog attempt on null, INPUT or OUTPUT file.

Cycle incomplete on an attach. RECOVER detected error on file.

Duplicate attach.

IlO error on permanent file device. Invalid extend.

Illegal local file name.

PF name already in system.

Illegal setname (set not mounted).

Table 4-4: SCOPE 2.1 Permanent File Errors

14.67

5.0 Diagnostic Features

SOHS has extensive instrufnentation to assist in finding stubborn problems.

After execution of the statement CALL TRACER ('ON'), eacn SDHS call produces

trace information on tne OUTPUT file. This information SHOWS wheE SDHS

routines are called and when they return, and the contents of internal tables

and important parameters. The tracing process is terminated with the
statement CALL TRACER 'OFF').

V

14.68
V

6.0 Recovery Options

If a system detected error occurs (address out of range, etc.), SOHS normally
initiates data base recovery procedures. Any modified element set sequences

currently open are closed. All open data bases are closed, with the exception

of any data base being opened when tne error occurred.

At tnis point, the SDHS-supplied routine DBABT witnout argents is called to
abort the job. If the user wishes to perform his own recovery operations, he
may include his own DBABT routine.

To disable the recovery process and obtain a normal abort seauence, the
statement CALL NORCVR must be executed before the call to ISDMS.

14.69

7.0 Access to SOMS Subroutines

At the 3CS Renton Data Center, the SDiqS subroutines described in Section 3 are
accessed with the control card

ATTACH(SDMSLIB/UN=PAWAMI)

SDMSLIB is in user library format. Loading of required SHDS subroutines can

be accomplished in several ways. One way is to execute

LIBRARY,SDMSLIB

and then carry out tne necessary loading operations.

Another way is to use SDHSLIB directly in the loading operation; e.g.

LOAD(Ifn, SDMSLIB,. .)

or

LOADXEQ(F=lfn,U=SOPISLIB,. .)

14.70

J

APPENDIX A

SDMS MATRIX DATA ELEMENT USAGE

>latrix Definition

A matrix data element type has been added to SDMS. This feature permits the
definition and use of two-dimensional arrays. Both row and column dimensions
may be fixed or variable in size.

The matrix data element syntax in the master definition is as follows:

elname row-dim col-dim data-type

where

elname = data element name (1 to 20 char.)

row-dim : integer value of row dimension or
name of scalar element containing
row dimension value.

col-dim = integer value of column di:_ension or
name of scalar eler_ent containing
column dimension Value,

data-type = TEXT, REAL, INTEGER, R, I, T.

W

V

14.72

The following dataset definition illustrates the various possible matrix data
element fornls.

DATASET MAT-DEF
ELEHENT SET

NROW
NCOL
MATL NROW
MAT2 6
MAT3 3
MAT4 NROW

END
END DATASET

NCOL
6
NCOL
4

I
I
R
R
R
R

Matrix Usage

SDMS matrices are stored in the data base in contiguous column-wise order.
That is, a 5 by 7 matrix is stored as a succession.of 7 columns, each 5 words
long, startinq with column 1.

This is also the default storage arrangement in central memory. An m _y n
matrix data element 'will oc.cupy m*n contiguous addresses in core, in column
order a la Fortran. This default arrangement is obtained by si:nply using the
existing map creation calls to SVHAP and DVHAP. Tnis usage is a simple
extension of the tecnniaues used for fixed and variable-length vectors.

14.73

However, the matrix data element Dm n to be transferred may be a Sub-matrix
of a larger matrix Mmx,n x in central memory, wnere we assume without loss of
generality that DI, I maps into _41,I. If m is not equal to mx, the
sequence of data map calls must include the following Subroutine call:

CALL MATMAP(me1, cl 1, rne2, cl 2, ...)

where mei : name of matrix element D.
cl i = name of variable containing column length

of array M corresponding to D.

and MI must be associated with D1, 1 either tnrougn static or dynamic
variaol# references.

Note: the value of column length variable cl i is used at data transfer time
and therefore may be changed dynamically as required.

V

Examples

Suppose we wisn to map tne matrix element 'MAT2' of dataset MAT-DEF (see
previous page) to the array MAT2(6,6). It is only necessary to associate the
array iIAT2 and tne data element 'MAT2' in the data map.

CALL DS_,IAP('MI', dbn, 'MAT-0EF')
CALL SVMAP(>IAT2, 'iIAT2')
CALL E_IDMAP V

14.74

Nowsuppose that we have an array 31GMAT(30,24) which consists of 20 6 by 6
partitions. We want to dynamically map the data element MAT2 into any one of
these partitions. The following map will suffice for tmis purpose.

CALL DSMAP('M2', dun, 'MAT-DEF')
CALL DVMAP('MAT2')
CALL MATMAP('MAT2', 30)
CALL ENDMAP

Tne following code would output the 6 by 6 partition starting at BIGIJAT(7,7).

CALL ESPUT('M2', 81GMAT(7,7))

Using Vectors As Sub-matrices

Fixed and variable-length vector data elements may also be treated as matrix
rows in central memory through the use of the MATMAP call. That is, a vector
data element of length n can also be considered to be a i by n matrix for data
transfer purposes. In tne previous example, if 'MAT2' had been defined as a
vector of length 6, the ESPUT call would nave caused the first row of the 6 by
6 partition starting at BIGMAT(7,7) to De output.

14.75

V

APPENDIX B

14.76

INDEXED SEQUENTIAL DATASET SEARCH

Introduction

Tne search functions described in this section permit the indexed sequential

retrieval of selected key sets in a dataset. That is, starting at a specified
key set, key sets may be retrieved in order. In the case of random datasets,

mapped data elements may be retrieved along with their key sets.

Key sets are kept in a dataset index in ascending order of composite key
value. The composite key is the concatenation of Key elements in KEY SET

definition order, with the first key in tne high order position.

In a key set with multiple keys, the composite key ordering causes all Key
sets witn the same key 1 value to be grouped togetner (see Fig. B-I).
Likewise, all key sets with the same key i and key 2 values will be grouped

together, and so on.

The SMDS indexed sequential search features take advantage of this property by
permitting the initial Key set for retrieval to be determined by specifying

values for major key combinations as shown below:

no keys.
key I.

key I, key 2.

key l, key 2, key 3.

key I, key 2, key 3 _ey n.

The initial key set retrieved will De the first one with key values equal to

or greater tnan those specified. In Figure 4-i, if key i = TAIL is given, the
initial key set retrieved would be key I = TAIL, key 2 = I. The initial key

set would be the salne if key I had been ENGINE, since TAIL is tne next hignest

key i value. If no keys are given, the initial key set would be the first

one; key 1 = BODY, _ey 2 = I.

Initial index positions are established by calls to suoroutine 3GNDSS.
Successive key sets are retrieved by calling GETNXT. Search operations are

terminated by calling ENDDDS. Figure B-2 gives a scenario for performing

search operations.

Some additional searcn features are as follows:

* Up to five dataset searches may be active at one time.

,_itnin the above limit, several searches may be active on the
same dataset.

All SDMS I/O operations may be carried out on any dataset during
searcnes. However, key sets added during a search by functions

like ESPUT may or may not be retrieved by GETNXT calls.

14.77

V

KEY ELEMENTS

COMPONENT NETWORK

BODY I
BODY 2
BODY 3
TAIL i
TAIL 2
WING i
WING 2
WING 3
WING 4

RANDOMDATASET NDD

DATA ELEMENT

NETWORK-TYPE

1
2
2
1
1
1
2
8
8

DATAMAP FOR NDD

CALL DSMAP('MI', 'NDD', don)
CALL SVLvIAP(COi.IP, 'COMPONENT', NTWK, 'NETWORK')
CALL SVMAP(NWTYP,'NETWORK-TYPE')
CALL ENDMAP

V

Figure B-l: Dataset and >lap for Searcn Examples.

14,78

Start search.

*<************_***

V *

Set key values K for *
dataset D. *

V *

Position to first key set *

equal to or greater than *
K in index on dataset D. *

*<****_***********

V *

Retrieve next key set in D. *

Optionally retrieve random *
dataset data elements. *

V

Terminate search.

Figure B-2: Flow diagram of an indexed sequential search.

_"J 14.79

Begin Dataset Search (BGNOSS)

* SEARCH dmn WITH nmK KEYS [USING dv*].

CALL BGNDSS(dmn,nmk [,dVl,

where

,dVn])

dmn = name of static map for n-key dataset (n > 1)
nmk = number of inajor keys supplied (0 < nmk <--n)
dv i = dynamic variables if specified in map dmn.

A call to BGNOSS is used to start a search procedure. Up to five search
procedures may be active at one time.

Prior to calling BGNDSS, nmk of the mapped Key variables are set. BGNDSS
positions a map-associated search pointer at tne first key set with key values
equal to or 9rearer than those supplied.

For a petter understanding of BGNDSS operation, consider Fig. B-I and the
following search operations.

i. To begin a search at COHPONENT= 'TAIL', NETWORK=2:
COMP='TAIL'
NTWK=2
CALL BG_OSS('MI',2)

2. To begin searching at the first WING network:

COMP='WING'
CALL BGNDSS('MI',I)

3. To begin searcning at the first network of the first component:

CALL BGNDSS('MI',O)

4. To search for component NACELLE (which doesn't exist):

COMP='NACELLE'
CALL BGNDSS('_I',I)

V

V

14.80

Get Next Operation (GETNXT)

* Get next from dmn.

CALL GETNXT(dmn,eoi flg)

where

dmn : datamap name reference in a preceding BGNDSS call.
eoiflg = .T. if end-of-index detected (output).

A call to GETNXT causes the next key values in the index of the mapped dataset
to be moved to the mapped Key variables. Mapped data elements will also be
transferred in tne case of random datasets. In the case if direct and
sequential datasets, no data elements are transferred.

The following shows the results of the first execution of CALL
GETNXT('MI',FLG) for the four examples of the previous section:

COMP NTWK NWTYP FLG

1. TAIL 2 i .F.
2. W!!_G i i .F.
3. BODY i i .F.
4. TAIL i i .F.

In example 4, COMP=TAIL an'd NTWK=I because COMPONENT'NACELLE' was not found
and tne search pointed was positioned at its insertion position.

14.81

End Dataset Search (ENDOSS)

where

END SEARCH using dmn.

CALL ENDDSS(dmn)

dmn = datamap name reference in a preceding BGNDSS call.

A call to ENDDSS terminates a search operation using the reference datamap,

and releases search buffer space.

It is not necessary to call ENDDSS to initiate a new search using the same map.

14.82 _ :

APPENOIX C

14.83

Qualified Dataset Search

Introduction

A feature has been added to SDMS wnicn extends dataset searching capabilties

well beyond those available previously (Appendix B). The indexed sequential
search requires the specification of 0 or more major keys to establish the

initial position in the key set index. Successive key sets can then be

retrieved in ascending order.

The new search capability permits tne specification of one or more search

ranges for each key in the key set. The basic form of tne Query specification
is as follows: using map M, retrieve keys [and data] where key i is in range

r11 or key i is in range r12 or ... etc. __and key 2 is in range r21 or

key 2 is in range r2_ or etc. and etc. Each range.rij for some key j
consists of a pair OT _-alues (17_--j, uij). All retrieved values will

satisfy lij S key j S uij-

A wide range of Queries can be made within this framework. Suppose we wish to

restrict a retrieved integer key to be greater than 40. The corresponding

range is (41,247), where 247 is close to the largest integer value

possiole in FTN Fortran. Tne range for "less than 40" would De (-247,39).

The range for "equals 23" is (23,23). The specification "e_uals 23 or 27"

requires 2 ranges for this key; (23,23) and (27,27).

For example, consider the takeoff data dataset sketched in Figure C-I. This
dataset described takeoff performance of a specific airplane as a function of

several key parameters: airplane weight, wind velocity, and runway slope and
altitude.

W

14.84

MASTER DEFINITION PERFMD

DATASET TAKEOFF
KEY SET

WEIGHT
WIND
SLOPE
ALTITUDE

END
ELEMENT SET

TAKEOFF-DIST
END

END DATASET

I $ AIRPLANE WEIGHT.
I _ WIND VELOCITY. (KNOTS)
I _ RUNWAYSLOPE. (DEGREES)
I $ RUNWAYELEVATION. (FEET)

R $ TAKEOFF DISTANCE REQUIRED. (FEET)

END DEFINITION

Figure C-l: Takeoff Data Definition.

_-J 14.85

Suppose we want to retrieve all data for runways at 5000 feet elevation or
higher with +2 degree runway slope, for airplane weights of 140K and 160K ID,
The range specifications needed are as follows:

Parameter Ranges

airplane weight
wind velocity
runway slope
runway altitude

(140K,140K), (160K,160K)
(
(2,2)
(5000,+_)

Usage

Retrievals are accomplished Oy making repeated calls to SDMS subroutine
GETNXQ. Each successful call retrieves one ,]ualified key set and, in the case
of random datasets, its associated mapped values.

Prior to the first call to GETNXQ, range information is entered into laoeled
COHMONblock /QSP/ for use by GETNXQ. The format is:

COHHON/QSP/ KEYCNT,KEY(IO),LB(5,10),UB(5,10),NR(IO)
INTEGER U6

where

KEYCNT : no. of Keys in _ey set.

for J = i to KEYCNT:
KEY(J) = program variable mapped to dataset key J.
NR(J) = no. of ranges specified for key J.

for I = i to NR(J):
LB(I,J) = lower oound of Ith range for key J.
UB(I,J) = upper bound of Itn range for key J.

If real keys are used, then the additional declarations

REAL XKEY(IO), XLB(5,10), XUB(5,10)
EQUIVALENCE (XKEY,KEY), (LB,XLB), (UB,XUB)

will be necessary to avoid type conversion problems when accessing _eys and
key bounds.

V

W

14.86

It is of course necessary that LB(I,J) < UB(I,J). An additional requirement

is that ranges for a given key may not _verlap and must be specified in

ascending order. !4atnematically,

UB(I,J) < [B(I + l,J), I < NR(J).

The following table gives recommended values for _C)_)for each of the key

types.

key type -6_ +

real -I.E322 1.E322

integer -247 247

text 0 " "

After the appropriate values are placed in /QSP/ and the logical variable EOI

is initialized to .TRUE., a call is made to GETNXQ with the arguments

where
CALL GETNXQ(dmn,eoi)

dmn = name of previously defined datamap, in which the KEY
array of CO_.Ir40N block /QSP/ r_ust be matched one-to-o'ne

to the key elements of tne mapped dataset.

eoi = returned .FALSE. if a qualified key set was retrieved

from the dataset.

returned .TRUE. if no more qgalified key sets are
available.

Note: eoi must be set .TRUE. before the first call to GET!]XQ in order to

initia]ize the search.

If eoi = .FALSE. after calling GETNXQ, then the KEY array in /QSP/ holds the
next set of qualifying key values. Repeated calls are made to GETNXQ until

eoi is returned .TRUE. indicating that no more qualified values exist.

GETNXQ can be used with any of the 3 dataset types: random, direct and
sequential. Mapped data element values are returned in the case of random

datasets. Only key set values are returned for direct and sequential datasets.

Restrictions

No more than 5 ranges may be specified for each key. GETNXQ can be used with

only one map at a time. Also, no indexed sequential search routines

(BGNDSS,GETNXT,ENDDSS) should be used with this map until GETNXQ returns eoi =
.TRUE. This is because GETNXQ makes use of these routines itself.

Any other SDMS operations (ESPUT, ESGET, etc.)may be carried out during a
sequence of GETNXQ calls without interference.

14.87

Example _L---_

Tne code on the next page shows hOW GETNXQ would De used to answer tne Query
used in the Introduction aganst the dataset of Figure C-I. PIar_ely, to
retrieve takeoff data for airplanes weighing 140K and 160K Io. on runways with
2 degree upslopes at an elevation of 5000 ft. or higher.

W

14.88

C

w

C

I0

C
2O

COMMON/QSPI KEYCNT,KEY(IO) ,LB(5, i0), UB(5,10), NR(!O)
INTEGER NR
LOGICAL EOI

SET UP MAP FOR TAKEOFF DATA.

CALL DSMAP ('MAP' 'TAKEOFF', 'PERF')
CALL SVMAP (KEY(Ii, 'WEIGHT', KEY(2), 'WIND', KEY(3), ISLOPE')
CALL SVMAP (KEY(4), 'ALTITUDE', TOD, 'TAKEOFF-DIST')
CALL ENDMAP

INITIALIZE /OSP/ FOR SEARCH.
KEYCNT = 4

SET FIRST RANGE FOR KEY i (AIRPLANE WEIGHT)

LB(I,I) = UB(I,I) = 140000

SET SECOND RANGE FOR KEY i.

LB(2,1) = U8(2,1) = 160000
NR(1) = 2

SET RANGE FOR KEY 2 (WIND VELOCITY)
LB(1,2) = -2"'47 $ UB(1,2) = 2**47 S NR(2) = 1

SET RANGE FOR KEY 3 (RUNWAY SLOPE)
LB(1,3) = UB(1,3) = 2 S NR(3) = 1

SET RANGE FOR KEY 4 (RUNWAY ALTITUDE)
LB(I,4) = 5000 S UB(I,4) = 2**47 _ NR(4) = i

GET QUALIFIED KEY SETS AND ASSOCIATED OATA
EOI = .TRUE.

CALL GETNXQ('MAP',EOI) $ IF(EOI) GO TO 20

PRINT *, (KEY (1), I = 1,4), TOO
GO TO 10

SEARCH COMPLETE.
CONTINUE.

14.89

Efficiency Considerations

To speed up range searching, keys with one or more of the following
characteristics should De earliest in the Key set definition:

i. keys with selection ranges which are likely to contain relatively few
values.

2. keys which naturally have a small set of possible values to select
from. E.g., eye color : (brown, Dlue, black).

Conversely, keys which have uniaue (or nearly SO) values should be among the
last keys mentioned in the key set. An example would be employee number or
social security number.

The effect of using these guidelines will be to limit, in fnany cases, the
portion of the index whiCh needs to be traversed during range searches, thus

reducing the amount of database I/0 performed.

V

14.90

15.0. SDMS CONVERSION

15.1 INTRODUCTION

While much of SDMS is written in ANSl-standard FORTRAN, certain of the
requirements for SDMS are not supported by standard FORTRAN. These
requirements have led to very specific conversion problems. These problems
are characterized by the following ar_as:

l . Assembly language - portions of SDMS are written in assembly level
language (CAL on the CRAY and COMPASSon the CYBERS)

. Word length - SDMS assumes a word length of 8 characters per word and
makes no provisions for double length variables.

. FORTRAN dialect - SDMS was written in ANSI standard FORTRAN wherever
possible; system enhancements on the CRAY and CYBER such as "BUFFER"
or "ENCODE/DECODE" statements were not used. The dialect of FORTRAN
should not be a problem assuming that the destination machine
supports standard FORTRAN and not a subset (For example, the DEC/VAX
version of Fortran is a subset.).

. Variable leng'th calling sequence - SDMS as implemented in PANAIR
requires that the calling sequence be variable, That is, the user
can call certain routines with as many arguments as required to
perform the interface; the called routine determines how many
arguments exist in tile calling sequence and processes them
accordingly.

. Operating system interface - SDMS requires support from the operating
system for functions such as permanent file access, error recovery,

etc. Such interfaces must exist on the destination system.

. Format of calling sequence - SDMS assumes that the FORTRAN compiler
assembles a list of addresses for the arguments within the calling
sequence and that this list is available to SDMS. This allows the
various components of SDMS to access the calling sequences of other
routines.

. Absolute central memory addressing - a practice conTnon to much of
SDMS is the concept of central memory addressing from within
FORTRAN. This allows SDMS to access variables local to portions of

the host program (eg: PANAIR) by knowing the central memory address
of the variable.

. Input/Output - SDMS requires an I/0 scheme that can handle variable

length random access records. The method must allow for the opening

and closing of such files as well as input and output.

15.1

The most pervasive problem is item (6) - the assumption of a mechanism whereby

subprograms can access each other's calling sequence. Solution of this
problem on the CRAY was accomplished by storing the addresses of the calling

sequences within central memory. A subsequently called routine accessed
actual arguments from a previously called routine by first accessing the

address of the previous routine's calling sequence and thereby the addresses

of the actual arguments. Two assumptions are implicit in this method:

I. Addresses are storable in central memory words

. If the address of an array, "ARRAY", is given by "INDA", and the
address of the desired variable is "INDV", the desired variable may

be referenced by "ARRAY(INDV-INDA+I)".

If these assumptions cannot be satisfied on the target machine, the conversion

effort will be extensive. Subprograms that make use of this indirect

addressing technique are shown in Table 15.1.

The next most important consideration is the variable-length calling
sequence. On the CYBERs, this was handled directly in FORTRAN (As an

extension to standard FORTRAN, the dialect implemented on the CYBERs allows a

variable- length calling sequence.). On the CRAY, this was handled by coding
a CAL interface: The variable- length argument list was handled by the CAL

routine, and the FORTRAN routine was given the address of the list that
contained the addresses of the argument list. Implementation of a variable

length calling sequence is required to avoid extensive changes to the PANAIR

program.

Both the operating system interface and tile I/O package within SDMS are

isolated in the code. Routines requiring an OS interface are shown in Table
]5.1. System routines are required to perform the following operations :

Access permanent files

Open and close local files

Control central memory field length
Control recovery from all errors

Perform random access, word-addressible I/O

The requirements dictated above to support access of subprogram calling

sequences, variable length calling sequences, and system interfaces represent
minimum requirements that must be met by the target system to ensure that
conversion is feasible.

m

15.2

15.2 hACHI_ESAND OPERATING SYSTE_,S TO WHICH SDhS HAS BEEN CONVERTED

The SDFIS package is currently operating or was operating on the following
machines and operating systems:

r.iACHINE OPERATING SYSTE_

CDC 170 NOS 1

CDC 17U NOS 2
CDC 7600 SCOPE 2

CDC 170 NOS/BE
CRAY I/S COS 1.09

CRAY XMP COS 1.12

DEC II/780" VMS
DEC ll/70* IAS

* MSDMS - a subset of SDMS

Note that the version of SDMS operative on DEC equipment (MSDMS) was generated

by recoding from the SDMS design rather than by a true conversion effort. The
hSDMS system _ill NOT support PANAIR without extensive changes made to the

PANAIR system.

15.2.1 Conversion of the Code to the CkAY

The SDMS package was converted from CDC CYBER machines to CRAY. Comments were
placed in the source code to indicate changes made in the code durin,_ the
conversion. The routines changed are indicated in Table 15.1. The changes
made are highlightea in the source code by surrounding comments. The comment
"C** CRAY DEFINED" prefaces such changes, and "C** END CRAY" follows the
changes. The conversion required approximately one person-month. Note
however, that estimating conversion to other machines based on these changes
may be misleading - CYBER and CRAY machines are architectured very similarly;
conversion between the two machines is often elementary compared to other
conversion efforts. Conversion of SDMS to another machine woula be extremely
difficult if the minimum requirements outlined in section 15.1 were not met.

15.3 SUNFIARY OF CONVENSION PROBLEMS BY SUBPROGRAM

Table 15.1 aria 15.2 summarize conversion problems within SDMS by routine.
Table 15.1 summarizes the SDMS library routines and Table 15.2 summarizes the
Data Definition Processor (G_P). Note that columns one through eight
correspond to the difficulties noted in section 15.1; column nine indicates
conversion effort required during conversion to CRAY.

Some confusion has arisen from the term "_LASHCII code" in the CRAY version of

SDHS. The technique consists in mapping the eight-bit ASCII codes into a
six-bit hash. This six-bit hash allows storage of ten characters of data into
a single CRAY word. In this aiscussion, the use of this technique has been
included under the heading "word length".

15.3

15.3 PURPOSE OF ASSEMBLY LANGUAGE ROUTINES

The following routines have been written in assembly language (CAL) to
accommodate a requirement not allowed in FORTRAN

NAHE

BGNDSS

ClNFO

DESGET

DESPOR

DESPUT

DESREP

DVMAP

ESGET

ESPUT

ESREP

ESSGET

ESSPUT

IUS

KSDEL

MATMAP

SVMAP

.................... PURPOSE

Accommodates variable-length calling sequence for BGNDSF

Returns name and line of calling routine

Accommodates variable-length calling sequence for DESGTF

Accommodates variable-length'calling sequence for DESPRF

Accommodates variable-length calling sequence for DESPTF

Accommodates variable-length calling sequence for DESRFF

Accommodates variable-length calling sequence for DVMAPF

Accommodates variable-length calling sequence for ESGETF

Accommodates variable-length calling sequence for ESPUTF

Accommodates variable-length calling sequence for ESREPF

Accommodates variable-length calling sequence for ESSGTF

Accommodates variable-length calling sequence for ESSPTF

Returns user number of running job

Accommodates variable-length calling sequence for KSDELF

Accommodates variable-length calling sequence for MATMPF

Accommodates variable-length calling sequence for SVMAPF

V

V

L_

V

15.4

TABLE 15.1 - CONVERSION TASKS GROUPEDBY SUBPROGRAM

NN.IE 1 2 3 4 5 6 7 8 9

ADF X X

AKE* X

ARES X X X

ARRES X

ASP X X

ASPX

ATE

ATTACH X X X

BGNDSF X X X

BGDNSS X

BKE X X X

BMKE* X X X

BUFSIZ

CALLPT* X

CATLOG X X X

CDMT X X X

COLUMN LEGEND:

•

2.
3.
4.
5.
6.
7.
8.
9.

Routine written in assembly language (CAL)
Word length dependant
Non-standard FORTRAN
Variable length calling sequence
Operating System interface
Calling sequence format dependant
Absolute central memory dependant
Input/Output dependant
Conversion effort required for CYBER/CRAY conversion

* While a part of SDMS, this routine is not used by PANAIR

15.5

TABLE15.1 - CONVERSIONTASKSGROUPEDBY SUBPROGRAM(Continued)
W

NAME 1 2 3 4 5 6 7 8 9

CINFO X

CLSI X

CMD

CPB* X

DBABT* X

DBADJ* X X X

DBCLOS X X X

DBOPEN X X X

DBPURG X X X

DBTSET

DDF X X

DESGET X

DESGTF X X X

DESPOR X

DESPRF X X

DESPUT X X

V

COLUMN LEGEND:

l •

2.
3.
4.
5.
6.
7.
8.
9.

Routine written in assembly language (CAL)
Word length dependant
Non-standard FORTRAN
Variable length calling sequence
Operating System interface
Calling sequence format dependant
Absolute central memory dependant
Input/Output dependant
Conversion effort required for CYBER/CRAY conversion

While a part of SDMS, this routine is not used by PANAIR

15.6

\ /
v

TABLE 15.1 - CONVERSION TASKS GROUPED BY SUBPROGRam(Continued)

NAME 1 2 3 4 5 6 7 8 9

DESREP X X

DKE*

DSMAP X X

DVMAP X X

DVMAPF X X

ENDDSS* X

EMDMAP X

EREXIT X

ERRCLR

ERRST X X

ESDG*

ESFL X X X

ESGET X X X

ESGETF X X X

ESPORF X X X

ESPUT X X X

COLUMN LEGEND:

l •

2.
3.
4,
5.
6.
7.
8.
9.

Routine written in assembly language (CAL)
Word length dependant
Non-standard FORTRAN

Variable length calling sequence
Operating System interface

Calling sequence format dependant
Absolute central memory dependant

Input/Output dependant
Conversion effort required for CYBER/CRAY conversion

* While a part of SDMS, this routine is not used by PANAIR

v

15.7

TABLE15.1 - CONVERSIONTASKSGROUPEDBY SUBPROGRAM(Continued)

NAME l 2 3 4 5 6 7 8 9

ESPUTF X X X

ESREP X X X

ESREPF X X X

ESSCLS X X X

ESSGET* X X X

ESSGTF* X X X

ESSOPN* X X

ESSPOS* X

ESSPUT* X X

ESSPTF* X X X

FALP X X X

FARP X

FDOESS X

FDP X

FDVA X X X

FESD X X

COLUMN LEGEND:

I •

2.

3.

4.
5.

6.
7.

8.
9.

Routine written in assembly language (CAL)
Word length dependant
Non-standard FORTRAN

Variable length calling sequence
Operating System interface

Calling sequence format dependant
Absolute central memory dependant

Input/Output dependant
Conversion effort required for CYBER/CRAY conversion

While a part of SDMS, this routine _s not used by PANAIR

15.8

k._j

TABLE 15.1 - CONVERSION TASKS GROUPEDBY SUBPROGRAM(Continued)

NAME 1 2 3 4 5 6 7 8 9

FILE X

FKBI

FKE

FNESL X X X

FUDE X X X X

FVKS

GETNXQ*

GETNXT* X

GKB X

GKBI* X

GTS X X X X

ICPRZ X

IDBFD X

IDMT X_ X X

IETB X

IFFN X

COLUMN LEGEND:

l •

2.
3.
4.
5.
6.
7.
8.
9.

Routine written in assembly language (CAL)
Word length dependant
Non-standard FORTRAN
Variable length calling sequence
Operating System interface
Calling sequence format dependant
Absolute central memory dependant
Input/Output dependant
Conversion effort required for CYBER/CRAY conversion

* While a part of SDMS, this routine is not used by PANAIR

15.9

TABLE 15.1 - CONVERSION TASKS GROUPEDBY SUBPROGRAM(Continued)

W

NAME 1 2 3 4 5 6 7 8 9

IKDB X X

IKE

IMES X X X X

INDB X X

INDXZ

IODB X X

ISDMS X X X X

ISDT* X

ISES* X X X X

IUS X X

KRT*

KSDEL* X X X

KSDELF* X X X

LGTHL X

LGTHW X

LOCF* X X X

W

COLUMN LEGEND:

I •

2.
3.
4.
5.
6.
7.
8.
9.

9_

Routine written in assembly language (CAL)
Word length dependant
Non-standard FORTRAN
Variable length calling sequence
Operating System interface
Calling sequence format dependant
Absolute central memory dependant
Input/Output dependant
Conversion effort required for CYBER/CRAY conversion

While a part of SDMS, this routine is not used by PANAIR

15.10

TABLE]5.1 - CONVERSION TASKS GROUPED BY SUBPROGR_4 (Continued)

N_4E 1 2 3 4 5 6 7 8 9

LSDB* X X

MAPCHK*

MAPERR*

MATCH1

MATMAP X X

MATMPF X

MDB

MMRU

MONSIO*

NORCVR

ODBFD X X

OKB X X

OKBTT

OMES X X X

OPENRM X X

COLUMN LEGEND:

.

2.
3.
4.
5.
6.
7.
8.
9.

Routine written in assembly language (CAL)

Word length dependant
Non-standard FORTRAN

Variable length calling sequence

Operating System interface

Calling sequence format dependant
Absolute central memory dependant
Input/Output dependant
Conversion effort required for CYBER/CRAY conversion

While a part of SDMS, this routine is not used by PANAIR

15.11

TABLE 15.1 - CONVERSION TASKS GROUPEDBY SUBPROGRN4 (Continued)
= --

w

NAME 1 2 3 4 5 6 7 8 9

OSES* X X X

PBS

PFLET X X X

PFNDB

PKBB*

PKCHR X X

PKET X X

PLA X X X X

PLAI X X X

PMET X X X X

PMPT*

PMVT* X

PPT X X

PRDMT*

PSET X X X

PSPT*

W

COLUMN LEGEND:

l •

2.
3.
4.
5.
6.
7.
8.
9.

9k

Routine written in assembly language (CAL)
Word length dependant
Non-standard FORTRAN
Variable length calling sequence
Operating System interface
Calling sequence format dependant
Absolute central memory dependant
Input/Output dependant
Conversion effort required for CYBER/CRAY conversion

While a part of SDMS, this routine is not used by PANAIR

V

15.12

TABLE15.1 - CONVERSIONTASKSGROUPEDBY SUBPROGRAM(Continued)

NAME I, 2 3 4 5 6 7 8 9

PVLET X

ROBF

RDBUF X X X X X X

RNDB* X X

RNKB X X X

RSDB* X X

RTNPRT* X

RTS X X

SETAEF

SFKB X

SFP X

SKBI

SPB X X

SVMAP X X

SVMAPF X X X X

SYSTEM X X

L

COLUMN LEGEND:

I .

2.
3.
4.
5.
6.
7.
8.
9.

Routine written in assembly language (CAL)
Word length dependant
Non-standard FORTRAN
Variable length calling sequence
Operating System interface
Calling sequence format dependant
Absolute central memory dependant
Input/Output dependant
Conversion effort reqt_ired for CYBER/CRAY conversion

* l_hile a part of SDMS, this routine is not used by PANAIR

15.13

TABLE15.1 - CONVERSIONTASKSGROUPEDBY SUBPROGRAM(Concluded)

NAME 1 2 3 4 5 6 7 8 9

TFB X

TFSDB* X

TIME X X

TMFSDB* X

TNTSDB* X

TRACER*

TTB X X

TTSDB*

TYPSET X X

UDBFD

UKBT

UPKCHR X X

USDT* X

WSDB X X

WTBUF X X X X X X

.W

COLUMN LEGEND:

I .

2.
3.

4.

5.

6.
7.

8.
9.

Routine written in assembly language (CAL)
Word length dependant
Non-standard FORTRAN

Variable length calling sequence

Operating System interface

Calling sequence format dependant
Absolute central memory dependant

Input/Output dependant
Conversion effort required for CYBER/CRAY conversion

While a ,),i_t_F %Dr_S, this routine is not used by PANAIR

w

15.14

TABLE15.2 - DDPCONVERSIONTASKSGROUPEDBYSUBPROGRAM

V

N_4E 1

BEST

2 3 4 5 6 7 8 9

BKT

BPT

BST

CVED

DDP

ERRST

FATAL

FNT

ILT

INDEX

INITP X X

INTGR

IST X X

LFTCH

ODD

COLUMN LEGEND:

I •

2.
3.
4.
5.
6.
7.
8.
9.

Routine written in assembly language (CAL)
Word length dependant
Non-standard FORTRAN
Variable length calling sequence
Operating System interface
Calling sequence format dependant
Absolute central memory dependant
Input/Output dependant
Conversion effort required for CYBER/CRAY conversion

15.15

TABLE15.2 - DDPCONVERSIONTASKSGROUPEDBYSUBPROGRAM(Continued)

NA_.IE 1 2 3 4 5 6 7 8 9

ODFD X X

ODT

OSD

PASD

PClT

PMDF

PMDN X X

PSD X X

RFD

RNC

SESD

SFDDS

SFDE

SMLP

SNIT

SRSD

W

COLUMN LEGEND:

2.
3.
4.
5.
6.
7.
8.
9.

Routine written in assembly language (CAL)
Word length dependant
Non-standard FORTRAN

Variable length calling sequence
Operating System interface
Calling sequence format dependant

Absolute central memory dependant
Input/Output dependant

Conversion effort required for CYBER/CRAY conversion

V

15.16

TABLE15.2 - DDPCONVERSIONTASKSGROUPEDBY SUBPROGRAM(Concluded)

-_._j

N_4E 1 2 3 4 5 6 7 8 9

SSEP X X

SS_E × ×

STNC

TOKEQ

UFLET

UMET

USET

UVLET

COLUMN LEGEND:

l •

2.
3.
4.
5.
6.
7.
8.
9,

Routine written in assembly language (CAL)
Word length dependant
Non-standard FORTRAN
Variable length calling sequence
Operating System interface
Calling sequence format dependant
Absolute central memory dependant
Input/Output dependant
Conversion effort required for CYBER/CRAY conversion

15.17

V

v

16.0 SOFTWAREGLOSSARY

16.1

V

Key Word

Abutment

Abutment Intersections

Account numbers

Address

Array

B (Outer) Spline

BP-Spline

Block Partition Format

Buffer

CAL

Calling relationship

CFT

Closure Condition

Communication Vehicl e

Compilation

PRECEDING PAGE BLANK NOT FILMEb

Description

A curve where two or more network edges

(exactly or approximately) meet.

Points where several abutments meet.

Computing center cost accounting labels.

The software identification of a word

in central memory.

A collection of contiguous words in
central memory.

A matrix which gives the value of
source or doublet strength at panel
grid points in terms of surrounding
singularity parameters.

A row vector giving a flow quantity at
a grid point in terms of the flow
quantities at surrounding control
points.

The arrangement of a coefficient matrix
as a collection of rectangular
submatrices.

An area of storage which temporarily
holds data that will be subsequently
delivered to a processor.

The CRAY Assembly Language.

The set of all subprograms invoked by a
program unit.

A procedure-oriented language supported
by CRAY compilers.

A non standard boundary condition

imposed to insure a design network edge
will remain unchanged after the
geometry has been relofted.

A method of data transfer between

subprograms.

The translation of a high level source
language, like CFT, into machine
language.

16.3

I_E __, __ INTENTtONAI_,YBLANK

Key Word

Compressibility Direction

Compressible Inner Product

Constraints

Control Card Stream

Control Statement

Core

COS

CPU.(Central Processor Unit)

CRAY l-S, X-MP, I-M

Data Base Communication Chart

Data Base Directive

Data Base Information Table

Data Base Management System

Data Base status

Data flow

16.4

Description

The direction of freestream flow in the

Prandtl-Glauert equation. It is
defined by the input terms "CALPHA" and
"CBETA."

An inner product with respect to the
compressibility coordinate system.

Right-hand-side values for boundary
condition equations.

A sequence of control statements.

A user instruction to the operating
system.

Semi-conductor memory which is
manipulated by the central processing
unit.

CRAY Operating System.

Elements of a data processing system
that carry out a variety of essential
data manipulations and controlling
tasks.

CRAY Research data processing systems.

A tabular listing which correlates
datasets and the subprograms which use
them.

A user directive which may specify the

file identification parameters for the
PAN AIR databases and the master
definitions.

A tabular listing of the specifications
made by the data base directives.

A piece of software which manages data
bases in direct access storage.

The completeness of the information in
a data base.

The relationship of the output data of
one program to the input data of
another program.

V

W

Key Word

Dataset

Design Code

Diagnostic message,
warning message

Disk

Element

Element Set

'end of record' card

Executable Code

Execution

Execution time

Executive Directive

Executive Module

Fatal error

F1ow quanti ty

Formal Parameters

Free field format

Description

A collection of element sets and their

•associated key sets.

See pseudo code.

Program identification of an
abnormality detected during execution
which will not result in program
termination.

A computer storage medium external to
the CPU.

The basic informational unit of an SDMS
data base.

A well defined collection of elements.

The delimiter between sections of a job

input file.

FORTRAN statements which specify
actions the program is to take.

The operation of the CPU under control
of a program.

The wall clock time at which a program
is in execution.

A user directive which specifies the
type of PAN AIR analysis.

The component of a software system
which controls the execution of other
system components.

An abnormality detected by the program
during execution which results in

program termination.

Surface potential, velocity or normal
mass flux.

Arguments which appear in calling
sequence of SUBROUTINE or a FUNCTION.

The interpretation of program input by

its content instead of position.

16,5

Key Word

Functional Decomposition

G1os sary

Heterogeneous

Homogeneous

IC Matrix

Input

JCL (Job Control Language)

Key

Key Set

Library

Load

Macro-options

Main program

Main Overlay

Maintainability

Map

Description

The breakdown of a major computing task
into basic computing functions.

A section of the program preface which
describes program variables.

The condition of the specified flow
data set of the DIP data base _4hen
smearing has not been employed.

The condition of the specified flow
data set of the DIP data base after
smearing has been employed.

A matrix giving one or more field flow
properties as a linear combination of
the array of singularity parameters.

Data used downstream from a given PAN
AIR module.

The criteria for defining the set of
all syntactically correct control
statements.

An element set identifier.

A collection of keys which uniquely
identify an element set.

See program library.

Transform a program held on some
external storage medium into the main
memory of the machine in a form
suitable for execution.

A data set of the MEC data base which
will inform all downstream PAN AIR
modules of an IC-update, solution
update or post-solution run.

A program which is not a subprogram.

The overlay which is loaded initially
and remains in core.

Resilience to internal changes

A correlation between SDMS dataset

elements and program variables.

B

V

16.6

Key Word

Masking

Master Definition File

MEC Directives

Modular Code

Module

Operating System

Out-of-core Matrix Multiplication

Output

Overlay

PAN AIR Problem

Permanent (Temporary) Data Base

Plot data file

Preface

Description

A bit by bit logical operation on one
or more words in central memory.

A collection of data records which
defines the structure of a
permanent/temporary data base.

Data base directives and executive
directives.

Software which has localized the impact

of changes in its operating environment.

One of the ten basic programs of the
PAN AIR system.

The computer system software that

assists the hardware to implement
various supervisory and control

functions it performs for the tasks
created by the users.

The computation of the product of two
out-of-core matrices (stored on SDMS
data bases).

Data used downstream from a given PAN
AIR module.

A portion of a program written on a
file in absolute form and loaded at
execution time without relocation.

The computation of a numerical solution
to the Prandtl-Glauert equation and
boundary condition equations over a
surface configuration.

A well defined data structure,
generated by a particular PAN AIR
module, which will (not) remain
accessible after the job has run to
completion.

Input data to plotting software.

Software documentation presented as
comment statements at the beginning of
each PAN AIR module.

_" 16.7

Key Word

Primary Overlay

Procedure

Procedure File

Program

Program Library

Program Tree Structure

Pseudo Code

Secondary Overlay

Smeari ng

Software System

Solution data

Stand-al one program

Structured Programming

Description

An overlay which may be called into
core only by the main overlay and is
loaded immediately following the main
overlay.

A collection of control statements,
separate from the jobcontrol statement
section, that may be called by a
control statement.

A collection of data records which may
be called as a procedure.

A collection of FORTRAN statements,
with optional comments, terminated by
an END statement.

A collection of computer programs made
available to computer users to reduce
the work of programming.

The schematic representation of calling
relationships between subprograms of a
module.

A user-defined, non compilable
shorthand for use in defining the flow
of a program segment.

An overlay which may be called into
core only by a primary overlay and is
loaded immediately following the
primary overlay.

The application of a single specified
flow value to a subset of control
points.

An integrated collection of programs
which perform a major computing task.

Basic flow quantities associated with a
particular set of right-hand-side
equality constraints.

A program module which may be executed
independent from other modules.

Software development which has employed
disciplined program organization and
notation to facilitate correct and

16.8

Key Word

System Architecture

Submodule

Subprogram

Subroutine

Symmetri ze

Transportability

Tree Diagram

Unsymmetrize

User Directives

Description

clear descriptions of data and control
structures,

The construction of a computing system
by assembling basic modules.

A subprogram of a PAN AIR module.

A program unit that begins with a
SUBROUTINEj FUNCTION or BLOCK DATA
statement.

A subprogram unit that begins with a
SUBROUTINE statement.

Transform a large system of linear

equations into smaller systems of

linear equations, by using symmetric
properties of the coefficient matrix.

Resilience to external changes.

See program tree structure.

Transform the solutions of symmetrized
systems of linear equations into the
solution of the original system.

A collection of user specifications
which define a particular PAN AIR
problem and its computing environment,

'qw

,

,

,

5,

6.

o

REFERENCES

Magnus, Alfred E.; and Epton, Michael A." PAN AIR Volume I - Theory
Document iVersion 1.0), NASA CR-3251, 1980.

Sidwell, Kenneth W.; Baruah, Pranab K.; and Bussoletti, John E." PAN AIR

Volume II- User's Manual (Version 1.0), NASA CR-3252, 1980.

Medan, Richard T. (Editor); Magnus, Alfred E.; Sidwell, Kenneth W.; and Epton,
MichaelA.: PAN AIR Volume III - Case Manual (Version 1.0), NASA CR-3253,
1981.

Sidwell, Kenneth W.; and Derbyshire, Thomas: PAN AIR Summary Document

(Version 1.0), NASA CR-3250, 1982.

UPDATE Reference Manual, SR-0013, CRAY Research, Inc.

Businger, P.; and Golub, G. H." "Linear Least Squares Solutions by
Householder Transformations," in the "Handbook for Automatic Computation,
Volume I1," Springer Verlag, New York, 1971, pp. 111-118.

CRAY-OS Reference Manual, SR-0011, CRAY Research, Inc.

V J

ru/ ^
_fal_mJ A_-oms_ mi_ and

I. Report No.
NASA CR-3254

"4'."Ntleand Subtitle

Report Documentation Page

2. Govemment,_:_s_on No. -" 3. Rec/pJenrsCataJ_:_"No.

5. ReportDate

PAN AIR-A Computer Program for Predicting Subsonic or Supersonic Linear

Potential Flows about Arbitrary Configurations Using a Higher Order Panel
Method

Volume IV-Maintenance Document (Version 3.0)

7. Author(s)

David L Purdon, Pranab K. Baruah, John E. Bussoletd, Michael A. Epton,

William A. Massena,Franklin D. Nelson, and Kiyoharu Tsttrusaki

Boeing Military Airplane Company
P.O. Box 3707

Seattle, Washington 98124

Nadonai Aeronautics and SpaceAdministration, Washington, DC 205a6-(X)01
AFWAL and ASD, Wright-Patterson, AFB, Ohio 45433

NCSC, Panama City, Florida 32407

15.SupplementaryNotes

January 1990

6. PorformibgOrganizal_on Code

8: Pe_rformingC_anizalJon Rel_rtNo.

10.WorkunitNo.

1I.Contractor GrantNo. L

NAS2-12036

13.Typeof Reportand PeriodCovered

ContractorReport

Oct.. 198g-Sept. 1987
14.SponsoringAgency Code

Point.of Contact: LaiTy L. Erickson, Ralph L. Carmichael, Michael D. Madson, and Alex C. Woo
Ames Research Center, MS 227-2, Moffett Field, CA 94035-1000

(415) 604-5856 or FTS 464-5856

1"6.Abstract

The Maintenance Document Version 3.0 is a guide to the PAN AIR software system, a system which computes the subsonic

or supersonic linear potential flow about a body of nearly arbitrary shape, using a higher order panel method. The document
describes the overall system and each program module of the system. Sttfficient detail is given for program maintenance,

updating and modification. It is assumed that the reader is familiar with programming and CRAY computer systems.
The PAN AIR system was written in FORTRAN IV language except for a few CAL language subroutines which exist in

the PAN AIR library. Structured programming techniques were used to provide code documentation and maintainability. The
operating systems accommodated are COS 1.il, COS 1.12, COS 1.13, and COS 1.14 on the CRAY IS, IM, and X-MP

computing systems.
The system is comprised of a data base management system, a program library, an execution control module and nine

separate FORTRAN technical modules. Each module calculates part of the posed PAN AIR problem. The data base manager

is used to communicate between modules and within modules. The technical modules must be run in a prescribed fashion for
each PAN AIR problem. In order to ease the problem of supplying the many]CL cards required to execute the modules, set of

CRAY procedures (PAPROCS) was created to automatically supply most of the JCL cards.
Most of this document has not changed for Version 3.0. It now, however, strictly applies only to PAN AIR version 3.0. The

major changes are: (1) additional sections covering the new FDP module (which calculates streamlines and offbody points),
(2) a complete rewrite of the section on the MAG module, and (3) strict applicability to C'RAY compiJting systems.

17. KeyWords(Suggestedby Author(s))

Aerodynamics, Potential flow, Panel methods, Influence

coefficients, Data base, FuncdonaJ decomposition, SplJnes,

Tree diagram, Master definition, JCL, CRAY

19_Secunty(;tassif.(of _is report)

r 18. DistributionStatement

20. Securit_Ctassif.(Ofthispage)

Unclassified Unclassified

NASA FORM1626 OCT_

Subject Category - 02

21.No. of Pages

979

22. Pace

sip

V

